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I present D cognitive model of the humon ability lo acquire c.us.I relotionshipr. I 
report on experimental evidence demonrtroting that human leornerr acquire 
occwote cwxd relationships more rapidly when training examples oreconrirtent 
with o general theory of cwsolity. This article describes o learning procerr that 
uses o general theory of causality OS background knowledge. The leorning pro- 
cess, which I cdl theory-driven learning (TDL), hypothesizes cw~a1 relationships 
consistent both with observed doto and the general theory of courolity. TDL 
accounts for data on both the rote a+ which humon learners acquire couscll relo- 
tionrhips, and the types of COUSJ relationships they acquire. Experiments with 
TDL demonrtrote the odvontoge of TDL for acquiring cowa relationships over 
similarity-bored opproacher to learning: Fewer examples ore required to loom 
an acc~rote relotionrhio. 

1. INTRODUCTION 

There are many tasks that require an understander to reason about causal 
relationships. Indeed, it is hard to imagine how one could survive without 
the ability to reason about actions and their effects. To illustrate the impor- 
tance, and ubiquity of causal reasoning, consider the following three key 
reasoning tasks: 

l Prediction: Foreseeing what will happen if a balloon is pricked by a pin 
l Planning: Specifying an action to achieve the goal of bursting a balloon; 

or, specifying an action to avoid if the balloon is to remain inflated 
l Abduct& inference (Peirce, 1932): Inferring what (unobserved) action(s) 

may have occurred to account for a balloon bursting. 
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Because of the importance of causal reasoning, the primary goal in this arti- 
cle is to describe and demonstrate a computational learning procedure that 
accounts for the following critical fact: Human learners acquire causal rela- 
tionships more rapidly than would be expected if the learning mechanism 
relied solely on correlations between actions and state changes. That is, a 
learner somehow brings to bear on the task of learning causal relationships 
knowledge that facilitates the acquisition of accurate causal relationships. 
This knowledge is called a theory of causality. 

This article first defines the learning task in terms of the knowledge ac- 
quired by the learner and the theory of causality the learner starts with. 
Next, it is argued that human learning of causal relationships is facilitated 
by a theory of causality. A new learning procedure is introduced, called 
theory-driven learning (TDL), and compared to similarity-based and expla- 
nation-based approaches on the task of acquiring causal relationships. 

1.1 A Theory of Causation 
In order to predict state changes, the learner must acquire a theory of causa- 
tion. A theory of causation is a collection of domain-specific causal rela- 
tionships indicating the state changes that result from a particular class 
of actions. Each causal relationship consists of a description of a class of ac- 
tions and a description of a class of state changes connected by causal links 
(Schank & Abelson, 1977). Causal relationships state things such as striking 
a balloon with a sharp object results in the balloon bursting. 

The theory of causation enables the reasoner to predict the effects of 
actions, to generate plans that result in state changes, and to infer what ac- 
tions may have occurred to explain state changes. For the purposes of these 
tasks, it does not matter how the causal relationships comprising the theory 
of causality are acquired. Any learning procedure, including a neural net- 
work-learning algorithm (e.g., (Rumelhart, Hinton, & Williams, 1986), 
could acquire the theory of causation by associating classes of state changes 
with classes of actions. 

1.2 A Theory of Causality 
A human learner brings to this learning task a set of domain-independent 
principles allowing the learner to conclude that a particular class of actions 
necessarily results in a state change (Bullock, Gelman, & Baillargeon, 1982; 
Shultz, 1982). This knowledge is called a theory of causality, and is dis- 
tinguished from a theory of causation. A theory of causality indicates the 
conditions under which an action appears to result in a state change. For ex- 
ample, the theory of causality may include the condition that when an action 
on an object precedes a state change for that object, then the action appears 
to cause the state change. Note that the theory of causality is not able to 
predict what would happen if a balloon were poked with a pin. Rather, 
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when an example of a balloon bursting after being poked with a pin has 
been observed, the theory of causality is able to attribute the state change of 
the balloon to the fact that the balloon was poked with a pin, rather than 
an arbitrary action that may have occurred at the same time (e.g., a child 
eating a lollipop). 

In contrast to a theory of causality, a theory of causation indicates the 
conditions under which an action results in a state change. For example, a 
reasoner’s theory of causation may include a causal relationship indicating 
that striking a balloon with a sharp object results in the balloon bursting. 
This causal relationship can be used to infer that a particular red balloon 
will burst if it is poked with a pin. Note that for this action, a variety of state 
changes including the balloon catching fire and the pin shattering are con- 
sistent with the theory of causality, but not the theory of causation. 

In the computer implementation, the theory of causality is represented 
by a set of causalpatterns. A total of 30 causal patterns have been identified 
and implemented. Appendix A lists the patterns for physical causality. The 
causal patterns of TDL encode constraints that have been empirically deter- 
mined to influence the acquisition of causal relationships. These constraints 
include: 

l Regularity: Since a cause must necessarily result in an effect, the cause 
and the effect must co-occur (Shultz & Mend&on, 1975). Note that 
causality does not demand a perfect correlation. 

. Temporal order: Children as young as 4 require a potential cause to pre- 
cede an effect (Shultz & Mend&on, 1975). Although this may seem like 
a trivial constraint, existing learning systems (Lebowitz, 1986a; Salz- 
berg, 1985) that predict the outcome of actions do not make use of tem- 
poral information. 

. Temporal contiguity: An effect must immediately follow a cause 
(Michotte, 1963). When all other factors are equal, people select a cause 
closest in time to an effect. 

l Spatial contiguity: An effect must be in contact with (or near) a cause 
(Bullock, 1979). When all other factors are equal, people select a cause 
that is closest in space to an effect. 

