
FREDDI: A Fuzzy RElational Deductive
Database Interface
J. M. Medina,* O. Pons, J. C. Cubero, and M. A. Vila
Department of Computer Sciences and Artificial Intelligence, University of
Granada, 18071 Granada, Spain

This paper shows an architecture for Deductive Fuzzy RDBMS which integrates two
approaches of fuzzy databases: the relational and the logical ones. It uses the first one to
represent and manipulate imprecise information and the second one to obtain intensional
information. Besides, it shows how it is possible to use the resources offered by a conven-
tional RDBMS together with a deduction module to build a complete DFRDBMS capable
of handling queries of imprecise and/or deductive nature. This task is carried out using
an extension of SQL language. 1997 John Wiley & Sons, Inc.

I. INTRODUCTION

Since the appearance of the Relational Data Base model (RDB) proposed
by Codd, several approaches have tried to provide a theoretical environment
for the representation and handling of fuzzy information. These approaches,
which are based on the use of the fuzzy sets theory as a tool of representation
and manipulation, are grouped mainly into two tendencies: Unification Models
by Similarity Relations, and Possibilistic Models.

The first approach is described in Buckles and Petry’s proposal.1,2 The second
approach covers several proposals, the most important of which were introduced
by Umano,3 Prade and Testemale,4 and Zemankova.5

In Ref. 6 we present a model, named GEFRED, which attempts to synthesize
the most outstanding aspects of previous approaches within a common theoreti-
cal framework.

Theoretical models of fuzzy databases require mechanisms to build relational
systems (FRDBMS), which operate in accordance with these principles. Most
relevant proposals have been provided by the proponents of different theoreti-
cal models.3–9

In Refs. 10–12, we present some ideas on how to represent fuzzy information,
and how to implement it on a conventional RDBMS. This has allowed us to

*To whom correspondence should be addressed. E-mail: medina@decsai.ugr.es

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 12, 597–613 (1997)
 1997 John Wiley & Sons, Inc. CCC 0884-8173/97/080597-17

598 MEDINA ET AL.

formulate an implementation scheme that makes it possible to incorporate all
these capacities into existing systems. On the other hand, it still lacks something,
i.e., the possibility of defining information through rules. This could allow us to
define even recursive-defined concepts, e.g., the well-knownancestor computa-
tion. In Ref. 13 we present a logic approach to fuzzy databases which allows us
to deduce fuzzy (or not) information from a set of fuzzy rules using ‘‘fuzzy facts.’’
So, our interface is developed from these basic elements:

1. A suitable theoretical model of Fuzzy Relational Database.
2. A suitable theoretical model of Logic Fuzzy Database.
3. A suitable and general enough architecture for organizing the modules which

form the whole system.
4. Operative criteria for representing fuzzy data and their manipulation operations.
5. The use of the resources provided by a conventional RDBMS to implement

fuzzy handling.
6. The use of conventional deductive systems (Prolog in this case) to implement

fuzzy deduction.

Therefore, what we intend is to be able to solve queries involving a deductive
process which may not be solved by a relational system. In this case, it is necessary
that our Deductive-Fuzzy Relational DBMS (DFRDBMS) must be able to distin-
guish between two types of relations:

● Extensive Tables, which are physically stored in the database or can be computed
by relational methods (p.e. views).

● Intensional Tables, whose data must be computed by an independent deduction
module.

To avoid inconsistency and redundancy between the relational and the logic
systems, the information must be uniformly organized and as centralized as
possible. In Section 4 we describe how all the information is expressed in rela-
tional terms.

To illustrate the problem we are tackling, let us consider a database with
the following scheme:

PARENTS(Name,Father,Mother)
DEAD PEOPLE(Name,Age,Date)
ALIVE PEOPLE(Name,Address,)

and a query ‘‘Get person names together with their ancestor names such that
the ancestor died young’’. In this query there are some interesting points:

● There is no explicit information about ancestors in the DB and this information
is not computable in relational terms, but we have all the necessary information
to know who the ancestors of a person are.

● There is an attribute value young, which implies a fuzzy treatment of information.

However, the intensional table ancestors can be defined by the following rule:

FREDDI 599

ANCESTOR(X,Y) if PARENTS(X,Y,).
ANCESTOR(X,Y) if PARENTS(X, ,Y).
ANCESTOR(X,Y) if PARENTS(X,Z,) and ANCESTOR(Z,Y).
ANCESTOR(X,Y) if PARENTS(X, ,Z) and ANCESTOR(Z,Y).

so, what we need first is a relational implementation for this rule, in order to
represent it in the database. Once this representation is achieved, the DFRDBMS
should build the rule into its logical format and send it to the deduction module.
All this process will be amply explained in the following sections.

