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A Conditional Saddlepoint Approximation

Riccardo GATTO and S. Rao JAMMALAMADAKA

- for Testing Problems

A saddlepoint approximation is provided for the distribution function of one M statistic conditional on another M statistic. Many
interesting statistics based on dependent quantities (e.g., spacings, multinomial frequencies, rank differences) can be expressed
in terms of independent identically distributed random variables conditioned on their sum, so that this conditional saddlepoint
approximation yields accurate approximations for the distribution of such statistics. This saddlepoint approximation can also be
used in conditional testing, where nuisance parameters are eliminated by conditioning on sufficient statistics.

KEY WORDS: Conditional test; Exponential distribution; Geometric distribution; Goodness-of-fit test; M statistics; Multinomial
distribution; Nonparametric test; Poisson distribution; Rank test; Spacings; Two-sample test.

1. INTRODUCTION

In this article we propose a saddlepoint approximation
for the distribution function of an M statistic conditional
on another M statistic. Many important test statistics can
be rewritten as conditional M statistics in this sense, and
thus our conditional saddlepoint approximation can be ex-
ploited to obtain accurate approximations to p values or
critical values. Such test statistics include the class of spac-
ing statistics, which are based on the gaps between the suc-
cessive values of the ordered sample. They have proven
" useful in various statistical problems, chief among them
the goodness-of-fit tests. (For a general review on spacings,
see Pyke 1965.) Except in a few special cases, the exact
distribution of such statistics based on uniform spacings
is unknown. For most cases, the asymptotic distribution is
known, but it can be potentially misleading, especially when
the sample size is moderate to small. We exploit the fact
that the uniform spacings have the same distribution as ex-
ponential random variables conditioned on their sum. Hence
any function of uniform spacings has the same distribution
as the corresponding function in terms of independent and
identically distributed (iid) exponentials random variables
conditioned on their sum. In testing multinomial/grouped
data, the likelihood ratio test or the Pearson chi-squared
test can be written similarly in terms of iid Poisson random
variables conditioned on their total, because multinomial
frequencies have such a conditional Poisson representation.
We thus can provide more accurate approximations for the
distribution of the likelihood ratio or the chi-squared statis-
tics, useful for small to moderate sample sizes. In testing
whether two samples are from the same population, Holst
and Rao (1980) showed that a whole range of classical rank
tests have a simpler equivalent representation in terms of
what are called the “spacing frequencies”; that is, the fre-
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quencies of one sample that fall in between the successive
order statistics of the other sample. We can use our saddle-
point approximation to improve the accuracy of the asymp-
totic normal approximation in this context, by using the fact
that these spacing frequencies have again the same distribu-
tion as iid geometric random variables conditioned on their
sum. Tests in this class include the van der Waerden/normal
score test and the Wilcoxon/Mann-Whitney test. A further
important use of our saddlepoint approximation is in con-
ditional testing, where nuisance parameters are eliminated
by conditioning on their sufficient statistics.

The article is organized as follows. In Section 2 we give
the essential computational steps of our saddlepoint approx-
imation for conditional M statistics. In Section 3 we show
how our saddlepoint approximation can be used with the
specific one-sample tests. Several numerical computations
illustrate the high level of accuracy of our methods. We de-
vote Section 4 to the two-sample test statistics, giving many
examples in which our saddlepoint approximation can be
used advantageously.

2. CONDITIONAL SADDLEPOINT APPROXIMATION

The saddlepoint technique of asymptotic analysis was in-
troduced into statistics by Daniels (1954) for deriving a
very accurate approximation to the density of the mean of
a sample of iid observations. In contrast with normal lim-
its or Edgeworth approximations, the numerical accuracy of
the saddlepoint approximation is surprisingly good, particu-
larly in the tails of the distribution, and even for very small
sample sizes. The Edgeworth expansion is known to in-
herit undesirable oscillations from its Hermite polynomials,
sometimes leading to negative tail probabilities. Several ex-
tensions of Daniels’s first formula have been proposed (see,
e.g., Booth and Butler 1990 for randomization distributions;
Field 1982 for M estimators; Gatto and Ronchetti 1996 for
marginal densities of general statistics; Lugannani and Rice
1980 for tail probabilities). Some general texts or reviews
include works by Barndorff-Nielsen and Cox (1989), Davi-
son and Hinkley (1997), Field and Ronchetti (1990), Field
and Tingley (1997), Jensen (1995), and Reid (1988). Sad-
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dlepoint approximations for conditional distributions have
been proposed by Skovgaard (1987) for the distribution of
a sample mean given another mean, by Wang (1993) for
a mean given a nonlinear function of another mean, and
by Jing and Robinson (1994) for a nonlinear function of a
mean given another nonlinear function of another mean. Di-
Ciccio, Martin, and Young (1993) proposed a different type
of conditional approximation, which, however, requires that
the sample have a distribution within the exponential class.
The saddlepoint approximation that we propose for testing
problems exploits some conditioning properties shared by
many classes of statistics, which are reexpressed as con-
ditional M statistics (see Secs. 3 and 4). By generalizing
Skovgaard’s (1987) conditional approximation for sample
means, we first derive a saddlepoint approximation for con-
ditional M statistics.

