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The moment sum rule and its consequences for ferromagnetism

in the Hubbard model
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Lehrstuhl Festkörpertheorie, Institut für Physik, Humboldt-Universität zu Berlin, Germany

The sum rule for the moments of the spectral density is discussed for the single-band Hubbard
model. It is shown that respecting the sum rule up to the order m = 3 is conceptually impor-
tant for a qualitatively correct description of the quasi-particle band structure in the strong-
correlation regime. Different analytical approximations for the self-energy are analyzed with
respect to their compatibility with the moment sum rule. To estimate the practical usefulness
of the sum rule, correlation functions and dynamical quantities are determined. The results
obtained within the various approximation schemes of different complexity are compared
with each other and also with essentially exact results available for infinite-dimensional lat-
tices. It turns out that the m = 3 moment is rather unimportant for the paramagnetic phase
on the hyper-cubic lattice. Contrary, it decisively influences the magnetic phase boundary
as well as the critical temperature for the ferromagnetic phase on an fcc-type lattice.

PACS: 71.10.Fd, 75.10.Lp, 75.30.Kz

I. INTRODUCTION

The Hubbard model [1, 2, 3] plays a central role in
the attempts to understand the physics of correlated
electrons on a lattice. It is surely oversimplified when it
comes to a description of real materials such as the 3d
transition metals and their oxides, for example. Never-
theless, it can provide deep insight into the fundamental
mechanisms that are responsible for various prominent
correlation effects.

The Hubbard model sets up a notoriously difficult
problem which now as before is not accessible to an ex-
act solution in general. An exception is given for the
one-dimensional case (d = 1) where a yet incomplete
but very detailed understanding of the model proper-
ties in the whole parameter range has been achieved
[4, 5, 6, 7, 8]. An important simplification of the model
is also given in the opposite limit of high spatial di-
mensions d = ∞ [9, 10, 11, 12] which was recognized
as a well-defined and non-trivial limiting case by Met-
zner and Vollhardt [9]. Here the electronic self-energy
is k independent or site-diagonal [13], and thereby the
model becomes equivalent to an effective impurity prob-
lem [14]. An exact solution is possible by self-consistent
mapping [15, 16] onto the single-impurity Anderson

model (SIAM) [17], for example, followed by the numer-
ical treatment [18] within the Quantum-Monte-Carlo
(QMC) approach [16, 19, 20, 21]. In dimensions d = 3
or d = 2, however, one still has to resort to approximate
treatments.

Valuable information that helps to judge of the reli-
ability of a particular method is provided by exact iden-
tities, sum rules, limiting cases etc. In any dimension
d such rigorous results impose strong necessary condi-
tions for the inevitable approximations. The purpose
of the present paper is to focus on a particular sum
rule: Exact expressions can be obtained for the (low-
order) moments

∫
EmAkσ(E) dE of the spectral den-

sity Akσ(E). We will argue that the first four moments
(m = 0 − 3) yield valuable information on the quasi-
particle band structure; they are especially important in
the strong-coupling regime and also decisively influence
the possibility and characteristics of spontaneous mag-
netic order. The moment sum rule has been considered
not only within the context of the standard single-band
Hubbard model in d = ∞ [22, 23, 24, 25], in d = 3
[26, 27, 28, 29, 30], d = 2 [31, 32, 33] and d = 1 [31], but
also for the negative-U case [34] and for reduced trans-
lational symmetry [35, 36], for the SIAM [37], for the
t-J [38] and for localized spin models [39, 40, 41] and
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may thus be of general interest for the construction of
analytical approaches.

There are several questions related to the moment
sum rule which are not yet finally clarified. Firstly, we
have to ask how to check to which order the sum rule
is fulfilled for a particular (approximate) method. Sec-
ondly, a kind of recipe is required that shows up how a
given method can be modified to respect the sum rule up
to a certain desired order. Thirdly, it should be worked
out what is the actual conceptual improvement that is
thereby achieved. Finally and most important, we need
to know what can be achieved in practice, i. e. whether
the sum rule can help to come “closer” to the exact so-
lution.

Especially the last question requires to compare with
exact results. As has been mentioned above, these are
available for the Hubbard model in infinite dimensions.
In the recent years there has been extensive work for
d = ∞ lattices concerning the Fermi-liquid phase at
and off half-filling [21], the metal-insulator (Mott) tran-
sition [16, 19, 20, 21, 42, 43, 44], transport properties
[45, 46] and antiferromagnetic [16, 21, 42, 43, 44, 47]
and ferromagnetic ordering [21, 48, 49]. These QMC
studies have been supplemented by the exact diagonal-
ization method [50, 51] and by a number of approximate
methods that are reliable in certain limits. Let us men-
tion the non-crossing approximation (NCA) [45, 52, 53]
as a strong-coupling approach, weak-coupling methods
[54, 55, 56, 57], variational approaches [58, 59, 60] and
others [61, 62, 63]. Moreover, the d = ∞ model is phys-
ically meaningful since the local approximation for the
self-energy appears to be reasonable down to d = 3 [64]
or even d = 2 [65]. The essential physical properties of
the d = ∞ Hubbard model are thus expected to be com-
parable to those at d = 3 (d = 2). For the present study
we therefore restrict ourselves to the d = ∞ case where
we are able to judge of the reliability of a particular
method on the firm basis that is provided by available
QMC results. This should help us to come to conclusive
results concerning the sum rule.

Our main idea is to elucidate the meaning and the
usefulness of the moment sum rule by considering a num-
ber of standard approximations: (i) the simple Hubbard-
I approximation (H-I) [2], (ii) Hubbard’s alloy-analogy
solution (AA) [66], (iii) the so-called Edwards-Hertz ap-
proach (EHA) [67] in its improved version by Wermbter
and Czycholl [68], and finally (iv) the generalization
[69] of the iterative perturbation theory [15] to arbitrary

band-fillings as proposed by Kajueter and Kotliar (KK)
[70]. It turns out that all approaches are inconsistent
with the moment sum rule for m = 3 and yield the cor-
rect moments only up to m = 2.

The moments of the spectral density are intimately
related to the coefficients in the high-energy expansion
of the corresponding self-energy [71]. We will show that
thereby a possibility is opened to improve upon a partic-
ular approximation analytically and to ensure that the
moment sum rule is respected up to m = 3.

This program has been completed successfully for
the four approaches mentioned above. The result is an-
other set of methods, each evolving straightforwardly
from its above counterpart: (i) the spectral-density ap-
proach (SDA) [27, 28, 22, 30], (ii) the modified alloy-
analogy (MAA) [72, 73], (iii) the interpolating alloy-
analogy-based approach (IAA) [24], and (iv) the modi-
fied perturbation theory (MPT) [23, 25].

Each of these new approaches can be considered as a
conceptual improvement upon the original one: It can be
shown that the additional inclusion of the fourth spec-
tral moment does not affect their validity in different
exactly solvable limiting cases. Furthermore, we will
also show that significant improvement is achieved when
comparing with the essentially exact QMC data of Refs.
[21, 48, 49].