Once the deduction module has received the rule, it computes all possible
solutions for X and Y variables and saves them in a table, called ANCESTOR,
which is then used by the DFRDBMS to solve the rest of the query.

This paper is organized as follows: In Section 2, we summarize the theoretical
models on which this implementation is based: A fuzzy relational database model
and a logic fuzzy database model. In Section 3, the most important features of
FREDDI architecture are shown. We give its modular description, paying special
attention to the Deductive Fuzzy SQL Server. In Section 4, we explain in detail
how imprecise and intensional information is implemented in the Deductive
Fuzzy Relational DBMS (DFRDBMS) and give an example to illustrate it.
Section 5 summarizes and classifies the most important contributions of this work
and, finally, Section 6 points out the open problems and the future avenues
for research.

2. THEORETICAL MODELS

In this section, we summarize the main theoretical models on which we have
founded this work. On the one hand, the model for fuzzy relational databases
and, on the other hand, the logic model for fuzzy databases.

2.1. Fuzzy Relational Database Model

In this section we introduce the basic elements of a Fuzzy extension of the
Relational Model, called GEFRED, described in Ref. 6. This extension includes
some additional elements to the previously reviewed Fuzzy Relational Models.

The main contributions are:

● Handling more kinds of imprecise information.
● A different way of organizing information. The same relational structure is used

to represent the initial information, the information resulting from algebraic opera-
tions, the rules and the final results.

● The precision with which any simple condition involved in a query is satisfied can
be controlled independently.

2.1.1. Data Structure

The information the model handles is organized as follows:

● The domain DG underlying every attribute of the relation contains some of the
data in Table I.

600 MEDINA ET AL.

Table I. Types of data.

1. A single scalar (Behavior 5 good, represented by the possibility distribution, 1/good)
2. A single number (Age 5 28, represented by the possibility distribution, 1/28)
3. A set of possible scalar assignments

(Behavior 5 hgood, badj, represented by h1/good, 1/badj)
4. A set of possible numeric assignments

(Age 5 h20, 21j, represented by h1/20, 1/21j)
5. A possibility distribution in a scalar domain

(Behavior 5 h0.6/bad, 0.7/normalj)
6. A possibility distribution in a numeric domain

(Age 5 h0../23, 1.0/24, 0.8/25j, fuzzy numbers or linguistic labels)
7. A real number belonging to [0, 1], referring to degree of matching

(Quality 5 0.9)
8. An Unknown value with possibility distribution,

Unknown 5 h1/u : u [U j
9. An Undefined value with possibility distribution,

Undefined 5 h0/u : u [U j
10. A NULL value given by NULL 5 h1/Unknown, 1/Undefinedj

● We structure the data through a relation model, RFG , given by:

RFG , (DG1 , C1), 3, . . . , 3 (DGn , Cn)

where every DGj is a domain of the type previously described, and Cj is a ‘‘compati-
bility attribute’’ that takes its values from [0, 1]. Every attribute is associated with
a ‘‘compatibility attribute.’’ In base relations, ‘‘compatibility attribute’’ does not
appear. This relation represents the initial information as well as that resulting from
the Fuzzy Algebra operations. Handling these relations through Fuzzy Relational
Algebra can modify, for every tuple, the compatibility attribute values.

2.1.2. Data Handling

The Fuzzy Algebra used in this model is an extension of classical relational
algebra. In this extension specific comparison operators are used for handling
fuzzy information.

Fuzzy querying receives special handling, based on the following points:

● ‘‘Atomic Selection’’ is a query, on a relation type RFG , in which the satisfaction of
a simple condition is sought.

● When an attribute, an operator and a fuzzy constant are involved in an ‘‘Atomic
Selection,’’ such condition will be satisfied to a degree for every attribute value.
This degree takes a value in [0, 1].

● In an ‘‘Atomic Selection’’ we can establish a threshold for the degree of satisfaction
of a condition. Thanks to this threshold in the ‘‘Atomic Selection,’’ we can eliminate
those tuples that do not satisfy the condition to a degree greater or equal to that
of the threshold.

● The result of an ‘‘Atomic Selection’’ with a threshold for the degree is, once again,
a relation of the type described in point 1 of this section. In this relation, the
degree of satisfaction of a condition for every value of the attribute involved
appears in the compatibility attribute.

FREDDI 601

Compound conditions are those obtained combining simple conditions through
logic connectives (negation, conjunction, and disjunction). Compound conditions
are solved as follows:
● From every simple condition we obtain the resulting relation by applying the

‘‘Atomic Selection’’ with a given threshold.
● For simple conditions connected with a conjunctive operator, we obtain the

intersection of the relations derived from every condition. Then the values of
the ‘‘compatibility attribute’’ associated with every attribute involved in the
simple conditions are computed. Computing consists of giving a value to the
compatibility attribute of every tuple in the intersection, i.e., equal to the mini-
mum value in the respective initial simple conditions.