The first constraint, regularity, is not explicitly represented by the causal 
patterns. Instead, the TDL procedure directly insures that causal relation- 
ships obey the regularity constraint. The remaining constraints are explicitly 
represented in the theory of causality. There are two ways that theory of 
causality constrains the search for a hypothesis: 

l Determining the true muse in an ambiguous situation. For example, 
consider the following observation. First, two actions occur at the same 
time: Karen is eating a lollipop and Chris pokes a balloon with a pin. 
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Next, the balloon bursts. By ruling out eating the lollipop as a cause for 
the balloon bursting, the search space for the problem of determining 
what causes balloons to burst can be reduced. 

l Selecting relevantfeatures. A theory of causality can focus attention on 
the potentially relevant features of the objects involved in an action. 
For example, the features of the object that pokes a balloon, and the 
features of the balloon itself may determine whether or not the balloon 
bursts. However, it unlikely that the features of the person that pokes 
the balloon are significant. 

1.3 The Learning Task 
TDL’s objective is to construct a theory of causation, given a theory of 
causality and a number of observations. The input to the TDL procedure is 
a sequence of observations. Each observation consists of several actions and 
state changes connected by temporal links. The learning task is complicated 
by the fact that several actions may occur at the same time. Therefore, the 
learner must be able to distinguish between actions that temporally preceded 
a state change, and actions that resulted in a state change, as follows: 

GIVEN: 1. A series of observations. 
2. A theory of causality (i.e., a set of causal patterns). 

CREATE: A theory of causation (i.e., a set of causal relationships). 

1.4 Learning Causal Relationships: An Example 
In this section, an example of learning causal relationships is presented in 
order to provide an overview of TDL. The following is a protocol of Lynn 
(3 years, 11 months), trying to figure out when she can inflate balloons and 
when she cannot. 

1. Mike is blowing up a red balloon. 
2. Lynn: “Let me blow it up.” 
3. Mike lets the air out of ths balloon and hands it to Lynn. 
4. Lynn blows up the red balloon. 

5. Lynn picks up a green balloon and tries to inflate it. 
6. Lynn cannot inflate the green balloon. 
7. Lynn puts down the green balloon and looks around. 
8. Lynn: “HOW come they only gave us one red one?” 
9. Mike: “Why do you want a red one?” 

10. Lynn: “I can blow up the red ones.” 

11. Mike picks up a green balloon and inflates it. 
12. Mike lets the air out of the green balloon; hands it to Lynn. 
13. Mike: “Try this one.” 
14. Lynn blows up the green balloon. 
15. Lynn gives Mike an uninflated blue balloon. 
16. Lynn: “Here, let’s do this one.” 



It appears from the first observation (lines l-4), that Lynn has acquired a 
causal relationship indicating that she can inflate any balloon by blowing air 
into the balloon. A causal pattern that states an action on aparticular object 
followed by a state change of the object, suggests that the action results in 
the state change, focuses TDL to hypothesize this same causal relationship. 

After the second observation (lines 5-10). a counterexample to the initial 
hypothesis is seen and the learner must generate a new hypothesis to account 
for a different result. The two balloons differed in color and the hypothesis 
can be accounted for by a causal pattern that states two actions that have 
different results and that are performed on different objects, suggests that a 
feature that differs between the twa actions enables the action to produce 
the result. 

The second hypothesis is contradicted by the third observation (lines 
lo-16), when Lynn determines that the color of the balloon is not important. 
Instead, she attributes the different result to a different action that preceded 
her successfully inflating a balloon. In TDL, this hypothesis would be pro- 
duced by a causal pattern that states an initial action on an objectpreceding 
a subsequent action that precedes a state change for the object, suggests that 
the initial action results in a state change that enables the subsequent action 
to result in the state change. In the next section, an experiment is reported, 
whose goal is to determine whether learning new causal relationships is 
facilitated when a causal relationship conforms to this causal pattern. 

2. CONSTRAINTS ON LEARNING CAUSAL RELATIONSHIPS: 
EXPERIMENTAL RESULTS 

The purpose of this experiment was to investigate how a theory of causality 
affects the number of trials required to learn to make accurate predictions. 1 
investigated the last causal pattern from the previous section. This pattern 
postulates an intermediate enabling state, where a prior action on one object 
is present when a subsequent action on the same object results in a state 
change. Section 3.3 discusses this pattern in more detail (see Figure 6). It 
was predicted that it would take fewer trials for subjects to learn a new 
causal relationship conforming to this pattern than a similar causal relation- 
ship not conforming to this pattern. 

One group of subjects had to learn that a child would be able to inflate a 
balloon only if she dipped the balloon in water before blowing air into it. 
Another group of subjects had to learn that a child would be able to inflate 
a balloon only if she snapped her fingers before blowing air into the balloon. 
The former relationship is consistent the causal pattern tested. The latter is 
not consistent with any causal pattern used by TDL. 

To eliminate cue salience (Bower &Trabasso, 1968) as a possible explana- 
tion for the increased learning rate, I ran two control groups that performed 
a concept-identification task (Bruner, Goodnow, & Austin, 1956) rather 
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than a prediction task with the same stimuli. Instead of predicting whether a 
balloon could be inflated, the control groups had to associate the category 
name, “alpha,” with the action sequence of dipping a balloon into water 
followed by blowing air into it (or snapping fingers followed by blowing air 
into balloon). To summarize, there were four conditions in this experiment: 

l Dip/Inflate: This condition requires predicting that a balloon could be 
inflated only after it was dipped in water. 

l Snap/Inflate: This condition requires predicting that a balloon could be 
inflated only after the actor first snaps her fingers. 

l Dip/Alpha: This condition requires learning that examples of a person 
dipping a balloon in water and attempting to inflate a balloon belong to 
a category called “alpha.” 

l Snap/Alpha: This condition requires learning that examples of a person 
snapping her fingers and attempting to inflate a balloon belong to a 
category called “alpha.” 