There is an interesting feature common to those four
approaches that yield the correct moments up to m =
3: The analytical expression for the self-energy depends
on a higher-order correlation function Bσ which can be
shown to be responsible for a (possibly) spin-dependent
shift of the centers of gravity of the lower and the upper
Hubbard band in the strong-correlation regime U 7→ ∞.
On the other hand, the original approaches are obtained
if Bσ is (ad hoc) replaced by its atomic-limit (H-I, AA)
or by its Hartree-Fock value (EHA, KK), respectively.
One may thus expect that the inclusion of the fourth
spectral moment is especially important what concerns
magnetic order.

After a general discussion of the moment sum rule
and its conceptual importance in the next section, we
briefly discuss each of the methods in sections III-VI.
Section VII presents new results for the paramagnetic
phase on the hyper-cubic and for the ferromagnetic
phase on an fcc-type lattice. For the discussion a
comparative opposition of the different methods against
each other and against QMC results appears to be
helpful. Our intention is to arrive at general conclusions
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on the meaning and importance of the moment sum
rule and of the correlation function Bσ in particular
which may be helpful for future analytical work.

II. SPECTRAL MOMENTS AND 1/U
PERTURBATION THEORY

Let us start by recalling some essential facts for the
limiting case of strong interaction (U ≫ t). This will be
important for the later discussion and for a concise for-
mulation of the different approaches mentioned above.
We first introduce the model as well as the basic physical
quantities of interest.

Using standard notations the Hubbard model reads:

H =
∑

ijσ

(Tij − µδij) c
†
iσcjσ +

1

2
U
∑

iσ

niσni−σ . (1)

The hopping integrals Tij are assumed to be non-zero up
to nearest-neighbor distances: T〈ij〉 = −t. The on-site
energy Tii ≡ T0 defines the energy zero. We consider an
infinite-dimensional lattice with the usual scaling d t2 =
const. for the hopping to retain the model non-trivial
[9]. Restricting ourselves to homogeneous phases (para-
and ferromagnetism), the one-electron Green function,

Gσ(E) = 〈〈ciσ ; c†iσ〉〉E , (2)

depends on the lattice geometry via the free Bloch den-
sity of states (BDOS) only and can be written in the
form:

Gσ(E) =

∫ ∞

−∞

h̄ρ(B)(z)

E − (z − µ)− Σσ(E)
dz , (3)

where the BDOS

ρ(B)(E) =
1

N

∑

k

δ(E − ǫ(k)) (4)

is given in terms of the tight-binding dispersion

ǫ(k) =
1

N

∑

ij

e−ik(Ri−Rj)Tij . (5)

The expression (3) for the Green function is based on
the fact that the self-energy Σσ(E) is k independent or
site-diagonal for d = ∞ [9, 13]. Let us also introduce
the k-resolved spectral density,

Akσ(E) = − 1

π
Im

h̄

E + i0+ − (ǫ(k)− µ)− Σσ(E + i0+)
,

(6)

and the on-site or k-summed spectral density:

Aσ(E) =
1

N

∑

k

Akσ(E) . (7)

The atomic limit of vanishing hopping (t = 0) rep-
resents the zeroth-order result for the strong-coupling
regime. We have:

Σσ(E) = Un−σ +
U2n−σ(1 − n−σ)

E + µ− T0 − U(1− n−σ)
, (8)

where nσ = 〈c†iσciσ〉. Let us now consider the first non-
trivial correction to the atomic solution (8) in the strong-
coupling regime. For U 7→ ∞ perturbational results can
be derived by performing a canonical transformation of
the Hubbard model [26, 74, 75, 76]. As has been shown
first by Harris and Lange [26], the 1/U perturbation
theory predicts the spectrum to be dominated by two
charge-excitation peaks (Hubbard bands); the weight
of additional satellites in the spectrum is of the order
(1/U)4 and can thus be neglected for strong interaction.
Furthermore, at each k point in the Brillouin zone the
center of gravity Tpσ(k) as well as the spectral weight
αpσ(k) of the lower (p = 1) and of the upper (p = 2)
Hubbard band can be calculated exactly. Specializing
the results of Harris and Lange to the d = ∞ case, one
obtains:

T1σ(k) = (1 − n−σ)ǫ(k) + n−σB−σ +O(1/U) ,

T2σ(k) = U + n−σǫ(k) + (1− n−σ)B−σ +O(1/U) ,

α1σ(k) = 1− n−σ

+
2

U
n−σ(1 − n−σ)(B−σ − ǫ(k)) +O(1/U)2 ,

α2σ(k) = 1− α1σ(k) , (9)

where the B−σ is defined as:

Bσ = T0+
1

nσ(1− nσ)

∑

j 6=i

Tij〈c†iσcjσ(2ni−σ− 1)〉 . (10)

Contrary to the finite-dimensional case [30, 31, 32], the
k dependence of Tpσ(k) and αpσ(k) is exclusively due to
the Bloch dispersion ǫ(k). For finite d an additional k
dependence is introduced via B−σ 7→ Bk−σ.

From the result (9) valuable “global” information
on the quasi-particle band structure can be read off:
Apart from the Hubbard splitting, electron correlations
manifest themselves in a specific narrowing of the lower
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and upper Hubbard band, in a redistribution of spec-
tral weight among them and in a shift of their centers
of gravity that is given by n−σB−σ and (1 − n−σ)B−σ,
respectively. These (possibly spin-dependent) shifts, in
particular, are expected to be important for ferromag-
netic symmetry breaking: A spin-dependent shift of the
band center of gravity may generate and stabilize ferro-
magnetic solutions.

Here the question arises how it can be ensured that
a given analytical approach is consistent with the exact
perturbational results of Harris and Lange for U 7→ ∞.
For this purpose we consider the moments of the spectral
density which for m = 0, 1, 2, . . . are defined as:

M
(m)
kσ =

1

h̄

∫ ∞

−∞
EmAkσ(E) dE . (11)

There is an alternative but equivalent way to calculate
the moments:

M
(m)
kσ = 〈[Lmckσ, c

†
kσ]+〉 , (12)

where LO = [O, H ]− denotes the commutator of an op-
erator O with the Hamiltonian, and [· · · , · · ·]+ is the
anticommutator. Eqs. (11) and (12) represent the mo-
ment sum rule for the spectral density. In practice the
sum rule is useful for low m only. The limitation arises
from the fact that with increasing m Eq. (12) involves
equal-time correlation functions of higher and higher or-
der which are usually unknown.

As has been shown in Ref. [33], the correctness of
the moments up to m = 2 is a necessary condition for
the evolution of the Hubbard bands as U 7→ ∞. On
the other hand, it is not sufficient as the following ex-
ample shows: The self-consistent second-order perturba-
tion theory in the interaction U for d = ∞ [54] predicts
the correct moments up to m = 2 but does not yield the
Hubbard splitting for large U [33, 54].

To be consistent with the results of 1/U perturbation
theory, one has to check the existence of the Hubbard
bands (which normally can be done easily). Then, it is
sufficient to ensure that the moment sum rule is fulfilled
for m = 0−3: For each k point of the Brillouin zone, the
first four moments provide four pieces of information on
the spectral density that (for U 7→ ∞) unambiguously
determine both, the centers of gravity and the weights,
for the two Hubbard bands. Explicit expressions for the
Hubbard model up to m = 3 can be found Refs. [28, 35],
for example. The dispersions Tpσ(k) and weights αpσ(k)

that result from the above reasoning are the same as
found by Harris and Lange in Eq. (9).