● For simple conditions connected with a disjunctive operator, we obtain the
union of the relations derived for every condition and update the compatibility
attribute with the maximum value.

● For a negated simple condition, we update the compatibility attribute value with
the complement to 1 of the present value in every tuple.

2.2. Logic Fuzzy Database Model

In this section we summarize the most relevant elements of a Logic Fuzzy
Database Model.13,14 The data types considered are the same as those appearing
in Table I. In this model, information is represented as follows:

● Facts or Logic Database: Predicates with the form of:

Student(‘Perez’,‘Young’,‘Granada’).

(whose arguments correspond to NAME, AGE, and CITY attributes) where fuzzy
arguments (such as ‘Young’) can appear.

● Labels: These labels correspond to both attribute fuzzy values and fuzzy values
you can query the database about, although they do not correspond to a current
attribute value.
● Labels are stored with the format:

LABEL(Age,‘Middle’,30,35,40,45).

for a normalized trapezoidal label called ‘‘Middle’’ on domain ‘‘Age’’.
● Possibility distributions are stored in the following format.

Suppose the possibility distribution A for a student’s age is: A 5 15/1 1
16/1 1 17/0.9 establishing that he/she is 15 with possibility 1, 16 with possibility
1 or 17 with possibility 0.9. Then, the facts involved are:

STUDENT(‘Sanchez’,‘A’,‘Sevilla’).
POSS(Age,‘A’,15,1).
POSS(Age,‘A’,16,1).

POSS(Age,‘A’,17,0.9).

All the predicates used in this module are defined and justified in Ref. 13.
● Rules: Used to deduce new information from that stored in the Logic Database.

Rules are Prolog rules but a certainty degree can be attached to them. Therefore,
we will impose on every rule that they have an output argument that will be
computed in the body of the rule from the certainty values of all the rules activated
in the process.

For example, we can use a rule to define what a difficult course is, in the
following way:

602 MEDINA ET AL.

difficult-course(Course,Pos):-
num subj(Course,NumSubj),
NumSubj.54,
num cred(Course,NumCred),
comp(cred,NumCred,‘‘High’’,Pos1),
CD is 0.8, min(CD,Pos1,Pos).

The aim of the predicates involved in the definition is the following:
● Predicates num subj(Course,NumSubj) and NumSubj$4 are used to com-

pute the number of subjects in the course Course and this number is required
to be greater than or equal to 4.

● Predicates num cred(Course,NumCred) and comp(cred,NumCred,
‘‘High’’,Pos1) compute the number of credits of the considered course
and compare it with ‘‘High’’. The result of this comparison is a certainty degree
stored in Pos1.

● Finally, CD50.8 is the ‘‘goodness’’ of the definition, which combines the results
of the previous predicates to compute the value of Pos.

● Comparison Operators: Which are predicates for defining all fuzzy comparison
operators used to solve a query. In our case, we have defined the operators:
● Comp(X,Y,Z): Computes the degree (Z) to which X and Y are equal, where

X and Y can be fuzzy sets, crisp values or possibility distributions.
● Greater Eq(X,Y,Z), Less Eq(X,Y,Z), Greater(X,Y,X), Less(X,Y,Z): Com-

pute, respectively, to what extent X is hgreater or equal, less or equal, strictly
greater or strictly lessj than Y and store that degree in Z.

The expression used to compute all these operators need not be unique or concrete,
but most coincide with the ones used by the DFRDBMS. It may also occur that
different forms of comparison are used for different attributes. We have chosen
a unique expression for the sake of simplicity. More details about fuzzy comparison
operators can be found in Refs. 15 and 16.

To sum up, all the information to be handled must be expressed from the
logical point of view, i.e., as facts and rules, which in general may be imprecise.

3. ARCHITECTURE OF FREDDI

Figure 1 shows the general scheme of FREDDI; it provides a deductive and
fuzzy extension of a conventional RDBMS, adopting a modular structure which
permits a Client/Server organization. The main element of FREDDI architecture
is the RDBMS, which works as a host; around the RDBMS there are modules
that perform the deductive and fuzzy information handling. Below, we describe
the modules which compose FREDDI in terms of their functional character,
structure and implementation.