The main steps for the derivation of our conditional
saddlepoint approximation to the distribution function
are as follows. Consider n independent random vari-
ables X;...,X, (scalar or vectors) and a M statistic
(TlnyTgn)aTl'n = Tln(Xla”')X'n) € R, and Ty, =
Ton(X1,...,X,) € RP, defined by

>=0

i $16(Xs, Tin, Tan)
i=1 ¢2i (Xl’ T2n)

The joint cumulant generating function of the sum of score
functions t1; and 9; is given by

Kn(At) = Z log[E exp{A1t1s(Xi, t1, t2)

i=1

+ A3 0 (X5, t2) 3, (1)

where A = (A1, AY) and t = (t1,t%), with ¢; the point at
which we evaluate the conditional distribution and t, the
point of conditioning.

Step 1. Find a@ € RPF! and B € RP, the saddlepoints
associated with (77, Tgn) and to T, solutions of the joint
and the conditioning saddlepoint equations, given by

0
5 Kn ) =0
and
9 K0, 2),6) = 0
8)2 n y N2 )y -
Step 2. Define
1 82
K'(\t) = —— K,(\t),
D = S KaAt)
" 2
K (Mg, t) = ———— K,.((0,A2), t),
on (A2, t) 0N ((0, A2), t)
det(K” (a, t)) |/
S=Q1 |75 5 " )
det (K3, (8,t))

r= sgn(a1){2[Ka((0,8),t) - Kn(e,t)]}'/?,
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and

1 1

Pu(tilta) = 1— 3(r) + 6(r) {— - —}, @

S T

where ¢(-) and ®(-) are the standard normal density and
distribution functions and «; is the first element of «. Then,
uniformly for (t;,tJ) in sets where (¢, — ETy,) = O(1),
k =1,2 (ie., in large deviation regions),
P[T1n > t1|Ton = t3] = Pa(t1]t2){1+ O(n™")}. (3)
The error is also O(n~=3/2) over regions where (t; —
ETy,) = O(n~'/2),k = 1,2; that is, in normal deviation
regions.
Alternatively, the Barndorff-Nielsen tail area formula is
given by

P;(t1|t2):1—¢’<r+%log{§}>, 4)
and, by lemma 2.1 of Jensen (1992), P,(ti|t) = P}
(t1]62){1 + O(n~1)}, uniformly in large deviation regions.
The asymptotic error becomes O(n~%/2) in normal devia-
tion regions.

In some cases we are interested in obtaining an approxi-
mation to the conditional density function instead of the cu-
mulative distribution function. A straightforward approach
is to compute the ratio of the saddlepoint approximations
to the joint density of (Ti,,T%,), with the marginal den-
sity of Ts,. This is often referred to as the “double sad-
dlepoint approximation” and maintains the same properties
as an individual saddlepoint approximation in terms of rel-
ative error. It leads to the following approximation to the
conditional density:

gn(t1]t2) o | det T (o, )] - | det K. (e, £)] ~1/2
x exp{Kn(a, )}, (5)

5= p1i(Xi, t1, t2) % Y14(Xi, t1, t2) )

x exp{Aﬂ/)li(Xi,tl,tz)+'\g"/’2i(Xi’t2)}:| ’

where « solves the joint saddlepoint equation 0K, (X, t)/0A
= 0. Normalizing (5) so that [ g,(¢1|t2) dt; = 1 leads to a
uniform relative error O(n~1) in large deviation regions and
to a relative O(n~3/2) in normal deviation regions. This
density approximation could allow for dim(T3,) > 1, al-
though the computational effort would increase drastically
with the dimensionality. Also, when computing a double
saddlepoint approximation, global uniformity can be of cru-
cial importance. For the density of a sample mean condi-
tioned on another, Jensen (1991) showed that a sufficient
condition for global uniformity is the log-concavity of the
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joint underlying density (see Jensen 1991, thm. 4). These
results should in principle generalize to M estimators.