In most analytical approaches one obtains an (ap-
proximate) expression for the self-energy. To make use
of the sum rule, it becomes necessary to determine the
spectral density from Eq. (6) and to calculate the mo-
ments by carrying out the integration in Eq. (11). Fi-
nally, the (approximate) result for the moments has to
be compared with the exact one given by Eq. (12).

The inconvenient integration in (11) can be avoided
when considering the high-energy expansion of the
Green function and of the self-energy: In the spectral
representation of the on-site Green function,

Gσ(E) =

∫ ∞

−∞

Aσ(E
′)

E − E′ dE
′ , (13)

we expand the denominator in powers of 1/E. With Eq.
(11) we immediately get:

Gσ(E) = h̄

∞∑

m=0

M
(m)
σ

Em+1
. (14)

The coefficients in the high-energy expansion of the
Green function are given by the (on-site) moments:

M
(m)
σ = M

(m)
iiσ = N−1

∑
k
M

(m)
kσ . Via Eq. (3) they also

determine the high-energy expansion coefficients of the
self-energy:

Σσ(E) =

∞∑

m=0

C
(m)
σ

Em
. (15)

Using the explicit expressions for the moments as ob-
tained from Eq. (12) [28, 35], a straightforward calcula-
tion yields:

C(0)
σ = Un−σ ,

C(1)
σ = U2n−σ (1− n−σ) ,

C(2)
σ = U2n−σ (1− n−σ) (B−σ − µ+ U(1− n−σ)) .

(16)

Any analytical (approximate) expression for the self-
energy can easily be checked against these rigorous re-
sults simply by expanding in powers of 1/E. Provided

that the coefficients C
(m)
σ turn out to be correct up to

m = 2, the moments of the resulting spectral density

M
(m)
kσ will be correct up to m = 3. For U 7→ ∞ this en-

sures complete consistency with the 1/U perturbational
results of Harris and Lange.

4



Finally, we have to express the expectation values in
Eq. (16) in terms of known quantities. For the (spin-
dependent) average occupation number we have:

nσ ≡ 〈c†iσciσ〉 =
1

2
+

2

h̄β
Re

∞∑

n=0

Gσ(iEn) , (17)

where En = (2n+1)π/β and β = 1/kBT . We also define
the band-filling n = n↑+n↓. Ferromagnetic order is indi-
cated by an asymmetry n↑ 6= n↓ in the spin-dependent
occupation numbers. In this case the (dimensionless)
spontaneous magnetization is given by m = n↑ − n↓.
We can also determine Bσ (see Refs. [24, 28, 29, 35], for
example):

Bσ = T0 +
1

nσ(1 − nσ)

2

h̄β
Re

∞∑

n=0

(
2

U
Σσ(iEn)− 1

)

× [(iEn − Σσ(iEn)− T0 + µ)Gσ(iEn)− h̄] .

(18)

Fortunately, it can be expressed in terms of the one-
electron Green function and self-energy, despite the
fact that the definition of Bσ (10) includes higher-order
correlation functions.

III. TWO-POLE GREEN FUNCTION

In the following we consider four different standard
approximations for the self-energy: The Hubbard-I
solution (Sec. III), the alloy analogy solution (Sec. IV),
the Edwards-Hertz approach (Sec. V) and the ansatz of
Kajueter and Kotliar (Sec. VI). Carrying out the high-
energy expansion, we can check to which order m the
moment sum rule is fulfilled. Furthermore, we will show
up how the respective approaches can be corrected (if
necessary) such that the sum rule is obeyed up tom = 3.

A. Hubbard-I approximation (H-I)

The so-called Hubbard-I solution is the simplest ap-
proach that predicts a splitting of the non-interacting
Bloch band into the two quasi-particle (Hubbard) sub-
bands. In the original work [2] it is derived by decoupling
the hierarchy of equations of motion at the second level,
i. e. by assuming 〈〈ciσni−σ; c

†
jσ〉〉 ≈ 〈ni−σ〉〈〈ciσ ; c†jσ〉〉.

From the resulting approximate Green function and

from the Dyson equation one obtains the Hubbard-I self-
energy which is identical with the self-energy (8) of the
atomic limit. The high-energy expansion is readily per-
formed, the expansion coefficients read:

C(0,H−I)
σ = Un−σ ,

C(1,H−I)
σ = U2n−σ (1− n−σ) ,

C(2,H−I)
σ = U2n−σ (1− n−σ) (T0 − µ+ U(1− n−σ)) .

(19)

Comparing with (16), we notice that the m = 2 coeffi-
cient (and thereby the m = 3 moment) is incorrect.

B. Spectral-density approach (SDA)

It is easily seen from the expansion coefficients that
the sum rule up to order m = 3 can be restored if the
atomic level T0 in the H-I self-energy (8) is replaced by
T0 7→ B−σ. We obtain:

Σ(SDA)
σ (E) = Un−σ +

U2n−σ(1− n−σ)

E + µ−B−σ − U(1− n−σ)
.

(20)
The Green function can be calculated from Dyson’s
equation, and from (18) we get B−σ. We thus arrive
at a conceptually simple improvement of the H-I solu-
tion that introduces an effective atomic level which is
determined self-consistently.

It turns out that this is identical with the spectral-
density approach (SDA) [28, 77, 35, 30] in infinite
dimensions. The SDA is essentially equivalent to the
Roth two-pole approximation for the Green function
[78, 32]. Furthermore, the SDA self-energy can also
be obtained by means of the Mori-Zwanzig projection
technique [79, 80, 31].

IV. ALLOY ANALOGY

The main idea of an alloy-analogy solution for the
Hubbard model is to consider the −σ electrons to be
“frozen” and to be randomly distributed over the sites
of the lattice. The σ electrons then move through a fic-
titious two-component alloy that is characterized by two
atomic levels E1σ and E2σ and the concentrations x1σ

and x2σ. The coherent potential approximation (CPA)
[81] can be used to perform the configurational average
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over the positions of the frozen −σ electrons. The self-
energy for the σ electrons is thus obtained via:

0 =

2∑

p=1

xpσ
Epσ − Σσ(E)− T0

1− 1
h̄Gσ(E) [Epσ − Σσ(E)− T0]

. (21)

A. Hubbard’s alloy-analogy solution (AA)

Any two-component alloy analogy requires the spec-
ification of the two atomic levels Epσ and the concen-
trations xpσ. Within the conventional alloy-analogy so-
lution due to Hubbard [66] (AA) these are taken by re-
ferring to the atomic limit:

E
(AA)
1σ = T0 , E

(AA)
2σ = T0 + U ,

x
(AA)
1σ = 1− n−σ , x

(AA)
2σ = n−σ . (22)

Using this ansatz in the general CPA equation (21) and
rearranging the terms, we arrive at:

Σ(AA)
σ (E) =

Un−σ

1− 1
h̄Gσ(E) (U − Σ

(AA)
σ (E))

. (23)

This AA solution turns out to be exact for a special but
non-trivial limiting case of the Hubbard model: Switch-
ing off the hopping of the −σ electrons only (Tij 7→
Tijσ , Tij−σ = δijT0), defines the Falicov-Kimball model
(FKM) [82]. As has been shown by Brandt and Mielsch
[83], in infinite dimensions the exact self-energy is given
by Eq. (23).