3.1. Modular Description

● The Host RDBMS is the system used as the basis of an implementation of FREDDI.
It provides the management resources for RDB and a group of basic tools for
programming SQL applications in the host language (by an API or an Embedded
SQL specification). The incorporated SQL syntax, it is provided with a deductive
and fuzzy extension and is used in the implementation of the conversion routines
of DFSQL into SQL sentences.

● DB stores all the extensive information, ‘‘fuzzy’’ or not, with a relational scheme.

FREDDI 603

Figure 1. General scheme of FREDDI.

Certain representation criteria are used to implement the fuzzy data in this data
scheme.

● FMB, the Fuzzy Meta-knowledge Base, is an extension of the host RDBMS catalog,
whose mission is to provide FREDDI with the information about all fuzzy struc-
tures, data and definitions contained in the DB. FMB refers also to the intensional
tables described in the DB. All the information is organized in accordance with
the catalog scheme of the host RDBMS.

● RB, the Rules Base is another extension of the host RDBMS catalog, which
contains all the information related to intensional tables defined in the DB. RB
organization is shown in Section 4.3.

● The Deductive FSQL Server module is responsible for processing deductive and
fuzzy requests to the system. To carry out this job, it is equipped with a parser
for the Deductive FSQL (DFSQL) syntax. In Section 3.2 we describe its organiza-
tion and functioning in depth.

● The Prolog Engine, which performs the inference processes which allow the inten-
sional information requested to be obtained. The DFSQL Server has to determine
which rules, extensive tables and definitions are to be sent to the Prolog Engine
for it to solve these requests.

Among the previous modules, it is only left to implement the DFSQL Server,
as the rest of them are based on components available at this moment. According
to FREDDI architecture, the implementation of DFSQL Server can profit all

604 MEDINA ET AL.

the advantages of the RDBMS Host on which it is built. Specifically, if the
RDBMS Host supports procedural extensions of SQL, then the DFSQL Server
can be built as a stored program executable in the RDBMS. This choice offers
FREDDI implementation a better coupling with the Host RDBMS. Another
important choice a RDBMS of these characteristics offers is the building of an
ad hoc inference engine to process intensional tables without the use of an
external prolog engine.

3.2. Deductive Fuzzy SQL Server

As we have seen in the previous section, the central module of FREDDI
is the Deductive FSQL Server.

This module serves the requests of client applications expressed in DFSQL:
it analyzes, verifies and processes them to return the results in a table. To carry
out this task, it is supported by the rest of the modules in FREDDI architecture.
In Figure 1 we show how this module performs a query.

1. It obtains a DFSQL request (black arrow 1) and separates those clauses involving
fuzzy treatment or intensional table. To do this, it must explore the FMB through
auxiliary SQL queries (black arrow 2 3 4).

2. It gets from the FMB the structure of the fuzzy clauses, from the Rules Base (RB)
the rules that define the intensional tables and, from the DB, the extensive tables
involved (white arrows 2 and 3, respectively).

3. It sends all the information involved in the deduction process to the Prolog Engine
(black arrow 3), gets the results (white arrow 4) and updates the DB with these
results (black arrow 2 3 4).

4. It translates fuzzy clauses into SQL clauses and constructs a definitive SQL sen-
tence (black arrow 5).

5. It executes that sentence, obtains the results (white arrow 5) and processes them
before sending them to the client application (white arrow 1).

3.2.1. DFSQL Syntax

As we have seen, FREDDI functioning is based on an extended version of
SQL syntax provided by the Host RDBMS. Next, we show in YACC format
some of the new clauses that DFSQL syntax incorporates.

● Data Definition Language. This sub-language incorporates into SQL new senten-
ces to define tables containing fuzzy attributes and intensional tables. FREDDI
supports intensional tables with both classical and fuzzy attributes. Among all the
sentences needed, we only pay attention, for the sake of shortness, to the syntax
adopted for the definition of these tables.

create table : CREATE INTENSIONAL TABLE table item
‘(‘ column list ’)’ RULE rule descpt ;

table item : id user ‘.’ id table u id table ;

column list : column list ‘,’ column list u column descpt ;

FREDDI 605

column descpt : column id datatype ;

data type : classical datatype u fuzzy datatype ;

fuzzy datatype : crisp u possibilistic u nearness ;

nearness : SCALAR ‘)’ NATURAL NUMBER ‘)’ u SCALAR ;

rule descpt : ‘(’ rule list ‘)’ ;

rule list : rule list ‘;’ rule list u rule item ;

rule item : rule item AND rule item u predicate ;

predicate : table descpt u condition ;

table descpt : table item ‘(’ table arg ‘)’ ;

table arg : table arg ‘,’ table arg u arg item ;

arg item : ‘ ’ u var id ;

var id : ‘X’NATURAL NUMBER ;

condition : var id comp var id ;

comp : ‘5’ u ‘,’ u ‘.’ u ‘,5’ u ‘5.’ u ‘,.’ ;

Nonterminal symbols user id, table id and column id identify the
object user, table and attribute, respectively, and follow the formation rules
established in the syntax of the host RDBMS. Nonterminal symbols crisp,
possibilistic and nearness identify fuzzy datatype for ‘‘fuzzy’’ attributes.
The terminal symbol NATURAL NUMBER identifies a datum with natural format;
the semantics parser is responsible for verifying the range and type for each
occurrence in the entry. The symbols in simple quotation marks, which belong
to the production rule, are literals. The remaining terminal symbols are reserved
words in the new syntax.