It was predicated that the Dip/Inflate inflate condition would be easiest for 
subjects to learn. This is the only condition in which TDL is applicable. The 
subjects in the remaining conditions must rely solely on correlation because 
the theory of causality is either irrelevant to the task or contradicted by the 
training data. 

2.1 Method 

2.1.1 Subjects. The subjects were 80 male and female undergraduates 
attending the University of California, Los Angeles, who participated in 
this experiment in partial fulfillment of course requirements for an intro- 
ductory psychology course. Each subject was tested individually. Subjects 
were randomly assigned to one of the four conditions. 

2. I.2 Stimuli. The stimuli consisted of four videotapes, one for each con- 
dition. Each tape consisted of a series of observations (e.g., dipping a balloon 
in water and attempting to inflate the balloon). In the inflate conditions, 
each observation was followed by a continuation in which the balloon was 
either inflated successfully or not inflated. In the alpha conditions, each 
observation was followed by a display of the word alpha or the phrase not 
alpha. Action sequences differed according to the prior action (either the 
actor dipped a balloon in water, put a necklace on, or snapped her fingers), 
the color of the balloon (orange or yellow), or the size of the balloon (small 
or large). The sequential nature of videotape made it necessary to control 
the order of the presentation of observations: The dipping and snapping 
actions were interchanged between the dip and snap conditions. Appendix B 
contains the order in which examples were presented. The ordering insures 
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Figure 1. The rewlt~ of the experiment indicate that subjects require fewer trials lo learn o 
relationship that conforms lo a common pattern of COUIDI relotionrhipr. 

that the subjects saw positive and negative examples in the same order. The 
observations in the alpha tapes were in the Same order as the observations 
on the corresponding inflate tapes. 

2.1.3 Procedures. Each subject was shown an observation on a color tele- 
vision screen. The tape was paused and the subject was asked to make a 
prediction. Then the tape was resumed and the subject was able to judge the 
accuracy of the prediction. This process was repeated until the subject was 
able to predict correctly on six consecutive observations. The number of the 
last trial on which the subject made an error was recorded. 

2.2 Results 
The result of this experiment (illustrated in Figure 1) confirmed the predic- 
tion, F(3, 76)= 8.88, p< .05. Subjects required fewer trials to learn to predict 
that a balloon that had been dipped in water could be inflated (3.5 trials) 
than to predict that a balloon could be inflated after the child snapped her 
fingers (7.6 trials). One possible explanation for this result is that dipping a 
balloon in water is perceptually more salient than snapping fingers. If this 
were the case, we would expect the same preference to hold when associating 
a name with an class of observations. However, subjects required approxi- 
mately the same number of trials to determine that a balloon being dipped 
in water is an alpha (5.7 trials) and to determine that the child snapping her 
fingers is an alpha (5.9 trials). 
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2.3 Discussion 
These results support the hypothesis that subjects first focus on relation- 
ships consistent with a general theory of causality. In the dip/inflate condi- 
tion, subjects can ignore correlations between the size or color of the balloon 
and the result. In the snap/inflate condition, the observations of the subject 
do not conform to any causal pattern and the subject must consider the size 
and color of the balloon as well as the type action as a possible cause. 

This experiment suggests that certain structural configurations of actions 
are cues for causal relationships. When observations conform to common 
patterns of causal relationships, it is easier to induce a causal relationship. 
Although there may be many regularities in the observed data, TDL focuses 
on those regularities likely to play a part in a causal relationship. 

This experiment provides evidence for just one of the causal patterns in 
the computer implementation. The remaining causal patterns encode princi- 
ples that have been empirically determined to influence the attribution of 
causality (see Section 1.2). In the next section, the process of TDL is 
described in more detail. 

3. THEORY-DRIVEN LEARNING (TDL) 

In this section, I describe the representation of observations, causal rela- 
tionships, and causal patterns, and elaborate on the TDL process. 

3.1 Observations 
In the computer implementation of TDL, observations--the training data 
for TDL-are represented in conceptual dependency (Schank & Abelson, 
1977). Figure 2 illustrates one sequence of actions and state changes. This 
figure contains the representation of two actions that occur at the same time: 
John is eating a Life Saver in the kitchen and John touches a red balloon 
with a pin. A state change occurs immediately after these two actions: The 
balloon bursts. Each action and state change is described by a number of 
roles (e.g., actor, object, type, to, etc). Roles are indicated by lowercase 
letters in figures. The values of roles, indicated in capital letters, may be 
simple objects (e.g., BROWN) or composite objects that have additional 
roles (e.g.. PP color RED). 

3.2 Causal Relationships 
Conceptual dependency is also used to represent causal relationships. Causal 
links (Schank & Abelson, 1977) are used to specify the relationships between 
actions and states. The following causal links are used: 

. An action can result in a state change. 

. A state can enable an action to occur. 
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Ffgure 2. A” example of on observation used 0s (I training example for theory-drive” 
learning. This is the Conceptual Dependency representation for: “John, who has brown hair 
and brown eyes i. eating D Life Saver candy in the kitchen when he toucher o red balloon 
with ~1 pin. The balloon burrtr:’ Role nam*S are in lower case letters. Valuer of role* ore 
capitalized. 

Ffguro 3. A” example of o cousol relationship that is acquired via theory-drive” learning: 
Touching a balloon with a pointed object r=wlts in the bolloo” bursting. Variables are pre- 
ceded by (I question mark. 