To get the high-energy expansion coefficients of the
AA self-energy, we insert the expansions (14) and (15)
into the CPA equation (21) and sort the different terms
in powers of 1/E. Considering all terms up to order
1/E2 yields the following set of equations:

1 =
∑

p

xpσ ,

0 =
∑

p

xpσ (Epσ − T0 − C(0)
σ ) ,

0 =
∑

p

xpσ

[
(Epσ − T0 − C(0)

σ )2M (0)
σ − C(1)

σ

]
,

0 =
∑

p

xpσ

[
(Epσ − T0 − C(0)

σ )3(M (0)
σ )2

+ (Epσ − T0 − C(0)
σ )2M (1)

σ

− 2(Epσ − T0 − C(0)
σ )C(1)

σ M (0)
σ − C(2)

σ

]
. (24)

Inserting the atomic levels and concentrations from (22)

as well as the exact low-order moments M
(0)
σ = 1 and

M
(1)
σ = T0 − µ+ Un−σ and solving for C

(m)
σ results in:

C(m,AA)
σ = C(m)

σ

∣∣∣
B−σ 7→T0

= C(m,H−I)
σ (25)

for m = 0 − 2. The high-energy expansion coefficients
of the AA self-energy turn out to be identical to the
coefficients within the H-I solution. Again the m = 2
coefficient is found to be incorrect.

B. Modified alloy-analogy (MAA)

Simply replacing T0 7→ B−σ in the CPA equation
(21) and in (22) does not yield the correct m = 2 co-
efficient since B−σ would cancel out again in Eqs. (24).
Another idea, however, turns out to be successful: The
choice (22) for the levels and concentrations is rather
obvious. On the other hand, it is by no means predeter-
mined. We therefore consider Epσ and xpσ (p = 1, 2) as

free parameters to be fixed by the Eqs. (24) where C
(m)
σ

and M
(m)
σ are taken to be the exact coefficients (16).

This automatically ensures the correctness of the mo-
ments up to m = 3 and thereby provides an “optimized”
alloy analogy. Solving Eqs. (24) for the parameters of
the fictitious alloy yields:

E(MAA)
pσ =

1

2
(T0 + U +B−σ) + (−1)p ×

√
1

4
(U +B−σ − T0)

2
+ Un−σ (T0 −B−σ)

(26)

and

x
(MAA)
1σ =

B−σ + U(1− n−σ)− E
(MAA)
1σ

E
(MAA)
2σ − E

(MAA)
1σ

= 1− x
(MAA)
2σ .

(27)
It turns out that this result is identical to the result
of the recently proposed modified alloy analogy (MAA)
[72, 73] where it was derived by referring to the split-
band regime [81] of the CPA.

Inserting the result into the CPA equation (21) yields
the MAA self-energy:

Σ(MAA)
σ (E) =

Un−σ

1 −
1
h̄Gσ(E)

(
U − Σ

(MAA)
σ (E)

)

1 − 1
h̄Gσ(E) (B−σ − T0)

. (28)
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One recognizes that the MAA reduces to the AA if B−σ

is replaced by T0. As can be seen from Eq. (10) this is
correct for the atomic limit and for the Falicov-Kimball
model. Just as the AA, the MAA therefore remains
exact within these two limits. It also reduces to the AA
for a paramagnet at half-filling with symmetric BDOS
where B−σ = T0 is required by particle-hole symmetry
[84].

V. ALLOY-ANALOGY-BASED
INTERPOLATION SCHEME

A severe drawback of the alloy-analogy solutions con-
sists in the fact that they are unable to reproduce the
weak-coupling limit. This defect can be eliminated if the
CPA equation is considered as a mere starting point for
a reasonable interpolation formula which is demanded
to be exact for small U as well as in the atomic limit
and in the case of the FKM.

Standard perturbation theory in the interaction U
[85] provides us with the exact result for the self-energy
in the weak-coupling regime. The first non-trivial per-
turbational result for the self-energy,

Σσ(E) = Un−σ +Σ(SOC)
σ (E) , (29)

beyond the Hartee term Un−σ is given by the second-
order contribution (SOC):

Σ(SOC)
σ (E) =

U2

h̄3

∫∫∫
A

(1)
σ (x)A

(1)
−σ(y)A

(1)
−σ(z)

E − x+ y − z
×

(f(x)f(−y)f(z) + f(−x)f(y)f(−z)) dx dy dz .

(30)

Here f(x) = 1/(exp(βx) + 1) denotes the Fermi func-

tion, and A
(1)
σ (E) is the free (U = 0) spectral density

being shifted in energy by a (possibly spin-dependent)
constant Eσ:

A(1)
σ (E) = A(0)

σ (E − Eσ) , (31)

with A
(0)
σ (E) = − 1

π ImGσ(E + i0+)|U=0. The plain or
conventional second-order perturbation theory (SOPT)
is recovered for Eσ = 0, and with Eσ = Un−σ one
obtains the SOPT around the Hartree-Fock solution
(SOPT-HF) [64, 86, 87]. To this end there is no need to
specify the constant Eσ. The expression (30) is correct
up to order U2 for any function Eσ = Eσ(U) with
Eσ(0) = 0.

A. Edwards-Hertz approach (EHA)

An interpolation scheme that is based on the alloy-
analogy idea but correctly accounts for the weak-coup-
ling limit, has been suggested by Edwards and Hertz
[67]. Within the Edwards-Hertz approximation (EHA)
the self-energy has to be calculated from [67, 68]:

Σ(EHA)
σ (E) =

Un−σ

1− 1
h̄ G̃σ(E) (U − Σ

(EHA)
σ (E))

. (32)

This differs from the conventional AA with respect to
the propagator G̃σ(E): The Green function Gσ(E) in
Eq. (23) is (ad hoc) replaced by

G̃σ(E) =
h̄

U2n−σ(1 − n−σ)
Σ(SOC)

σ (E−Σ(EHA)
σ (E)+Eσ),

(33)

where Σ
(SOC)
σ (E) is the second-order contribution to the

SOPT self-energy introduced in Eq. (30). A simple cal-
culation shows that the EHA reproduces the atomic and
the FKM limit for arbitrary band-fillings provided that
the shifts Eσ in the definition (31) of the spectral density

A
(1)
σ (E) and in Eq. (33) are determined self-consistently

from the condition:

nσ =

∫ ∞

−∞
f(E)Aσ(E) dE =

∫ ∞

−∞
f(E)A(1)

σ (E) dE .

(34)
This improvement upon the original theory [67] has been
introduced by Wermbter and Czycholl [68]. Expanding
the EHA self-energy in powers of U up to order U2, one
recovers the exact weak-coupling result (29).