The justification of the foregoing formulas is based on
the equivalence

[T1p, > t1|Tay, = to]

iff Z¢11(Xi,t1,t2) >0

i=1

D hoi(Xiyts) = 0] )

=1

which holds under the usual condition that 11; and 1, are
decreasing functions in ¢; and ¢5. Moreover, regularity con-
ditions for (3) are similar to the conditions (I), (I), and
(IT) of Skovgaard (1987, sec. 3), with t;(X;,t1,%2) and
tha; (X, t2) replacing “X;” and “Y;” in the original refer-
ence.

Remark 1. From (1), we see that Xy,..., X, need not
be identically distributed, as it is often assumed. (See also
Strawderman, Casella, and Wells 1996 for saddlepoint ap-
proximations for the non-iid case for [unconditional] M es-
timators.)

Remark 2. In most of our applications in the next two
sections, we have, for i« = 1,...,n,9%1;(:) = a;31(-) for
some fixed constants g, that are identified in each case, and

¢2z’(') = '/12(’)-

Remark 3. The conditioning statistic T5,, can be contin-
vous or discrete. However, when T7,, is discrete with sum
of score functions defined on the lattice {w + jé|j = 0, +1,
...}, a similar formula can be derived with slight modifica-
tions by replacing s in (2) or (4) by
det(K} (a, 1)) [/
det(K3, (B, 1))

A continuity correction could also be derived, extending
the results of Daniels (1987) and Skovgaard (1987). In all
of our examples, even though T}, is discrete, the domains
are not lattices (i.e., not equally spaced), and these modifi-
cations for discreteness would not be helpful. Nevertheless,
these domains are sufficiently fine so that the continuous
saddlepoint approximations are numerically accurate.

(6)

b = (1- exp{-dar})

3. ONE-SAMPLE TESTS

3.1 Tests Based on Spacings

Spacing statistics are based on the gaps between the suc-
cessive values of the ordered sample. If Uy,...,U,_; are
iid random variables uniformly distributed on [0, 1], and
0< Uy <+ £ U1y <1, are their order statistics, we
define the “uniform spacings” as

.Dz‘:U(i)—U(i_l), i=1,...,n,
where U(g) 4f ) and Utn) def . Spacing statistics are used
in various statistical problems, such as in testing goodness
of fit, hazard rates, and so on. Spacings form a maximal in-
variant statistic with respect to changes of origin and sense
of rotation (clockwise or counter-clockwise) in connection
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with circular data, so that any origin and sense invariant
statistical procedure is actually a function of these spacings
(see Rao 1969). For some appropriate choices of real-valued
functions h(-) or h;(-),7 = 1,...,n, many of these statistics
can be expressed as

i=1
or
1 n
T = ;h(nDi). ®)

In all but a few special cases, the exact distribution of spac-
ing statistics is unknown and, although the limiting dis-
tribution may be known for most cases, can be quite an
inaccurate approximation. The following conditional rep-
resentation of the spacings allows us to apply the saddle-
point approximation described in Section 2. If F4,..., E,
are iid exponential random variables with distribution func-
tion P[F; < z] = 1 —exp{—=z},z > 0, then it is known
that

{nD1,...,nDyp} ~{E,...,En} > Ei=n.
i=1

Example 1: Rao’s Spacing Test (Batschelet 1981; Rao
1969, 1976). Directions in two dimensions can be rep-
resented as points on the circumference of a unit circle or
as angles. (See, e.g., Batchelet 1981 for an introduction.)
One of the first steps before further modeling or inference
is to check whether the data are isotropic (i.e., uniformly
distributed without any preferred direction). The more gen-
eral problem of goodness-of-fit testing on the circle can
also be reduced to this via the probability integral trans-
form. Formally, suppose that X1, ..., X, are n iid random
variables with circular continuous distribution F' over the
unit circle, and that we want to test the null hypothesis Hy:
F(z) = z/(2m),0 < z < 2m, versus the general alternative
that it is not. If we place n arcs of equal length (27/n)
starting at each sample point, then it can be seen that T},
the “total uncovered part of the circumference,” is given by

~ n ~ 2r 1 &
Tnzg max{Di—?,0}=§ E
i=1

i=1

Dz_2—7r )
n

where D; = Xy — X@-1),@ = 2,...,n, and Dy = 27 —
X(n) + X(1). This defines Rao’s statistic for testing uni-
formity over the unit circle. When all of the observations
lie at the same point, corresponding to extreme clustering,
then 7, = 2r (1 — 1/n); when the observations are ex-
actly equally spaced, then T,, = 0. In the related problem
of testing uniformity on [0, 1], the statistic T,, defined in
(8) is distributed as T,,/(27), and the corresponding score
function is given by h(z) = 1/2|z — 1. It has been shown
this test statistic has a normal limit distribution (Rao 1969),

namely
\/E(Tn¥%> 3]\/(0,%—%).