● Data Manipulation Language. In FREDDI, the query is the operation that in-
volves all expressive power of DFSQL. Next, we detail the new clauses attached
to SELECT in order to make queries which allow intensional and fuzzy information
to be obtained.

fcond simp : fcond wtout threshold u fcond wtout ;

fcond wtout : column item fcomp fuz constant ;

threshold : THOLD NUMBER u THOLD ‘$’ ID ;

fuz constant : ‘$’ ID
u NUMBER
u ‘#’ NUMBER
u ‘[’ NUMBER ‘,’ NUMBER ‘]’

606 MEDINA ET AL.

u ‘$’ ‘[’ NUMBER ‘,’ NUMBER ‘,’ NUMBER ‘,’
NUMBER ‘]’ ;

fcomp : FEQ u FGT u FLT u FGEQ u FLEQ ;

comp deg : CDEG ‘(’ fuz arith op ‘)’ ;

agre funct : FMAX ‘(’ column item ‘)’ u FMIN ‘(’
column item ‘)’

u FSUM ‘(’ column item ‘)’ u FAVG ‘(’
column item ‘)’ ;

fuz arith op : fuz arith op ‘1’ fuz arith op
u fuz arith op ‘2’ fuz arith op
u fuz arith op ‘*’ fuz arith op
u fuz arith op ‘/’ fuz arith op
u ‘(’ fuz arith op ‘)’
u column item
u fuz constant ;

column item : table id ‘.’ column id u table alias
‘.’ column id

u column id ;

The terminal symbol NUMBER identifies a datum with numerical format. The
remaining terminal symbols are reserved words in the next syntax, which permit
‘‘fuzzy’’ conditions, modifiers and functions to be expressed.

The nonterminal symbol fcomp represents the set of fuzzy comparators in
FSQL syntax. The complete syntax of an atomic fuzzy comparison takes the form:

kcolumn iteml fcomp kfuz constantl [kthresholdl]

where square brackets indicate that the threshold may or may not appear in the
condition; in the latter case, the default threshold value is equal to 0.5 here.

Composite conditions are obtained by the use of NOT, AND and OR
connectives, and fuzzy atomic conditions can be connected with other conditions
which are not fuzzy.

The following sentences would be valid statements of the FSQL syntax
adopted (assuming the existence of the tables and labels used):

CREATE INTENSIONAL TABLE ancestor (X char(30),
Y char(30)) RULE (
parents(X,Y,);
parents(X, ,Y);
parents(X,Z,) and ancestor(Z,Y);
parents(X, ,Z) and ancestor(Z,Y)).

SELECT FACOUNT,FAVG(sal),FMAX(sal),FMIN(sal) FROM
employees
GROUP BY age THOLD 0.8

SELECT a.emp#, name, education, CDEG(education) FROM
employees a, capacity b

FREDDI 607

Table II. Representation of Type 2 attributes.

Data Type F TYPE F 1 F 2 F 3 F 4

UNKNOWN 0 NULL NULL NULL NULL
UNDEFINED 1 NULL NULL NULL NULL
NULL 2 NULL NULL NULL NULL
CRISP 3 d NULL NULL NULL
LABEL 4 FUZZY ID NULL NULL NULL
INTERVAL[A,B] 5 A 0 0 B
APPROX(d) 6 d-margin margin -margin d 1 margin
FUZZY 7 a 2 a a b b 1 b

WHERE a.emp#5b.emp# AND education FEQ $graduate THOLD 0.6

SELECT emp#,dept#,job#,salary1commission,CDEG
(salary1commission)
FROM employees
WHERE salary FEQ $high AND commission FEQ $low THOLD 0.8

4. IMPLEMENTATION OF INTENSIONAL AND IMPRECISE
INFORMATION IN THE DFRDBMS

This section describes how the resources proposed by the host RDBMS can
be used to implement the intensional and fuzzy data and operations. The details
of this process on fuzzy data can be found in Ref. 10.