One causal relationship is illustrated in Figure 3. This relationship indicates 
that striking a balloon with a sharp object results in the balloon bursting. 
The variable in the relationship, preceded by a question mark in the figure, 
ensures that the balloon that is struck is identical to the balloon that bursts. 

3.3 Causal Patterns 
The TDL procedure can only learn causal relationshps that conform to one 
of the causal patterns comprising the theory of causality. Figure 4 illustrates 
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iigure 4. Amus. pottern: A” action with a particulordestintltion (indicated by thevariable 
?x) followed by D state change for the destination ruggerts that the action results in the 
state change. 

one causal pattern. A causal pattern matches an observation and proposes a 
causal relationship. This pattern states: An action with a particular destina- 
tion followed by a state change for the destination, suggests that the action 
results in thestate change. The antecedent (on the left side of the bold arrow) 
is matched against observations to produce a causal relationship (on the 
right side of the bold arrow). The bold arrow does not mean logical implica- 
tion. It can be read as “suggests that.” 

Although the pattern in Figure 4 appears to be very simple, it encodes 
three important assumptions about causal relationships. First, it encodes 
the constraint that the destination of action (ix., the object that fills the to 
role of an action) must be the object whose state has changed. This constraint 
would rule out a wide variety of arbitrary actions from being considered as 
potential causes. Second, it indicates that the only important roles of the 
action are the type of action and the object. The actor who performs the 
action, and the time that the action is performed are not relevant. Third, the 
pattern also contains the temporal ordering constraint, i.e., the action must 
precede the state change. 

When this particular pattern is applied to the observation of the balloon 
being stuck with a pin by someone eating a Life Saver candy (see Figure 2), 
it results in the causal relationship that applying a force to a balloon results 
in the balloon bursting. Note that the causal relationship created by this pat- 
tern does not require that the object applying the force be pointed. Learning 
this additional constraint requires observations of balloons not bursting 
when being touched by blunt objects. 

The causal pattern in Figure 4 is called an exceptionless causal pattern 
because it applies when similar actions result in the same state change. Other 
causal patterns focus on reasons why similar actions have different results. 
With the representations used for observations and causal relations, there 
are two reasons why similar actions have different results: 

1. A role of the action differs. For example, the action may be performed 
on a different object or have a different destination. 

2. A prior action is needed to change the state of an object so that a subse- 
quent action may result in a state change. 
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Uguro 5. A dirporitionol cous., pattern: Similar octionr with different destinations followed 
by different state changer for the destination suggests that D role of the destination is re- 
quired for cm action to r=sult in the state change. The bold type indicates that the search for 
a difference is constrained +o the destination role. 

mtype?Al 

F 
cbject ?X 1 FESWT 

1 object ?X 

Figure 6. A historical causal pattern: An initial action with o dertinotion that precedes (I 
subsequent action with the some destination suggests that the initial actions results in on 
intermediate state change that enabler the subsequent action to rewlt in the final state 
change. The bold type for the initial action indicates that a different initial action will no? 
result in the some final state change. 

There is a separate type of causal pattern for each reason. For the first 
reason, the causal patterns are called dispositional causal patterns because 
they attribute a different result to differing dispositions (i.e., potential or 
capacities) of actors or objects. The causal patterns accounting for the sec- 
ond reason similar actions have different results are called historical causal 
patterns because they attribute a different result to different histories of the 
objects involved. 

The protocol in Section 1.4 illustrates all three types of causal patterns. 
The first causal relationship (that the child can inflate all balloons) can be 
produced by the exceptionless pattern illustrated in Figure 4. The second 
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causal relationship (that the child can inflate red balloons) can be produced 
by the dispositional causal pattern illustrated in Figure 5. The fact that the 
search for a difference is constrained to differences in the destination is indi- 
cated in boldface for the destination in the figure. In the protocol in Section 
1.4, the two destinations differ only in the color of the balloon. If there were 
several differences, it would be necessary to correlate roles of the destina- 
tion over additional examples to discover a reliable causal relationship. 

The historical pattern displayed in Figure 6 attributes the difference in a 
result to an initial action that results in a state enabling the second action to 
result in the state change. The fact that the search for a difference is con- 
strained to differences in a prior action is indicated in boldface for the prior 
action in the figure. This pattern would find relationships such as that stretch- 
ing a balloon results in a state the enables blowing air into the balloon to 
inflate the balloon. This causal pattern was tested in the experiment reported 
in Section 2. 

The types of causal patterns are ordered by the simplicity of the causal 
relationship they create. Exceptionless patterns produce the simplest rela- 
tionships. Causal relationships produced by dispositional patterns are more 
complex because they require additional conditions to be true for the action 
to have an effect (e.g.. that the balloon be red). Historical patterns produce 
the most complex causal relationships (i.e., relationships that postulate 
unseen intermediate states). 

3.4 The TDL Procedure 
The TDL procedure has two functions. First, it ensures that a proposed 
causal relationship obeys the regularity principle. Second, if more than one 
causal pattern applies to a set of observations, it determines what causal 
relationship will be created. A current best hypothesis (Mitchell, 1982) for a 
causal relationship is created from one causal pattern rather than maintain- 
ing a set of consistent hypotheses (e.g., Mitchell, 1982; Vex, 1975). Psycho- 
logical evidence (e.g., Bower & Trabasso, 1968; Levine, 1967) indicates that 
only one, or a small number of hypotheses, are considered at one time. 
Simplicity is the criteria used for selecting the best hypothesis. 