536

To apply steps 1 and 2 of the saddlepoint approximation,
we must find the joint cumulant generating function (1) as-
sociated with the score functions

(1—(6—131), iffEE[O,l]

P1(z,t1) = (x—1—t1), if z€[1,00)

[ S ST

and

Pa(z,t2) =z — ta,
with Vi = Y51 =1,...,n,5 = 1,2 For )\1/2—1- A < 1,
this cumulant generating function can be shown to be
Ko\ t)
Aty

=_n [~2— ol — t2)

Although the two first derivatives of K, (\,¢) are com-
plicated, they can be obtained by a software for sym-
bolic computation (e.g., Maple). The following results il-
lustrate the very good accuracy of the saddlepoint approx-
imation. Figure 1 shows how both the Lugannani and Rice
(2) and Barndorff-Nielsen (4) approximations err for the
case of four observations (or n = 5 spacings). We no-
tice that all of the errors displayed are very small, even
though the Lugannani and Rice formula generally outper-
forms the Barndorff-Nielsen formula. The exact probabil-
ities are taken from Russell and Levitin (1995). Figure 2
emphasizes the tail behavior of the saddlepoint approxima-
tion and confirms numerically that the saddlepoint approx-
imation has a bounded relative error. Table 1 also presents
the approximation to the cumulative distribution function
obtained by numerical integration of the saddlepoint den-
sity function. All three possibilities given by Lugannani

0.016

0.014

0.012

0.01}-

0.008

PE-PA

0.006

0.004

0.002

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Domain

Figure 1. Rao Test Statistic; n = 5. Pe — Pp is the error in the
cumulative distribution; Pg, the exact cumulative distribution; Pa, the ap-
proximated cumulative distribution. Lugannani and Rice approximation
( ) and Barndorff—Nielsen approximation (-——). The dotted ver-
tical lines indicate the .025 quantile (left), the median (middle), and the
.975 quantile (right).
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0.08 T LI T T T T

(PE - PA)/PE

i N
8.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

(PE-PA)/(1-PE)

i i i ;
0.54 056 058 0.6 062

(b)

0 L
0.48 0.5 0.52

Figure 2. Rao Test Statisticc n = 5: Relative Errors in the Cu-
mulative Distribution. Lugannani and Rice approximation ( ) and
Barndorff—Nielsen approximation (———). (a) Left tail, (Pe — Pa)/Pg; (b)
Right tail, (Pe — Pa)/(1 — Pg). Pe is the exact cumulative distribution;
P4, the approximated cumulative distribution. The dotted vertical lines
indicate the .025 quantile (a) and the .975 quantile (b).

and Rice, Barndorff-Nielsen, and integrated density lead
to highly accurate results.

Example 2: Log Spacing Test. The choice of the score
function h(z) = log(x) in (8) defines an alternative test
statistic discussed by Darling (1953). This statistic has been
shown to be the best with respect to Bahadur efficiency (see
Zhao and Jammalamadaka 1989). It is also asymptotically
normally distributed,

2

where v = [ log{«} exp{—z} dz is Euler’s constant. For
Ao < 1, the joint cumulant generating function (1) for the

Table 1. Rao Test Statistic; Exact Cumulative Distribution (Pg),
Lugannani and Rice (P.r), Barndorff—Nielsen (Pgy), and Integrated
Saddlepoint Density (Pip) Approximations; n =10

t Pe[Th < t]  Prrl[Tan <t]  Pen[Th <t]  Pip[Th < t]

139 .001 .001 .001 0

167 .004 .004 .004 .004
194 .015 .015 .015 .015
222 .042 .041 .041 .043
.250 .093 .093 .092 .096
.278 178 176 175 182
.306 294 .292 .291 .300
.333 433 430 429 .439
.361 577 .580 578 .583
.389 .708 .706 .705 713
417 .815 .813 .812 .819
444 .892 .891 .890 .895
472 .943 .942 .941 .945
.500 972 972 971 973
.528 .988 .987 .987 .989
556 .995 .995 .995 .996
583 .998 998 .998 .999
611 .999 .999 .999 1.000
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log statistic is given by
Kn(/\, t) = n[—)\ltl — )\th
— (14 M) log{l — Ao} + log{T'(1 + A\1)}].