Implementation of intensional and imprecise information is done consider-
ing three levels:

1. The Database level. As we are dealing with the representation of imprecise and
intensional data, we must determine how we can store it. The data representation
must therefore be extended to deal with this kind of information.

2. The System Catalog level. The DFRDBMS must contain information about the
elements in the Database which involves imprecise and/or intensional data as well
as their nature and representation.

3. The DFSQL Server level. The system possesses knowledge about the treatment
of the available fuzzy operations and about the deduction process.

4.1. Imprecise Data in the Host Database

The representation used for the imprecise data allows us to distinguish three
types of ‘‘fuzzy’’ attributes at the Database level:

Type 1 Attributes with ‘‘crisp data’’ having linguistic labels defined on them.
Type 2 Attributes with ‘‘imprecise data on an ordered domain.’’
Type 3 Attributes with ‘‘discrete domains with analogies.’’

Type 1 attributes do not need a specific implementation scheme in the DB
of the host RDBMS. Tables II and III show how we use the classical relational
scheme to represent the data in the Type 2 and Type 3 attributes, respectively.

608 MEDINA ET AL.

Table III. Representation of Type 3 attributes.

Data Type F TYP F P1 F 1 F P2 F 2 F P3 F 3 . . .

UNKNOWN 0 NULL NULL NULL NULL NULL NULL . . .
UNDEFINED 1 NULL NULL NULL NULL NULL NULL . . .
NULL 2 NULL NULL NULL NULL NULL NULL . . .
SIMPLE 3 1 d NULL NULL NULL NULL . . .
POS. DISTR. 4 p1 d1 p2 d2 p3 d3 . . .

For each type 2, an attribute F is created: an F TYPE attribute with the
type code and attributes F 1, F 2, F 3, F 4 representing the parameters for
each data. NULL values appearing in the attributes have the meaning assigned
by the host RDBMS. For the LABEL type, the FUZZY ID code represents
an identifier for the linguistic hedge defined in the Meta-knowledge Base. ‘‘Mar-
gin’’ is another parameter stored in the Meta-knowledge Base.

4.2. The Fuzzy Meta-Knowledge Base

We use the term Fuzzy Meta-Knowledge Base (FMB) to refer to that exten-
sion of the System Catalog which captures all the necessary information about
imprecise data in the Database. Besides, it contains references to the intensional
tables of the DB. Accordingly, we shall organize all this information in tables
or relations. The elements stored in the Meta-knowledge Base are the following:

● The intensional tables present in the Database.
● The attributes in the Database that will be treated as imprecise.
● The type of these attributes. The table Fuzzy col codifies the nature of an attribute

with a value in the column column type, according to the following table:

Attribute Type Column type Value

Extensive Crisp 0
Extensive Possibilistic 1
Extensive Nearness 2
Intensional Crisp 4
Intensional Possibilistic 5
Intensional Nearness 6

● Elements defined in the Database scope, i.e., query fuzzy quantifiers.
● The fuzzy objects defined on each attribute:

● Linguistic labels.
● Approximate values.
● Proximity relations.
● Threshold labels.

The organization of the tables of FMB is shown in Figure 2.

FREDDI 609

Figure 2. Meta-knowledge base scheme.

4.3. Rules Representation in the Host Database

To deal with the problem of representing rules in the RDBMS, the creation
and manipulation of four tables are necessary. These tables are represented in
Figure 3 and their descriptions are the following:

● Intensional Table Description: This table contains the name of the intensional
table we are defining and the number of rules needed to be defined. The attri-
butes are:
● TABLE ID: It contains the intensional table name or, what is the same, the

head of the rules defining such table. The definition of this intensional table
(at least, name and attribute names and types) must already be stored in the
DB catalog.

● RULE ID: It contains a different identifier for each rule defining a concrete
intensional table. These identifiers are automatically assigned by the system.

● Rule Description: This table contains the description of each rule, i.e., the predi-
cates involved. Its attributes are:
● TABLE ID, RULE ID: These two attributes have the same meaning as the

610 MEDINA ET AL.

Figure 3. Relational representation of rules.

ones in the previous table and must coincide with them, i.e., both of them
constitute a foreign key to the Intensional Table Description table.

● PRED ID: This column contains the name of the predicates involved in a
concrete rule.

● OCC NUMBER: Should the same predicate name appear more than once in
the body of a rule, we need to distinguish different occurrences by attaching a
number in the column OCC NUMBER.

● NEGATED: This column contains value 1 if the corresponding predicate occur-
rence is negated in the rule and 0, otherwise.