The high-energy expansion is performed straightfor-
wardly. For the modified propagator one obtains:

1

h̄
G̃σ(E) =

1

E
+
(
B

(HF)
−σ − µ+ Un−σ

) 1

E2
+ · · · , (35)

where B
(HF)
σ is the Hartree-Fock decoupled Bσ defined

as:

B(HF)
σ = T0 +

2n
(1)
−σ − 1

n
(1)
σ (1− n

(1)
σ )

∑

j 6=i

Tij〈c†iσcjσ〉(1) (36)

and 〈c†iσcjσ〉(1) = − 1
h̄π

∫
dEf(E) Im Gijσ(E + i0+ −

Eσ)|U=0. With this result at hand, the high-energy ex-
pansion coefficients are obtained from Eq. (32):

C(m,EHA)
σ = C(m)

σ

∣∣∣
B−σ 7→B

(HF)

−σ

. (37)
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Again, the first two coefficients C
(0)
σ and C

(1)
σ are

predicted correctly while the m = 2 coefficient turns
out to be wrong. Only in the atomic and in the FKM
limit as well as for the symmetric case n = 1 we have

B−σ = B
(HF)
−σ = T0.

B. Interpolating alloy-analogy approach (IAA)

The EHA interpolation formula can be improved
such that the moments up to m = 3 are reproduced cor-
rectly: The interpolating alloy-analogy approach (IAA)
[24] starts from the CPA equation (21) with the Green

function replaced by the modified propagator G̃σ(E)
which is given by Eq. (33):

0 =

2∑

p=1

x(IAA)
pσ

E
(IAA)
pσ − Σσ(E)− T0

1− 1
h̄ G̃σ(E) [E

(IAA)
pσ − Σσ(E)− T0]

.

(38)
The high-energy expansion of this equation is then used
to determine the (unknown) atomic levels and concen-
trations. The only difference with respect to the ex-
pansion (24) of the general CPA equation is that the

coefficients M
(m)
σ for m = 0, 1 have now to be inter-

preted as the moments of the modified propagator. For
m = 0, 1 they can be read off from Eq. (35). Solving for
the unknowns yields the following result:

E(IAA)
pσ = T0 +

1

2

(
U +B−σ −B

(HF)
−σ

)
+ (−1)p ×

√
1

4

(
U +B−σ −B

(HF)
−σ

)2

+ Un−σ

(
B

(HF)
−σ −B−σ

)
,

x
(IAA)
1σ =

B−σ −B
(HF)
−σ + T0 + U(1− n−σ)− E

(IAA)
1σ

E
(IAA)
2σ − E

(IAA)
1σ

= 1− x
(IAA)
2σ . (39)

Inserting into (38) results in:

Σ(IAA)
σ (E) =

Un−σ

1 −
1
h̄ G̃σ(E)

(
U − Σ

(IAA)
σ (E)

)

1 − 1
h̄ G̃σ(E)

(
B−σ −B

(1)
−σ

)

. (40)

This differs from the MAA self-energy with respect
to the modified propagator; also T0 is replaced by

B
(HF)
−σ in (40). By construction the moments of the

spectral density are correct up to m = 3 in the IAA.

Furthermore, the theory is exact up to order U2 and in
the atomic and FKM limit.

VI. ITERATIVE PERTURBATION THEORY

While for the alloy-analogy-based theories the cor-
rect weak-coupling behavior has to be enforced artifi-
cially, it can be automatically accounted for within a
diagrammatic approach. Furthermore, a diagrammatic
ansatz appears to be attractive since it allows to con-
struct thermodynamically consistent theories which are
conserving in the sense of Kadanoff and Baym [88] and
thus respect Luttinger’s sum rule [89]. The simplest con-
serving approximation is given by Hartree-Fock theory.
It recovers the m = 0 and m = 1 moments only. One
additional moment (m = 2) is correct within the self-
consistent second-order perturbation theory (SC-SOPT)
[54, 56]. No improvement, however, is achieved by
higher-order conserving approximations: On the con-
trary, within the fluctuation-exchange approximation
(FLEX) [90] and also for its analogue in d = ∞ [55],
already the 1/E coefficient in the expansion of the self-
energy and thus the m = 2 moment turns out to be
incorrect.

The (non-conserving) SOPT around the Hartree-
Fock solution (SOPT-HF) [64, 86, 87] yields the correct
moments up to m = 1. For a paramagnet at half-filling,
however, the moments are correct even up to m = 3 (in
infinite dimensions). Furthermore, for t = 0 SOPT-HF
recovers the atomic-limit solution (8) and may thus pro-
vide a reasonable interpolation between the weak- and
the strong-coupling regime at n = 1.

In infinite dimensions the Hubbard model can be self-
consistently mapped onto the single-impurity Anderson
model (SIAM) [15, 16]:

HSIAM =
∑

σ

(ǫd − µ)c†σcσ +
∑

kσ

(ǫkσ − µ)a†kσakσ

+ Unσn−σ +
∑

kσ

Vkσ

(
c†σakσ + a†kσcσ

)
. (41)

The on-site Green function and the local self-energy of
the d = ∞ Hubbard model are identical with the im-
purity Green function and self-energy provided that the
conduction band dispersion ǫkσ and the hybridization
strength Vkσ in the SIAM are chosen such that the self-
consistency condition,

∆σ(E+µ) = E−(ǫd−µ)−Σσ(E)−h̄ (Gσ(E))
−1

, (42)
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for the hybridization function ∆σ(E) =
∑

k V
2
kσ/(E −

ǫkσ) is fulfilled.
Within the context of the symmetric single-impurity

Anderson model (SIAM), SOPT-HF has been recog-
nized to be quite well behaved [91]. Furthermore, as for
the Hubbard model, SOPT-HF respects the moment
sum rule up to m = 3 and the atomic limit of vanishing
hybridization. The so-called iterative perturbation
theory (IPT) [15] makes use of these advantages by
combining SOPT-HF for the SIAM with the self-con-
sistent mapping of the d = ∞ Hubbard model onto
the SIAM. Indeed, IPT yields convincing results as
has been proven by comparison with QMC studies
[42, 43, 44]. The advantageous properties of the IPT
are lost, however, if one considers the non-symmetric
case n 6= 1.

A. Kajueter-Kotliar approach (KK)

Kajueter and Kotliar [70] proposed an interpolating
ansatz for the self-energy of the SIAM which for arbi-
trary fillings is correct in the weak-coupling and the
atomic limit. For the symmetric case the Kajueter-
Kotliar approach (KK) reduces to the usual IPT. The
interpolative self-energy is given by:

Σσ(E) = Un−σ +
aσΣ

(SOC)
σ (E)

1− bσΣ
(SOC)
σ (E)

, (43)

where nσ = 〈c†σcσ〉 is the average occupancy of the im-

purity site and Σ
(SOC)
σ (E) the second-order contribution

within SOPT-HF for the SIAM. The coefficients aσ and
bσ as well as a fictitious chemical potential µ̃σ that ap-
pears in the definition of the Hartree-Fock spectral den-
sity [cf. Eq. (30)],

A(1)
σ (E) = − 1

π
Im

h̄

E + µ̃σ − ǫd −∆σ(E + µ)− Un−σ
,

(44)
are considered as free parameters. µ̃σ is fixed by requir-
ing µ = µ|U=0 + Σ(0), i. e. the Luttinger sum rule in
d = ∞ [54]. For any choice of aσ and bσ the first two
moments m = 0 and m = 1 are correct. Within the
KK approach, the parameters aσ and bσ are determined
from the moment sum rule for m = 2 and the exact
atomic-limit solution [70]. This yields:

aσ =
n−σ(1− n−σ)

n
(1)
−σ(1− n

(1)
−σ)

(45)

and

bσ =
U(1− 2n−σ) + µ̃σ − µ

U2n
(1)
−σ(1− n

(1)
−σ)

, (46)

where n
(1)
σ = h̄−1

∫
f(E)A

(1)
σ (E)dE.