The derivatives of K, (), t) are functions involving mainly
polygamma functions. Figure 3 compares our saddlepoint
approximation (based on the Lugannani and Rice formula)
and the normal approximation to the exact distribution ob-
tained by 10° Monte Carlo simulations. The curves are
transformed into the logit scale to emphasize the tail be-
havior. Although the saddlepoint clearly matches the exact
curve overall, it can also be seen that the normal approxima-
tion is generally misleading. Figure 4 gives an idea of how
fast the density of the log statistic converges toward nor-
mality. The plotted curves are saddlepoint approximations,
and at n = 15 we are still some distance from normality.

Example 3: Greenwood Test Statistic. The choice of
the score function h(z) = z2 into (8) defines the so-called
Greenwood test statistic. It is also asymptotically normally
distributed, :

Vi(T, —2) 3 N0, 4).

To compute our saddlepoint approximation, we need the
joint cumulant generating function (1), which is given by

2
n [)\1t1 — Aata + % + %log{)\ll}

+log{a (2%1)}], i A <0,
nl-Aats —log{l — Ao}], if Ay = 0.
and My < 1.

Kn(A, t) =

Table 2 shows the good accuracy of the saddlepoint approxi-
mation compared with the exact values taken from Burrows
(1979). As was the case with the Rao test statistic,

0.998
0.982
0.881

0.500 ©

log(P/(1-P))

0.119

0.018

0.003

Domain

Figure 3. Log Test Statistic, n = 5: Cumulative Distribution. The scale
on the right axis is the cumulative distribution P; that on the left axis
is log{P/(1 — P)}. Exact from 10° Monte Carlo simulations ( ),
Lugannani and Rice (-—-), and asymptotic normal (- - -).
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25 T T T N ! ! T

Density

Domain

Figure 4. Log Test Statistic: Saddlepoint Approximations to Density
Functions ( n=3-——,n=25"---,n=15).

the Barndorff-Nielsen approximation is slightly less accu-
rate than the Lugannani and Rice approximation.

Example 4: A Locally Most Powerful (LMP) Spacings
Test. Holst and Rao (1981) considered LMP tests based
on spacings. In particular, the nonsymmetric statistic de-
fined by the score function

(nD,;) = D [ 2 .

hi(nD;) = @ <n+ 1) nD;

in (7) provides the LMP test based on spacings for testing
whether the data are from a A/ (0, 1) distribution against the
alternative that they are from a N (p, 1) distribution, u € R.
This test has power at the usual n /2 alternatives. The joint
cumulant generating function is given by

Kn(A, t) = —)\1t1 — n)\ztg

Y -yt ) _
Zlog{)q@ <n+1> A2+1},

i=1
which exists for

1+ 000 (), if A <0
Ay <
1+ 000 (321, i A >0,

Table 3 shows the left tail of this LMP statistic for the case
of five observations (i.e., n = 6 spacings). The conditional
saddlepoint approximation based on steps 1 and 2 is ex-

Table 2. Greenwood Test Statistic; Exact Left-Tail Probabilities (Pg),
Lugannani and Rice (P.r), and Barndorff—Nielsen (Pgy)
Approximations; n = 4

ty Pe[Th < t:] Pr[Tn < t1] Pen[Tn < t1]
1.032 .010 .010 .008
1.100 .050 .057 .051
1.156 .100 107 .098
1.252 .200 .204 191
1.328 .300 .302 .285
1.408 .400 .398 .377
1.496 .500 .500 475
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Table 3. LMP Spacings Test; Exact Cumulative Probabilities
(Pe), Lugannani and Rice Approximations (P g); n = 6

ty Pe[Th < t] PLa[Th < ti]

—4.500 .002 .002
—4.000 .005 .006
—-3.500 .013 .014
—3.000 .030 .031
—2.500 .060 .061
—2.000 107 .108
—1.500 175 A77
—1.000 .266 .268

—.500 .377 379

tremely close to the exact distribution as obtained through
10° simulations.