● TYPE: This column contains a value in the set h0, 1, 2j with the following meaning:
● 0 R Extensive, i.e., the predicate name corresponds to a stored table of

the database.
● 1 R Intensional, i.e., the predicate name corresponds to a rule that must be

described in the Intensional Table Description table.
● 2 R Comparison, i.e., the expression is not a predicate but a comparison

expression between the variables appearing in the rule.
● Predicate Description. This table contains the description of every predicate

occurrence, i.e., the variables used, the order in which they appear, etc. . . . Its
attributes are:
● TABLE ID, RULE ID, PRED ID and OCC NUMBER: These columns

must coincide with the corresponding ones in the table Rule Description, i.e.,
they constitute a foreign key to this table.

● VAR ID: This column contains the identifiers of the variables that appear in
a predicate expression. If the variables are called, p.e. Xi , this column will contain
the number i.

● COL ID: This column indicates the position of every variable inside a predicate
expression (whether Xi is in first, second, . . . place in the predicate P expression).

● Condition Description. This table contains the description of comparison expres-
sions appearing in the rules. Its attributes are:

FREDDI 611

Table IV. Intensional Table
Description table.

TABLE ID RULE ID

P P1

P P2

● TABLE ID, RULE ID, PRED ID and OCC NUMBER: These columns
must coincide with the corresponding ones of table Rule Description, i.e., they
constitute a foreign key to this table.

● VAR ID1 and VAR ID2: Are the identifiers of the variables involved in a
comparison operation.

● COMP OP: This column indicates the comparison operator used in the expres-
sion. This column can contain one of the values from the set h0, 1, 2, 3, 4, 5j
standing for a 5, k l, k, l, k5 and .5, respectively.
If instead of a classical comparison operator, a fuzzy one is needed (see fuzzy
comparison predicates in Section 2.2), the predicate associated to this operator
must be stored in the same way as any other predicate. It is not stored as a
comparison expression because the result is not just true or false, but rather an
accomplishment degree.

● Example. Let us see, by way of an example, how rules are represented in the
DFRDBMS. Let us suppose an intensional table (predicate) definition like:

P(X1, X2, X3) if Q1(X1,) and not (Q2(X2 , X3)) and (X1 , X3).
P(X1, X2, X3) if Q1(X1 , X4) and P(X4, X2, X1) and Q3(X3,).

with the following characteristics:
● Predicate P has been defined using more than one rule (in fact, two rules).
● In P definition extensive predicates Q1 , Q2 and Q3 appear, which correspond to

tables of the DB.
● In P definition, P itself appears, i.e., it is a recursive definition.
● In P definition, a comparison expression is considered (X1 , X3).
The representation of the rules defining an intensional table P is shown in Tables
IV through VII.

5. CONCLUSIONS

The main characteristics of the proposed architecture may be classified
as follows:

● Theoretical Contributions. Integration of the two theoretical models of Fuzzy

Table V. Rule Description table.

TABLE ID RULE ID PRED ID OCC NUMBER NEGATED TYPE

P P1 Q1 1 0 0
P P1 Q2 1 1 0
P P1 comp1 1 0 2
P P2 Q1 1 0 0
P P2 P 1 0 1
P P2 Q3 1 0 0

612 MEDINA ET AL.

Table VI. Predicate Description table.

TABLE ID RULE ID PRED ID OCC NUMBER COL ID VAR ID

P P1 Q1 1 1 1
P P1 Q2 1 1 2
P P1 Q2 1 2 3
P P2 Q1 1 1 1
P P2 Q1 1 2 4
P P2 P 1 1 4
P P2 P 1 2 2
P P2 P 1 3 1

Relational DB: a logic model,13 which allows us to represent, manipulate and infer
imprecise data, and a generalized relational model GEFRED,6 which extends
the representation and manipulation mechanisms of the relational model for the
treatment of fuzzy information.

This philosophy tries to take advantage, on the one hand, of the efficiency of
the relational model with respect to the representation used and the extensive
information searching and, on the other hand, of the logical model capacity to
infer intensional information. For this reason, joining both models allows a balanced
compromise to be reached between flexibility, in the treatment of all kinds of
information, and processing speed.

● Representation Criteria. It adopts the classical relational scheme as representa-
tion tool for precise, fuzzy and intensional information.

● Implementation Features. We have proposed an open architecture, which can
be implemented on commercial RDBMS and permits the use of different kinds
of inference engines. This approach brings some benefits:
● It reduces the time for the development of DFRDBMS prototypes.
● It is easy to transport to a different environment.
● It uses the resources offered by conventional RDBMS to implement all addi-

tional elements of FREDDI architecture.
● It allows co-existence with classical DB and applications, preserving previous

architecture and data.
● It is easily integrated inside the actual processing schemes (Client/Server archi-

tecture, Distributed Databases, etc.).