In a given situation, more than one type of causal pattern may apply. For 
example, the exceptionless pattern in Figure 3, the dispositional pattern in 
Figure 6, and the historical pattern in Figure 7 (p. 415) all match the first 
observation of the learning task in Section 1.3. TDL orders the types of causal 
patterns by simplicity. Within each type of pattern, it is also possible that 
more than one pattern may match an observation. In this case, one pattern 
is arbitrarily chosen to create a causal relationship. If further observations 
prove the causal relationship to be inaccurate, the relationship will be dis- 
carded, and an alternative pattern may be applied in this situation. 

Learning occurs whenever an unpredicted state change is observed. The 
following algorithm describes the learning procedure: 
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1. Collect similar observations: Observations with actions similar to the 
action of the current observation, are retrieved from memory (if there 
are any).’ 

2. Partition observations: Two sets of observations are created: The posi- 
tive examples are those similar observations with the same state change 
as the new observation and the negative examples are those observations 
with different state changes (or no state change at all). 

3. Match observation and causal patterns: If there are no observations 
with a different state change, the exceptionless patterns are applicable. 
Otherwise, dispositional or historical patterns might apply. To apply a 
causal pattern, first a generalized observation is created by finding all 
roles common to the set of observations with the same state change. 
Next, the generalized observation is matched against the antecedents of 
the causal patterns. 

4. Instantiate causal relationship: If the antecedent of causal pattern 
matches (and the proposed causal relationship is consistent with obser- 
vation retrieved from memory), a new causal relationship is created 
using a procedure that depends on the type of pattern. 
l Exceptionless: A new causal relationship is constructed by replacing 

each of the variables in the causal relationship of the pattern with 
the corresponding binding with all roles removed in the generalized 
observation. 

l Dispositional: Dispositional causal patterns restrict the search for a 
condition that differs between the positive and negative examples to 
an object that plays a specified role (indicated in boldface in the 
figures) in the action. The features common to all objects that play 
this role in all positive examples are collected. Next, those features 
present in any object that plays this role in negative examples are 
eliminated from consideration. One feature is selected from the candi- 
dates at random, and hypothesized to be responsible for the different 
state change (i.e., the causal relationship only holds when that feature 
is present).’ The causal relationship is created in a manner identical 
to the exceptionless patterns except it also contains the feature (or 
conjunction of features) hypothesized to be responsible for the dif- 
ferent state change. 

l Historical: The causal pattern indicates that the causal relationship is 
conditionally dependent on some previous action (indicated in bold- 
face and a boldface box in the figures). These patterns are processed 

’ In this article, I do not address the issue of memory retrieval. The important point is that 
some, but naf all prior actions and subsequent state changes, are recalled. A” action and the 
state change is retrievable if the action is indexed in memory by a unique role that is present in 
the current observation (Kolodner, 1984; Lebawitz, 1980). The interested reader is referred to 
Pazzani (1990) for a description of the memory-retrieval process. 

’ If there are no candidate features, then the conjunction of all candidate features is tried. 



in a manner similar to the dispositional pattern except that a prior 
action instead of a role is blamed for the different state change. 

The matching process used by TDL is a strict match that succeeds only if the 
antecedent of the pattern subsumes a generalized observation. The antece- 
dents of causal patterns are matched against generalized observations to 
enforce the regularity principle by ensuring that the causal relationship is 
consistent with the previous recallable observations. If the antecedent of a 
pattern does not match the generalized observation, a causal relationship 
cannot be created from that pattern. Note that the generalized observations 
only summarizes those prior observations that can be retrieved from memory. 

A causal relationship is created from as few as one observation in TDL. 
Such a causal relationship is subject to revision when more examples are 
observed. A causal relationship constructed by TDL contains a counter that 
is incremented when a successful prediction is made, and another counter 
that is incremented when an incorrect prediction is made. When the ratio of 
correct predictions and total predictions is lower than a certain value,’ then 
the causal relationship is eliminated. TDL does not use a backtracking 
mechanism to generate a new causal relationship when an erroneous rela- 
tionship has been eliminated. Rather, the observations that can be recalled 
will prevent the system from applying the causal pattern that created the 
inaccurate causal relationship. An alternative causal pattern will apply to 
the new set of recalled observations and generate a new hypothesis. In the 
next section, an example is presented of the TDL procedure and the evalua- 
tion of causal relationships when new observations are encountered. 

3.5 TDL: An Example 
In this section, the execution of OCCAM is traced, a learning program that 
implements the TDL procedure. The program is presented with the follow- 
ing three observations: 

l John, who has brown hair and brown eyes, is eating a Life Saver in the 
kitchen and John touches a red balloon with a silver pin. A state change 
occurs immediately after these two actions: The balloon bursts. The 
representation for this observation was given in Figure 2. 

. John touches a red balloon with his finger in the living room and the 
balloon does not burst. 

. Bob, who has black hair and brown eyes, touches a yellow balloon in 
the kitchen with the blade of a silver knife and the balloon bursts. 

It is assumed here that OCCAM starts off with no causal relationships and 
with all of the causal patterns listed in Appendix A. Of particular impor- 
tance are the causal patterns in Figures 4 and 7. 

’ This is a parameter in OCCAM. The current value of the parameter is 0.8 
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Figure 7. A dirporitionol cousol pattern: Similar ocwns with the same destinations and 
with different objects followed by different state changer for the destination suggests that 
o role of the obiect is required for on action to r=sult in the stole change. 

Figure 8. A generalized obrervation formed from finding the common roles of two obrer- 
v.+i.,ns. This generalized observation indicates that after o person with brown eyes touched 
a balloon with o silver pointed object in the kitchen, the balloon popped. 