3.2 Tests Based on Grouped Data

Suppose that we have a sample Xj,..., X, of iid ob-
servations with underlying continuous distribution F, and
that the support of F' has been divided into m nonoverlap-
ping intervals or classes. Let p; denote the probability that
a sample value belongs to the jth interval, j = 1,...,m.
Let S; denote the number of sample values belonging to
the jth class interval, 7 = 1,...,m. Under Hy: p = po,
where p = (p1,...,pm) and po = (po1,---,Pom) 18 a
specified vector, Si,...,S,, are distributed according to
the multinomial probability distribution with parameters
(n; po). Our conditional saddlepoint can be used by means
of the following conditional representation of multinomial
random variables. If Wy,...,W,, are independent Pois-
son random variables with probability distribution function
P[W; = w] = e % (€pg;)¥ /w!,j = 1,...,m, then, for all
& e R%, it is easy to check that

{51, ,Sm} ~{W1i,...,Wn}

i=1

Example 2: Likelihood Ratio Test. The generalized like-
lihood ratio test statistic for this situation is derived from

! s s,
SUPper1, {su.’fsm! P P }
- ! s E
SUPpern {slgjsm! p11» cel 7pmm}

where II is the entire parametric space and Il is the para-
metric space restricted by Hg. Without loss of generality (by
the probability integral transform), when all of the {po; } are
equal, —2log{A} is equal to 2 Z;"zl S;log{S;} plus a con-
stant term, and a large value of this latter statistic provides
evidence against Hy with all {po;} equal.

From classical theory, the asymptotic distribution of
—2log A, as n — oo, m fixed, is a x2,_;; on the other hand,
if both m and n — oo and n/m — ¢*,1 < ¢* < oo, then
we have a normal limiting distribution. In this more prac-
tical case, where both m and n are large, by defining the
quantities ¢ = n/m,

1
Tlm:_
m

> Wilog{W;}
j=1

Journal of the American Statistical Association, June 1999

and
1 m
Tom = ooy Z:IC_IWJ',
j:

the saddlepoint approximation to the distribution of
(Thm|Tom = 1) can be obtained by steps 1 and 2 of Section
2, which provides an approximation for the original statistic
T = m~' 37, Sjlog{S;}. The score functions are now
P1(w,t1) = wlog{w} — t1 and Ya(w,t2) = w — cta, and
’lﬁkj =Yg, j=1,...,mk =1,2. For —oco < A\ < 1, the
joint cumulant generating function (1) is given by

Km(A, t) =m [—Altl - f)\th —C
i fkM ke gk }:|
2« Tk +1)

Example 3: Pearson Chi-Squared Test. The chi-squared
test provides a different statistic for testing Hy: p = po. It
is defined by

+ 10g{1+

A large value of T;, gives evidence for rejecting Hy: p =
po. The asymptotic distribution of T,,, as n — oo, m fixed,
is a x2,_;, whereas if both m and n — co,n/m — c*,1 <
¢* < oo, we have a normal limiting distribution. Again by
the conditional Poisson representation (9), we can reexpress
T as (Tim|Tom = 1), where

1 m
Tim=— 3
j=1

(W —¢)®

and

1 m
T2m = E ZC—1Wj.

=1

We consider this case where both m and n are large and
obtain the saddlepoint approximation by steps 1 and 2. The
cumulant generating function for ¢ = n/m and A\ < 1 is
given by

KA t) =m | =At1 — chata — € + log < exp{Aic}

o exp{)\l(k—_ccﬁ—l-/\gk}ﬁk
+ kz::l Tk +1)

Note that the conditional Poisson representation (9) could
be used for specific alternatives, so that we could compute
the distribution of T}, under alternatives; that is, obtain the
power function of T,.
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3.3 Conditional Tests

A method for eliminating nuisance parameters in a test
statistic is by conditioning on statistics that are sufficient
(under the null hypothesis) for these nuisance parameters. If
the distribution of the test statistic T}, depends on a nuisance
parameter whose sufficient statistic is S,, then a p value
can be obtained by p = P[T, < t,|S, = s,], assuming that
small T, indicate evidence against Hy, where ¢,, and s, are
T, and S,, of an observed sample. This approach, referred
to as conditional testing, can advantageously be used with
our saddlepoint approximation.

Example 4: Skewness-to-Variance Test. Suppose that
we wish to test whether W1, ..., W, are counts of events
of a homogeneous Poisson process with unknown nuisance
parameter { € R%. It is known that the Poisson distribu-
tion has all cumulants equal to the parameter and that it
is the only distribution with this property, so that ratios of
empirical cumulants are used to test various types of depar-
tures from the hypothesized distribution. When a departure
of variability is of concern, the empirical variance over the
mean is a possible test statistic; when a departure in skew-
ness is of concern, the empirical third cumulant over the
second,

T — Z?:l(Wi — V?)S
DU ZE AR

where W =n~1Y""" W, is an adequate test statistic. The
nuisance parameter £ can be eliminated by conditioning
on W, its minimal sufficient statistic, and it can be shown
that {W1,..., W,}| Y. ; W; is multinomial with equal cell
probabilities. For A; < 0, the joint cumulant generating
function is given by