This procedure, however, leads to an incorrect result
for the m = 3 moment. Inserting (45) and (46) into the
ansatz (43), expanding in powers of 1/E, and comparing
with the exact result (16), we have

C(m,KK)
σ = C(m)

σ

∣∣∣
B−σ 7→B

(HF)
−σ

(47)

up to m = 2. Here, within the context of the SIAM we
have introduced the following definitions:

Bσ = ǫd +
1

nσ(1 − nσ)

∑

k

Vkσ〈a†kσcσ(2n−σ − 1)〉 (48)

and

B(HF)
σ = ǫd +

2n
(1)
−σ − 1

n
(1)
σ (1 − n

(1)
σ )

∑

k

Vkσ〈a†kσcσ〉(1) (49)

which are related to the corresponding definitions for
the Hubbard model (10) and (36) by means of the self-
consistent mapping. As for the EHA the moment sum

rule for m = 3 is violated since generally B
(HF)
−σ 6= B−σ.

B. Modified perturbation theory (MPT)

It is possible to improve the Kajueter-Kotliar ap-
proach such that the moments up tom = 3 are recovered
correctly [23]. This constitutes the modified perturba-
tion theory (MPT) [25]. We start from the same ansatz
(43) for the self-energy of the SIAM. Contrary to the
KK approach, however, the parameters are fitted to the
m = 2 and the m = 3 moment. Using

Σ
(SOC)
dσ (E) =

U2n
(1)
−σ(1− n

(1)
−σ)

E

+
U2n

(1)
−σ(1− n

(1)
−σ)(B

(HF)
−σ − µ̃σ + Un−σ)

E2
+ · · · ,

(50)

the high-energy expansion of the ansatz (43) is easily
performed. Comparing with the exact result for the ex-
pansion coefficients in Eq. (16), we have to choose

bσ =
B−σ − µ−B

(HF)
−σ + µ̃σ + U(1− 2n−σ))

U2n
(1)
−σ(1− n

(1)
−σ)

(51)
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for the parameter bσ to ensure the correctness of the
moments. aσ is still given by Eq. (45).

We also modify the condition that fixes the param-
eter µ̃σ. Analogous to the condition (34) used in the
EHA and IAA, we demand:

n(1)
σ = nσ . (52)

Choosing µ̃σ to enforce the Luttinger theorem implies
the theory to be intrinsically limited to zero tempera-
ture. The condition (52) is less problematic. It also
allows to perform calculations at finite temperatures.
Numerical results for T = 0 have shown [25] that a sig-
nificant violation of the Luttinger sum rule occurs for
fillings that considerably differ from half-filling only.

The MPT reduces to the KK approach for the sym-
metric case of a paramagnet at half-filling and sym-

metric BDOS: Here we have B
(HF)
σ = Bσ = ǫd due

to particle-hole symmetry. For small U the MPT re-
covers the exact weak-coupling result up to order U2.
By construction the moment sum rule is obeyed up to
m = 3 which ensures the theory to be consistent with
the strong-coupling perturbational results of Harris and
Lange and also implies the validity of the MPT in the
atomic limit for arbitrary filling.

For the following discussion we refer to the KK
approach as the original approach of Ref. [70] but with
the Luttinger theorem replaced by Eq. (52) as the
condition to fix µ̃σ. This allows to compare the “KK”
approach with the MPT also for T 6= 0.

VII. RESULTS AND DISCUSSION

Numerical calculations have been performed for all
approaches that have been discussed in the preceding
sections. To study the effect of Bσ and the meaning of
the moment sum rule for the paramagnet, we consider
the hyper-cubic (hc) lattice in infinite dimensions. The
coordination number is Z = 2d. We take T〈ij〉 ≡ t =

t∗/
√
2Z (t∗ = const.) for the scaling of the hopping as

d 7→ ∞ [9]. The non-interacting Bloch density of states
(BDOS) is a Gaussian [9]:

ρ(B)(E) =
1

t∗
√
π
e−(E/t∗)2 . (53)

T0 ≡ Tii = 0 has been chosen to fix the energy zero.
We also consider a generalization of the d = 3 fcc

lattice to infinite dimensions [92] which favors ferromag-
netic order [48, 49]. The hopping is scaled as t = t∗/

√
Z

where Z = 2d(d− 1), and the BDOS reads:

ρ(B)(E) =
e−(1+

√
2E/t∗)/2

t∗
√
π(1 +

√
2E/t∗)

. (54)

Energy units are chosen such that t∗ = 1.

A. Paramagnet

Let us consider the hc lattice first. In a wide region
of the U -n plane the system is a paramagnetic Fermi liq-
uid. Near half-filling antiferromagnetic order is observed
[16, 21, 42, 43, 44, 47]. Saturated ferromagnetism can
be excluded completely [59] while non-saturated ferro-
magnetic order has been found recently for very strong
interaction U [53]. We will restrict our investigation for
the hc lattice to the paramagnetic phase only.

According to the results of Harris and Lange, the
first non-trivial effect of 1/U perturbation theory be-
yond the atomic limit consists in a specific shift of the
centers of gravity of the Hubbard bands. For the lower
one it is given by n−σB−σ. Fig. 1 shows this band
shift as a function of the filling n for the hc lattice
at finite inverse temperature β = 7.2 and at moder-
ate coupling strength U = 4 (the U dependence will
be discussed below). For each of the approaches that
obey the moment sum rule up to m = 3, the corre-
lation function B−σ (inset in Fig. 1) has been deter-
mined self-consistently via Eq. (18). Electron correla-
tions are meaningless for filling n = 0; consequently, the
band shift n−σB−σ vanishes. At half-filling n = 1 we
have n−σB−σ = 0 due to particle-hole symmetry. In-
between the band shift acquires positive values with a
maximum at n ≈ 0.5 − 0.75 depending on the approxi-
mation scheme considered. The typical size of the shift
(n−σB−σ ≈ 0.2) is significant compared with the vari-
ance ∆ = 1/

√
2 of the BDOS.