When the first observation is encountered, an unexpected state change 
occurs. Because there are no recalled situations in which a balloon did not 
burst when a force was applied, only exceptionless patterns will be matched 
against this situation. There is only one pattern that matches any part of this 
observation (see Figure 4). This pattern suggests the causal relationship that 
applying a force to a balloon results in the balloon bursting. (This causal 
relationship is not shown in any figure. However, it is identical to the situa- 
tion in Figure 3 except it does not contain the constraint that the object be 
pointed.) 

In the next observation, a balloon is touched with a finger. OCCAM uses 
the causal relationship to predict that the balloon will burst. However, the 
balloon did not burst. The causal relationship formed from the first example 
is deleted. Because OCCAM focuses on explaining unexpected state changes, 
and there is no state change for the current observation, the two observa- 
tions are simply stored in memory. 

When the third observation is encountered, an unexpected state change 
occurs. OCCAM retrieves the previous two observations from memory, and 
creates a generalized observation by finding the roles common to the first 
and third observations because these precede the same type of state change. 
The generalized observation is shown in Figure 8. By correlating over the 



recalled observations, many roles need not be considered as being potential 
candidates to account for the difference in the outcome. These include the 
color of the actor’s hair and the color of the balloon. When the generalized 
observation is matched against the causal patterns, additional roles will be 
considered irrelevant. 

This generalized observation matches the dispositional causal pattern in 
Figure 7. This pattern encodes the knowledge that some difference in the 
object used in an action can result in a different state change. There are two 
differences between the object of the generalized observation and the object 
of the observation with a different state change: color and shape. OCCAM 
randomly selects one of these roles and creates a causal relationship.’ In this 
example, OCCAM makes a fortuitous selection and chooses the shape. The 
resulting causal relationship is shown in Figure 3. If color were chosen in- 
stead of shape, then OCCAM would create an inaccurate causal relationship 
that would make an error if a balloon were touched with a pointed object 
that was not silver or a silver object that are not pointed. In either case, the 
inaccurate causal relationship would be retracted and replaced by the more 
accurate relationship in Figure 2. 

Notice that there are many roles shared by the two observations with the 
same state. TDL does not consider many of these similarities, such as the 
location of the action or the color of the actor’s eyes, to be relevant to the 
causal relationships. This permits TDL to converge rapidly on an accurate 
causal relationship consistent with the theory of causality. The price it pays 
for this increased speed is the inability to learn a relationship inconsistent 
with the theory of causality. 

4. THE SCOPE AND LIMITATIONS OF TDL 

To gain an understanding of the limitations and scope of TDL, it is necessary 
to describe OCCAM (Pazzani, 1990), the learning architecture that includes 
TDL as one component. OCCAM’S other learning components are an explana- 
tion-based learning (EBL) component (DeJong & Mooney, 1986; Mitchell, 
Keller, & Kedar-Cabelli, 1986) and a similarity-based learning (SBL) com- 
ponent (Lebowitz, 1986b; Mitchell, 1982). 

The SBL component creates causal relationships from several observations 
with the same state change. The conditions under which an action will result 
in a state change are learned incrementally by finding all roles in common to 
observations with the same state change (cf. Bruner et al., 1956). SBL does 
make use of either the theory of causality or the theory of causation to guide 
the learning process. This is both an advantage (i.e., SBL is not restricted to 
acquiring concepts that are consistent with existing knowledge) and a dis- 
advantage (i.e., the prior knowledge of the learner does not constrain the 
learning process (DeJong & Mooney, 1986; Mitchell et al., 1986). 

( In Pazrani, Dyer, and Flowers (1987) an extension to OCCAM that learns conditions under 
which one role should be favored is discussed. 
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The EBL component creates new causal relationships by using the theory 
of causation (as opposed to the theory of causality) to explain a single obser- 
vation that has an unpredicted state change. A state change is explained by 
chaining together two or more causal relationships. For example, consider 
what happens when vinegar and baking soda are put in a bottle and a balloon 
is placed on the opening of the bottle. In this situation, the balloon will ex- 
pand. This can be explained by chaining together three simple causal rela- 
tionships. First, mixing vinegar and baking soda results in the production of 
carbon dioxide gas. Second, the production of gas results in an increased 
pressure in the bottle and the balloon. Third, an increase of pressure in the 
balloon results in the balloon expanding. EBL creates a new causal relation- 
ship by finding the most general conditions that this same explanation will 
apply. This new causal relationship can be created analytically from just 
one example by taking advantage of an interaction between existing causal 
relationships. 

When an unpredicted state change is observed, OCCAM must determine 
which of its three learning methods to apply. OCCAM uses EBL if it can ex- 
plain the state change by chaining together existing causal relationships. If 
an explanation cannot be produced and the observation is consistent with 
the theory of causality (i.e., the observation matches a causal pattern), then 
OCCAM uses TDL. As a last resort, OCCAM attempts SBL. 

An important implication of this architecture is that SBL and TDL create 
the causal relationships needed by EBL. This permits OCCAM to use the 
results of its initial data-intensive learning in its later knowledge-intensive 
learning. For this reason, it is not necessary to have historical causal patterns 
of arbitrary length in OCCAM. Rather, several simple causal relationships 
created by TDL can be chained together by EBL to learn complex causal 
relationships with several intermediate states. 

TDL’s role is restricted to those observations that cannot be explained by 
the current theory of causation (otherwise, EBL would be used), and that 
meet the constraints of a potential causal relationship. Regularities between 
observations that cannot be explained, and that do not match a causal pat- 
tern (e.g., the opening of a garage door by pressing the button on a remote 
control) can be detected and generalized by the SBL component of OCCAM. 
The data on human learners does not show that people are incapable of 
learning causal relationships inconsistent with their theory of causality. 
Rather, people learn more slowly when observations do not conform to 
common patterns of causal relationships. 