Kn(t,A)
=n —Al(tltg + tg) — Agtg — &

exp{/\1k3 - )\1(t1 + 3t2)k2
+ [A1(2t1tg + 3t2) + Aok }Ex
T(k+1)

+ log Z
k=0

The data selected are yearly fatal accidents suffered by
scheduled American domestic-operated passenger aircraft
from 1948 until 1961 (see Pyke 1965). The sample value
of T, is —1.277, and the alternative hypothesis is a left
overskewness. The conditional p value obtained by the sad-
dlepoint approximation is .092, which is close to the exact
p value .075 obtained by 10° Monte Carlo simulations. The
approximation to the whole left tail is shown in Table 4,
which reflects a quite good accuracy of our saddlepoint ap-
proximation based on steps 1 and 2.

4. TWO-SAMPLE TESTS

Consider a first sample of (m — 1) iid random variables
X1...,Xm—1, with underlying continuous distribution F'
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defined on A C R, and a second sample of n iid random
variables Y7 ..., Y, with underlying distribution G, also de-
fined on A C R. The general two-sample problem is to test
the null hypothesis Hy: F' = G. Define the random variables

S; =Y I{Yi € [X;-1), X))}

=1

ji=1...,m,

where, for convenience, we take X(q def inf{A} and

X(m) def sup{A}. The numbers Si,...,S,, may be called
the “spacing frequencies,” because they correspond to the
frequencies or counts of the {Y;} that fall in between suc-
cessive X(;. In fact, if R(X()) denotes the rank of the
kth largest {X,} in the combined sample, k = 1,...,m,
then it is easily seen that R(X()) = E?zl(Sj +1)or S, =
R(X()) —R(X(x-1))—1,k=1,...,m, so that the {S;} are
also the “rank differences.” Let h(-) and h;(-),5 =1,...,m,
be real-valued functions satisfying certain regularity condi-
tions (see Holst and Rao 1980, sec. 2, cond. A), and define
the general classes of test statistics

T, = Zhj(SJ) (10)
j=1
and
1 m
T, =— Zh(sn, (11)

which represent the nonsymmetric and the symmetric test
statistics based on the rank spacings. We consider the
asymptotic properties of these statistics based on two sam-
ples when both m and n tend to infinity; formally through
nondecreasing sequences of positive integers {m,} and
{n,} such that, as v — oo,

m, — 00, T, — 00
and

my
n—=py—>p, 0<p<oo.

First-order asymptotics under the null hypothesis Hy for
the more general nonsymmetric test (10) is stated in corol-
lary 3.1 of Holst and Rao (1980). If V4, ..., V,, are iid geo-

Table 4. Skewness-to-Variance Test Statistic; Exact Cumulative
Probabilities (Pg), Lugannani and Rice Approximations
(PLr): American Scheduled Aircraft Accidents,
1948-1961 (n = 14).

t Pe[Th < t] PLr[Th < t]
—2.600 .008 .011
—2.400 .011 .016
—2.200 .016 .023
—2.000 .023 .032
—1.800 .033 .044
—1.600 .046 .059
—1.400 .063 .078
—1.277 .075 .092
—1.200 .085 102
—1.000 A1 132

—.800 144 .168
—.600 .186 210
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metric random variables with probability distribution func-
tion

PVi=kl=01-p)*, k=0,1,2,..., (12
then, for p = 1/(p + 1) and under Ho,
Zh] ) B N (w, 0%, (13)

i

Jj=

where u = E(ST, hy(V;)) and o2 = var(YX7, by (V;) -
B> ; V), in which 3 is the regression coefficient given by
B = cov(3 i, hi(Vy), >0 V)/var(z -1 V;). The same
cond1t10n1ng 1dea used for obtalnmg the ﬁrst order approxi-
mation (13) can be exploited for the construction of our sad-
dlepoint approximation. Under Hy, the m spacing frequen-
cies have the same distribution as m iid geometric random
variables conditioned to sum up to n. Namely, if V1, ...,V
are iid geometric random variables with probability distri-
bution function given by (12), then, for all p € (0,1), it is
easily verified that

{Sl,...,sm}N{W_’.."Vm}

D V=
j=1
By defining

17, =

and
1 m
Ty, = E z:lpuv}a
]:

the conditional distribution of (77|75, = 1) can be ob-
tained again by steps 1 and 2 of Section 2. The next ex-
amples are derived from the following optimality result.
Consider G,,, a smooth sequence of distribution functions
converging toward F, as m — oo. It turns out that the
asymptotically most powerful test for the null hypothesis
Hy against the sequence of simple alternatives,

An: G=Gp,

is to reject Hy when

Zz<m+1>sj>c, (14)
j=1
where [(-) is the derivative of L(u) = limy, e m'/?