6. FUTURE AVENUES FOR RESEARCH

Further work is needed on the following aspects of the proposed implementa-
tion model:

● The development of a complete FREDDI prototype which would incorporate all
the modules.

● To increase the variety and applicability of implemented operators.
● The development of a complete DFSQL extension, including all operations of

DDL, DML and DCL sublanguages.

Table VII. Condition Description table.
TABLE ID RULE ID PRED ID OCC NUMBER VAR ID1 VAR ID2 COMP OP

P P1 comp1 1 1 3 2

FREDDI 613

● To incorporate tools for the development of applications for Deductive Fuzzy Data-
bases.

● To adapt the FREDDI specification to widely used conventional RDBMS.
● To study the viability of developments at low levels of implementations based

on GEFRED.
● In the case of RDBMS with procedural extensions of SQL, the use of these

characteristics to build an ad hoc inference engine that processes intensional queries
without the need for an external Prolog module.

The adaptation of the theoretical models to the framework of object data-
bases and their implementation on OODBMS, also merits further investigation.

References

1. B.P. Buckles and F.E. Petry, ‘‘A fuzzy representation of data for relational databases,’’
Fuzzy Sets and Systems, 7, 213–226 (1982).

2. S. Shenoi and A. Melton, ‘‘An extended version of the fuzzy relational database
model,’’ Information Sci., 52, 35–52 (1990).

3. M. Umano, ‘‘Freedom—0: A fuzzy database system,’’ Fuzzy Information and Decision
Processes, Gupta-Sanchez, Ed. North-Holland, Amsterdam, 1982.

4. H. Prade and C. Testemale, ‘‘Generalizing database relational algebra for the treat-
ment of incomplete/uncertain information and vague queries,’’ Information Sci., 34,
115–143 (1984).

5. M. Zemankova and A. Kandel, Fuzzy Relational Data Bases—A Key to Expert
Systems, Verlag TUV, Rheinland, 1984.

6. J.M. Medina, O. Pons, and M.A. Vila, ‘‘GEFRED. A Generalized Model of Fuzzy
Relational Databases,’’ Information Sci., 76(1–2), 87–109 (1994).

7. P. Bosc, M. Galibourg, and G. Hamon, ‘‘Fuzzy querying with SQL: Extensions and
implementation aspects,’’ Fuzzy Sets and Systems 28, 333–349 (1988).

8. D. Li and D. Liu, A Fuzzy Prolog Database System, Wiley, New York, 1990.
9. Nakajima Hiroshi, Sogoh Taiji, and Arao Masaki, ‘‘Fuzzy database language and

library—fuzzy extension to SQL,’’ Proceedings of Second IEEE International Confer-
ence on Fuzzy Systems, 1993, pp. 477–482.

10. J.M. Medina, M.A. Vila, J.C. Cubero, and O. Pons, ‘‘Towards the implementation
of a generalized fuzzy relational database model,’’ Fuzzy Sets & Systems, 75, 273–
289 (1995).

11. M.A. Vila, J.C. Cubero, J.M. Medina, and O. Pons, ‘‘Some recent advances in fuzzy
relational and fuzzy deductive databases,’’ European Research Consortium for In-
formatics and Mathematics, Barcelona, 1–2 November, 1994, pp. 161–176.

12. M.A. Vila, J.C. Cubero, J.M. Medina, and O. Pons, ‘‘Towards the computer implemen-
tation of a fuzzy relational and deductive database system,’’ Proceedings of the FUZZ-
IEEE/IFES’95 workshop on Fuzzy Relational Systems and Information Retrieval,
Yokohama, Japan, March, 1995.

13. M.A. Vila, J.C. Cubero, J.M. Medina, and O. Pons, ‘‘Logic and fuzzy relational
databases: A new language and a new definition,’’ in Fuzzy Sets and Possibility Theory
in Databases Management Systems, P. Bosc and J. Kacprzyk Eds. Physica-Verlag,
Heidelberg, 1994.

14. O. Pons, M.A. Vila, and J.M. Medina, ‘‘Handling imprecise medical information in
the framework of logic fuzzy databases,’’ Fuzzy Systems & A. I., 3(1), 5–25. Ed.
Academiei Romane, 1994.

15. K.M. Lee and H. Lee-Kwang, ‘‘Fuzzy matching and fuzzy comparison in fuzzy expert
systems, on Fuzzy Logic and Neural Networks, Iizuka, Japan, 1992, pp. 313–316.

16. R. Zwick, E. Carlstein, and D.V. Budescu, ‘‘Measures of similarity among fuzzy
concepts: A comparative analysis, Int. J. Approximate Reasoning, 1, 221–242 (1987).