Figure 9 (p. 418) shows the result of running OCCAM on the observations 
from the experiment in Section 2. In this simulation, OCCAM was able to use 
TDL only on the dip/inflate condition. In the alpha conditions, only SBL 
can beused. In thesnap/inflate condition, the first few observations may fit 
a causal pattern and a relationship such as “blowing into a yellow balloon 
results in a balloon being inflated” will be created. Later observations prove 
this relationship to be inaccurate, and the series of observations do not 
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Figure 9. Doto from running OCCAM on observations simulating the experiment in Section 
2. The doto points ore overoged over30 simulations. As in the experiment, fewer triols were 
needed to learn a relationship that conforms too common pottern of C.UIO, relationships. 

match any causal pattern. Therefore, OCCAM uses SBL to learn the accurate 
relationship for the snap/inflate condition. 

The data from the simulation indicate that learning causal relationships 
is facilitated when the relationships are consistent with the theory of causality. 
In the data with human subjects, learning causal relationships inconsistent 
with the theory of causality takes longer than simple concept identification. 
Although there is a difference in the computer simulation, it is not statisti- 
cally significant. It has been speculated that the smaller magnitude of the 
difference is caused by the fact that OCCAM may be able to retrieve accu- 
rately more prior observations than the human subjects. 

4.1 Comparison to EBL 
There are two primary differences between EBL and TDL approaches to 
learning causal relationships. First, the causal relationships produced by 
EBL deductively follow from the existing knowledge (i.e., the theory of 
causation). EBL does not increase the set observations that can be explained 
by the deductive closure of the theory of causation (Dietterich, 1986), but it 
does increase the set of observations whose state change can be predicted by 
the application of a single causal relationship. In contrast, the causal rela- 
tionships produced by TDL follow from both the existing knowledge (i.e., 
the theory of causality) and the set of observations. EBL uses the observa- 
tions only to focus the search for an explanation. TDL needs the observations 
to determine which states result from each type of action. For this reason, 
standard EBL algorithms (e.g., DeJong & Mooney, 1986; Mitchell et al., 
1986) cannot make use of a theory of causality to create causal relationships. 
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A second difference between EBL and TDL is the method used to learn 
the conditions under which an action results in a state change. EBL pro- 
duces generalizations by summarizing an inference chain. The preconditions 
acquired by EBL are operational descriptions of the preconditions the rules 
used to produce the inference chain. TDL learns the conditions under which 
an action results in a state change by a focused correlation among several 
observations. 

4.2 Determinations 
TDL is, in some ways, similar to learning with determinations (Russell, 
1986). Determinations, like causal patterns, are not sufficient to make a 
prediction about an unobserved example. Once an observation has been 
encountered, properties of additional observations can be deduced. For 
example, one determination states that nationality determines language. 
After an example of an American speaking English has been seen, a general- 
ization that all Americans speak English can be created. There are two dif- 
ferences between TDL and learning with determinations. First, TDL does 
not require that the observations and the causal pattern logically entail the 
causal relationship. Rather, the causal pattern is a heuristic suggesting a 
relationship subject to empirical validation. Second, more than one deter- 
mination cannot apply to a given observation. Therefore, learning with 
determinations does not require a mechanism to select among alternatives. 

5. IMPLICATIONS OF TDL 

The distinction between a theory of causation and a theory of causality is 
useful for interpreting the results of experiments assessing the causal reason- 
ing capabilities of human subjects. For example, in one study (Ausubel & 
Schiff, 1954), kindergarten students and sixth-grade students were asked to 
predict which side of a teeter-totter would fall when the correct side was 
indicated by a relevant role (length) or an irrelevant role (color). They found 
that the kindergarten children learned to predict on the basis of relevant or 
irrelevant roles at approximately the same rate (3.7 trials for relevant, 3.4 
trials for irrelevant). However, the older children required significantly 
fewer trials to predict on the basis of a relevant role than an irrelevant one 
(.83 vs 3.1 trials). The relevant and irrelevant conditions are identical with 
respect to a theory of causality. Both conditions require finding a difference 
in an object that is responsible for the difference in a state change. With- 
out any prior knowledge of causation, either role is equally likely. This 
experiment does not demonstrate that older children have a better theory of 
causality than younger children; rather, the experiment shows that older 
children have a more complete theory of causation. This theory includes 
relationships such as “a teeter-totter falls on the heavier side” and “the 
longer side is likely to be the heavier side.” In the relevant condition, the 
correct prediction deductively follows from this knowledge. 
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Some experiments have shown that younger children have a less complete 
theory of causality than older children. For example, Bullock (1979) presented 
evidence that 3-year-old children do not make use of the spatial contiguity 
principle as much as 5-year-old children do. This difference is not due to 
knowledge of causation (e.g., familiarity with materials in the experiment). 
Rather, the difference is attributable to a difference in the 3.year-olds’ and 
S-year-olds’ theory of causality. 

It has been found (Shultz, Fisher, Pratt, & Rulf, 1986) that when subjects 
have a detailed knowledge of the causal mechanism (i.e., a theory of causa- 
tion sufficient to explain a state change), they do not require temporal and 
spatial contiguity. I view this as evidence that supports the decision in OCCAM 
to prefer EBL to TDL is both apply. Furthermore, I view the principles of 
temporal and spatial contiguity as heuristics that allow an observer to infer 
a causal mechanism. For example, the causal pattern in Figure 7 changes 
temporal links in the observation into causal links in the causal relationship 
and postulates a state as an intermediate result. 