(G (FCD (1)) —u),0 < u < 1 (see Holst and Rao 1980,
thm. 3.2, for further details).

Example 5: van der Waerden/Normal Score Test.  Sup-
pose that we wish to test Hy: F' = G against the sequence of
translation alternatives G(z) = Gy () = F(z — Om~1/2)
for all x € A. If f'(z) = F"(x) exists and is almost every-
where continuous, then, for 0 < u < 1 and, at the continuity
points of f, we have I(u) = —0f'[F(1(u)]/f[FD (u)].
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From (14), when F = ®, the asymptotically most powerful
test is the van der Waerden or normal score test statistic,
given by

PN (I .
Ty=> @ (mH)SJ.

Jj=1

The joint cumulant generating function is given by

K, (A t) = m(log{p} — Aata) —

+Zlog{1+2exp{ [A1<I> (ﬁ)

+Mmﬂa—m%,

where the infinite sum converges for

—2 [0 (kg ) M+ log {14

_n [q)(—l) (mLH) A + log {ﬁ}} , if A > 0.

Aty

}] if A <0

Example 6: Wilcoxon/Mann—Whitney Test. This test is
known to be the locally most powerful rank test for de-
tecting change in location in a logistic distribution. If the
{R(X;)} are the ranks of the first sample in the combined
sample then this test statistic is simply Y " ie1 R(X;). But

because R(X(r)) = ZF S;+k,k=1,...,m, it can be
rewritten as Y7, R(X(j)) = m+ 370, (m +1—j)S;, so
that the test statistic can be reexpressed by

f j
T,,_Z<1—m—+1>5

Jj=1
The joint cumulant generating function is given by

K,(\t) = m(log{p} — Aata) —

1 1 kid|1l—-——
+jz=;og{ +;exp{ [1< m-l—l)

+&mﬂa—m%,

and convergence of the sum is for
—2 [hn g {5 )], if M <0

_n [mL_H)\l —|-log{ﬁ}} , if A1 > 0.

At

Ao <

Example 7: Savage/Exponential Score Test. We wish to
test Ho: F' = G against the sequence of scale alternatives

G(z) = Gm(z) & F(z[l — 0m~1/2]), for all z € A. If the
density f(z) = F'(x) is continuous, then [(u) = —6[1 +
FIFED @) FED (u)/ f(FCD(u))). As an example, when

F(z) =1 — exp{—z}, we have I(u) = —0(1 + log{1 — u}),
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and from (14) the asymptotically most powerful test statistic
is given by

Zlog{l——?}S

The joint cumulant generating function is given by

K,, (/\, t) = m(log{p} — )\2t2) — /\1t1

+ Zlog{1+z <1 - m_ﬁ)m

x exp{Aap,k}(1 — p)’“} ,

where the infinite sum converges for

[log{m + 1} + log {1—}5
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. }],ifAlgo

[log{mTH})\l +10g{1—11—)}] , if Ay > 0.
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5. DISCUSSION

This article illustrates that the conditional saddlepoint ap-
proximations discussed here can be advantageously used
in various testing problems. It leads to accurate inference
and often requires less computing time than Monte Carlo
simulation. An important advantage of saddlepoint approx-
imations, with respect to Monte Carlo simulation, is that
they lead to accurate numerical results through analytical
formulas, which can be useful for deriving other related
properties. For example, the saddlepoint approximation can
be used for computing the “tail area influence function,”
which describes the normalized influence on a tail area of a
small amount of contamination at a fixed point. That is, for
a statistic 73, depending on observations with underlying
distribution F, it is defined by

TAIF(z,t, Ty, F)

= lim ¢ 1[P
e—0,e>0

(Tn > t) - PF(Tn > t)]a
for all z in the sample space, where F., = (1 —¢)F +
e, A, being Dirac’s distribution with mass 1 at z (see
Field and Ronchetti 1985).

The complexity of our formulas shows the importance of
automatic symbolic computation, which allows one to com-
pute the derivatives of the cumulant generating functions
in a reasonable amount of time. An important illustration
of the connection between statistical theory and symbolic
computation is the treatmént of asymptotic expansions by
Andrews and Stafford (1993).

[Received January 1997. Revised September 1998.]
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