For the same set of parameters but with the filling
fixed at n = 0.79, Fig. 2 shows the quasi-particle den-
sity of states (DOS) Aσ(E). For the discussion of the
effects of the band shift we concentrate on the result for
the spectral-density approach (SDA) and the Hubbard-I
solution (H-I) first. Within the two-pole approaches the
DOS for U 7→ ∞ can be written in terms of the BDOS
as:

Aσ(E) = ρ(B)

(
E + µ− n−σB−σ

1− n−σ

)
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+ ρ(B)

(
E + µ− U − (1 − n−σ)B−σ

n−σ

)
, (55)

where B−σ 7→ T0 for the H-I solution. Comparing the
SDA with the H-I solution, the shift n−σB−σ of the
lower Hubbard band present in the SDA must be can-
celed exactly by a corresponding shift of the chemical
potential µ for a fixed filling n. Thus the small differ-
ences between SDA and H-I seen in the lower Hubbard
band exclusively result from the finite value for U and
will disappear for U 7→ ∞. On the other hand, the upper
Hubbard band is significantly shifted to higher energies
compared with the H-I solution. This effect persists also
for U 7→ ∞ where the energetic positions will differ by
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Fig. 1. Filling dependence of the shift n−σB−σ of the
center of gravity of the lower Hubbard band as obtained
self-consistently within the spectral-density approach (SDA),
the modified alloy analogy (MAA), the interpolating alloy-
analogy-based approach (IAA) and the modified perturba-
tion theory (MPT). Inset: filling-dependence of B−σ. Lower

panel: difference n−σ(B−σ −B
(HF)
−σ

) for the IAA and MPT.
Calculations for the d = ∞ paramagnetic Hubbard model
on the hc lattice at U = 4 and β = 7.2. The results are
symmetric to the n = 1 axis (half-filling). Energy units are
chosen such that t∗ = 1.

an amount (1− 2n−σ)B−σ.
Comparing the other pairs of approximation schemes

among each other, we notice similar qualitative effects.
Generally, the inclusion of B−σ in the theory results
in fairly small changes of the lower but in a significant
shift of the upper Hubbard band to higher energies (for
fixed n). For the MAA there is an additional change in
the peak heights compared with the AA. For the IAA
and the MPT the shift of the respective upper Hubbard
band against the EHA and the KK result turns out to
be much smaller when compared with the MAA/AA or
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Fig. 2. Density of states Aσ(E) as a function of energy for
the hc lattice at U = 4, n = 0.79 and β = 7.2 as obtained
within the Hubbard-I solution (H-I), the conventional alloy
analogy (AA), the Kajueter-Kotliar approach (KK) and the
Edwards-Hertz approach (EHA): dashed lines. Solid lines:
resulting DOS within the improved theories: SDA, MAA,
EHA and MPT. For comparison the numerically exact result
obtained within the Quantum Monte Carlo method (QMC)
by Jarrell and Pruschke [21] is shown.
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Fig. 3. Imaginary part of the self-energy as a function of
energy for the hc lattice at U = 4, n = 0.79 and β = 7.2.
Thin horizontal lines indicate Im Σ(E) = 0. Within the SDA
Im Σ(E) consists of a single delta peak only which is indi-
cated by a vertical solid line at the calculated energetic po-
sition (also for the MAA). For the IAA Im Σ(E) is always
finite, large (negative) values near E = 2.2 are not shown.

SDA/H-I. The reason is that within the EHA and the
KK approach the band shift is not neglected completely
(as for H-I and AA where n−σB−σ 7→ n−σT0), but is
taken into account on the Hartree-Fock level at least:
n−σB−σ 7→ n−σB

(HF)
−σ . Indeed, as is shown in the second

panel of Fig. 1, the difference n−σ(B−σ −B
(HF)
−σ ) as cal-

culated self-consistently within the IAA and the MPT is
considerably smaller than the difference n−σ(B−σ −T0)
relevant for the SDA and MAA.

Fig. 2 also shows the essentially exact result for
the DOS as obtained by Jarrell and Pruschke [21] by
means of the QMC method. One clearly recognizes the
two Hubbard bands which are well separated from each

other. The energetic difference is approximately given
by U . Additionally, in the vicinity of E = 0 there is a
rather sharp quasi-particle resonance which is reminis-
cent of the Kondo peak in the SIAM. All approximate
methods reliably reproduce the energetic positions as
well as the weights of the Hubbard bands. If at all,
there is only a slight improvement with respect to po-
sitions and weights when taking into account the corre-
lation function B−σ additionally. We can conclude that
in this respect and in the case of the paramagnet the
effects of B−σ are rather unimportant; considering the
moment sum rule does not help much to improve the
agreement with the QMC result.

Since quasi-particle damping is neglected completely
within the SDA, the Hubbard peaks turn out to be too
narrow. Furthermore, there is no additional structure
at E = 0. Obviously, the Kondo-type resonance cannot
evolve in a two-pole approach. Somewhat broader peaks
are predicted by the MAA; compared with the QMC
density of states, however, their width is still too small.
The IAA yields a considerable improvement. Yet, the
size of the Hubbard gap is underestimated, and only
a small asymmetry in the shape of the lower Hubbard
band hints towards the resonance. The MPT achieves a
reasonable agreement with the exact result. The Kondo-
type resonance is clearly visible but not as pronounced
as in the QMC spectrum.

Additional insight is provided by the imaginary part
of the retarded self-energy which is shown in Fig. 3. The
pole of the SDA self-energy (20) at E = B−σ + U(1 −
n−σ) − µ gives rise to a single delta peak in ImΣ(E),
which, however, is meaningless since it falls into the
Hubbard gap. Taking the imaginary part of the CPA
equation (21) at an energy E where ImG(E) = 0 (is
exponentially small), we obtain:

0 = ImΣσ(E)

2∑

p=1

xpσ∣∣1− 1
h̄Gσ(E)(Epσ − Σσ(E)− T0)

∣∣2 .

(56)
This implies that a finite imaginary part of the MAA
self-energy can be found in those energy ranges with
non-vanishing DOS only, except for the energy point at
which there is a zero of the denominator in Eq. (56).
Here we find a delta peak in ImΣ(E) again (vertical
line in Fig. 3). The delta peak does not contribute to
the damping of the DOS but acquires most of the weight.
This explains why the broadening of the Hubbard bands
is still underestimated by the MAA.
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In the IAA Gσ(E) is replaced by the modified propa-

gator G̃σ(E) which yields a considerably stronger quasi-
particle damping. We also note a small dip in the imag-
inary part of the IAA self-energy at E ≈ 0. This
tends to reproduce the correct Fermi-liquid behavior
ImΣ(E) ∼ E2 for T = 0. A T = 0 calculation, however,
shows ImΣ(0) 6= 0 at U = 4 and n = 0.79. Similar
to the EHA [67, 68], the IAA does not yield a Fermi
surface in wide regions of the U -n plane. Contrary, the
MPT self-energy always vanishes quadratically at E = 0
and T = 0. Fig. 3 also shows a more pronounced dip
in ImΣ(E) at E ≈ 0 in the finite-temperature MPT
result. Compared with the IAA, the damping effect is
of the same order of magnitude. In all cases the total
weight

∫
ImΣσ(E) dE is given by −πU2n−σ(1 − n−σ).

This follows directly from the high-energy asymptotics
of the self-energy (16).