6. EXTENSIONS TO TDL 

In addition to causal patterns that guide the search for relationships of 
physical causation, causal patterns for social causation have also been de- 
veloped. In physical causality, a state change occurs as a consequence of the 
transmission of some sort of force. In contrast, transmission of forces does 
not play a major role n determining human behavior. Instead, human be- 
havior is considered to be a consequence of intentions to achieve some goal. 
The social causal patterns postulate intentional relationships (Dyer, 1983) 
between goals, plans and actions. For example, one social pattern is: An 
event (?e) that motivates a goal (?g) for one person (?pl/ is observed by 
another person (?p2) who performs an action (?a) that achieves ?g for ?pI, 
suggests that ?e motivates ?g for ?p2. 

OCCAM uses this pattern when it is given a series of observations of parents 
helping their children and strangers not assisting a child. OCCAM hypothe- 
sizes that parents have a goal of preserving the health of their children. (Of 
course, before being ruled out by additional examples, OCCAM also enter- 
tained a number of incorrect hypotheses such as persons with brown hair 
have a goal of preserving the health of children). Once OCCAM has con- 
structed the social relationship that parents have a goal of preserving the 
health of their children, it can use it as background knowledge for EBL. 
This particular relation is useful in explaining and generalizing an observa- 
tion in which a parent plays the ransom in a kidnapping episode. 

Causal patterns that facilitate learning about electronic devices have also 
been experimented with. For example, the following causal pattern may be 
used to focus the search for causal relationships: Pressing a switch followed 
by a state change of an electronic device suggests that pressing the switch 
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results in a state change of the electronic device. This causal pattern encodes 
the fact that, as adults, we are more likely to attribute a change in an elec- 
tronic device to the pushing of a button or the flicking of a switch than to 
some other random action (such as a cat meowing). This is true even if the 
wires are hidden (as in a light switch) or the connection is not observable (as 
in the remote control for a television). Similarly, one would be surprised if 
pressing a button resulted in a change in some nonelectronic device, such as 
the inflaton of a balloon. 

This last example raises the question of how a theory of causality might 
be acquired. Early work on children’s understanding of causality (Piaget, 
1930) pointed out many differences in causal explanations among various 
age groups. In spite of more recent evidence that very young infants are able 
to perceive causal relationships (Leslie & Keeble, 1987). there is no question 
that older children are better at attributing causality than younger children 
(Bullock. 1979). 

Currently, in OCCAM, there is a fixed set of causal patterns that never 
change as the program learns. When the program starts, it has its complete 
theory uf causality. I believe that a general theory of causality can be ac- 
quired and refined from experience. I am currently developing an extension 
that would find higher order regularities (Goodman, 1983) among the causal 
relationships created by SBL. These higher order regularities become the 
causal patterns needed by TDL. 

7. CONCLUSION 

I have argued that learning causal relationships is facilitated by a general 
theory of causality constraining the set of possible causal relationships. I 
have presented a process called theory-driven learning, which proposes that 
causal hypotheses are consistent both with observed data and the general 
theory of causality. A computer implementation of the theory is one com- 
ponent of OCCAM. Simulation of the theory provides empirical support for 
the advantage of TDL over purely correlational approaches to learning: 
Fewer examples are required to learn a causal relationship. I have provided 
experimental evidence that people possess the kind of causal knowledge 
encoded in OCCAM’S causal patterns. 
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APPENDIX A 

A List of OCCAM’S Causal Patterns 
This appendix contains a listing of causal patterns for postulating causal 
relationships. The corresponding dispositional patterns follow each excep- 
tionless pattern. 
. An action on an object by a state change for the object suggests that the 

action results in the state change. 
l actor disposition 
l object disposition 

l An action with a particular destination followed by a state change for 
the destination suggests that the action results in the state change. 

l actor disposition 
l object disposition 
l destination disposition. 

l An action on a component of an object followed by a state change for 
the object suggests that the action results in the state change. 

l actor disposition 
l object disposition 

. An action with a particular component as a destination followed by a 
state change for the destination suggests that the action results in the 
state change. 

l actor disposition 
l object disposition 
l destination disposition 

l An initial action on an object preceding a subsequent action that pre- 
cedes a state change for the object suggests that the initial action results 
in a state change that enables the subsequent action to result in the state 
change. 

l There are three other variations of this pattern that permit the 
object that changes to be the destination of the initial action, the 
subsequent action, or both. In Conceptual Dependency, the desti- 
nation of the object can be affected by an action. 

l An initial action on an object preceding a subsequent action that does 
not precede a state change for the object suggests that the initial action 
results in a state change that disables the subsequent action to result in 
the state change. 

l There are three other variations of this pattern that permit the 
object that changes to be the destination of the initial action, the 
subsequent action, or both. 
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APPENDIX B 

Order of Stimuli 
The stimuli used in the experiment discussed in Section 2 were shown to sub- 
jects from videotape. The following table lists the ordering of the observa- 
tions on the videotapes: 

Balloon 
Size 

Small 
Large 
Large 
Small 
Small 
Large 
Large 
Small 
Large 
Large 
Small 
Small 

B0ll00” 
Color 

Y&XV 
YallOW 
orange 
Yellow 
Orange 
YsllOW 
Orange 
Orange 
orange 
YsllOW 
orange 
YsllOW 

AC,iO” Action 

Dip/Inflate Snap/inflate 

Dip Snap 
Snap Dip 
Necklace Necklace 
Necklace Necklace 
Dip Snap 
Necklace Necklace 
DIP snap 
Snap Dip 
Snap Dip 
Dip Snap 
Necklace Necklace 
Snap Dip 

Re%“lt 

Inflated 
Not Inflated 
Not Inflated 
Not Inflated 
Inflated 
Not Inflated 
Inflated 
Not Inflated 
Not Inflated 
Inflated 
Not Inflated 
Not Inflated 