There is a strong dependence of the band shift on
the interaction strength U . Fig. 4 shows B−σ as a func-
tion of U as resulting from the different approximation
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Fig. 4. U dependence of the correlation function B−σ (hc
lattice, n = 0.79, β = 7.2). For the IAA and the MPT

B
(HF)
−σ

is shown additionally.

schemes for n = 0.79 and β = 7.2. For large U the cor-
relation function B−σ becomes essentially independent
of U . Within all approaches this asymptotic behavior
is reached for U ≈ 4; for U > 4 there is a very slight
U dependence only. The asymptotic values predicted
by the SDA and the MAA are considerably larger than
those predicted by the IAA and MPT. Although the un-
derlying physical concepts are quite different, there is a
remarkable similarity between the results from the lat-
ter two approaches over the whole U range. For small
U the results are nearly identical (up to U ≈ 2). This
had to be expected since the IAA as well as the MPT
self-energies are correct up to order U2. Via Eq. (18)
this implies that B−σ(U) is exact in order U , i. e. at
U = 0 B−σ(U) starts with the correct slope within the
IAA and MPT. Of course, at U = 0 all approaches yield
the same value for B−σ.

For the IAA and the MPT Fig. 4 also shows the de-

pendence of B
(HF)
−σ on U . Within the IAA B

(HF)
−σ is given

by Eq. (36). The condition (34) that fixes the shifts Eσ

can be written as n
(1)
σ = nσ. It implies that n

(1)
σ as

well as 〈c†iσcjσ〉(1) are independent of U , and therefore

B
(HF)
−σ turns out to be a constant that depends of n and

β only. Analogously, due to the condition (52) there is

no U dependence of n
(1)
σ in the MPT. The hybridiza-

tion function ∆σ, however, does depend on U due to
the self-consistent mapping procedure. This leads to a
U dependence of the second factor in Eq. (49) and thus

of B
(HF)
−σ as can be seen in Fig. 4.
For all approaches considered here we did not

find ferromagnetic solutions on the hc lattice. We
calculated the uniform static susceptibility by applying
an infinitesimally small external field: χ = ∂m/∂H .
The susceptibility never diverged for U < 6. This is
consistent with the QMC results of Refs. [12, 65] and
also with the complete instability of the Nagaoka state
on the hc lattice [59]. Let us mention, however, that a
partially polarized ferromagnetic state has been found
recently for extremely strong interaction U [53].

B. Ferromagnetism

While the moment sum rule for m = 3 has turned
out to be of marginal importance for the paramagnetic
phase, it is much more decisive with respect to the pos-
sibility and the characteristics of ferromagnetic order.
This shall be elucidated by the following arguments:
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Firstly, ferromagnetism is a strong-coupling phe-
nomenon. We thus have to account for the Hubbard
splitting. It is a necessary condition for the evolution of
the Hubbard bands as U 7→ ∞, however, that the mo-
ment sum rule is obeyed up to m = 2 (see Ref. [33], for
example). This is achieved e. g. by the H-I and the AA
solution.

Secondly, within the H-I approach ferromagnetism
turns out to be rather unlikely. Ferromagnetic order
may be possible for small n only when there is a large
BDOS at the Fermi energy away from the band center
of gravity [2]. The AA solution is even more prohibitive
with respect to ferromagnetic order [93, 94]. The reason
[94] for this tendency to paramagnetism is that even
in a (possible) ferromagnetic phase, the band centers
of gravity Tpσ(k) of the majority and of the minority
electrons at each k point are equal: Tp↑(k) = Tp↓(k) for
both, the lower (p = 1) and the upper (p = 2) Hubbard
band. What is missing in the H-I and the AA approach
to get a stable and extended ferromagnetic phase, is the
possibility for a spin-dependent shift of the centers of
gravity of the Hubbard bands.

Thirdly, the possibility for a spin-dependent band
shift is not only required but in fact is predicted by
the 1/U perturbational approach of Harris and Lange
which is exact for U 7→ ∞: As is seen from Eq. (9),
the spin-dependent shifts of the lower and the upper σ
band are n−σB−σ and (1− n−σ)B−σ, respectively. The
higher-order correlation functions included in the defi-
nition (10) of B−σ open the channel for ferromagnetic
solutions in the Hubbard model.

Finally, as has been discussed in Sec. 2, the perturba-
tional results of Harris and Lange for the strong-coupling
regime can only be recovered if the moment sum rule is
respected up to m = 3.

It goes without saying that the 1/U perturbation
theory merely determines the global features of the
quasi-particle spectrum and abstracts from any internal
structure of the Hubbard bands which may be due to
damping effects or low-energy excitations, for example.
Indeed, in the preceding section we have seen that differ-
ent approximations yield rather different results even if
all respect the sum rule up to m = 3. Thus it has to be
expected that there is a dependence of the results on the
approximation used also in the case of the ferromagnet.

Our intention here is twofold: Firstly, as has been
noticed in the case of the paramagnet, conceptually im-
proving the method (SDA 7→ MAA 7→ IAA, MPT) also
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Fig. 5. Filling dependence of the Curie temperature TC for
the SDA (solid line) and H-I (dashed line) as well as for the
MAA (circles) in comparison with the QMC results (error
bars) by Ulmke [49] for the d = ∞ fcc-type lattice. (Within
the AA there is no ferromagnetic instability at all).

yields a closer agreement with the QMC results. This
will be checked for the ferromagnet, too. Secondly, com-
paring the results of different methods with each other
(H-I ↔ SDA, AA ↔ MAA, EHA ↔ IAA, KK ↔ MPT),
we are able to “switch on” and to “switch off” in a con-
trolled way the possibility for a spin-dependent band
shift that is given via B−σ. This will clarify whether
the concept of the spin-dependent band shift really helps
to understand ferromagnetism, i. e. whether the system
“uses” this possibility and “realizes” the spin-dependent
shift of the bands.

For the infinite-dimensional fcc-type lattice with the
BDOS given by Eq. (54), ferromagnetic order even oc-
curs at a moderate coupling strength U = 4 and extends
over a rather wide region in the n-T plane. This was
proven numerically within the QMC method by Ulmke
[49]. Due to the strong frustration of the fcc-type lat-
tice antiferromagnetic order is not expected. The highly
asymmetric BDOS (54) with its square-root singularity
at the lower band edge Eb = −1/

√
2 favors ferromag-
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Fig. 6. TC(n) as obtained within the IAA (solid line) and
the EHA (dashed line) compared with the QMC result [49].

netic order [48, 49, 95]. The QMC results of Ulmke [49]
are shown in Fig. 5. The filling-dependence of the Curie
temperature TC has been obtained from the zero of χ−1

which shows a linear Curie-Weiss behavior.
The high density of states at the lower band edge is

sufficient to produce stable ferromagnetism within the
H-I solution. The resulting filling dependence of TC is
shown in Fig. 5. The ferromagnetic region in the n-T
plane, however, is confined to very low densities only.
As mentioned this is known to be typical for the H-I
approach [2]. Contrary to the H-I solution, the SDA
allows for a spin-dependent band shift. Fig. 5 shows
that this leads to a considerable increase of the Curie
temperature. Furthermore, ferromagnetic solutions are
found for all fillings up to half-filling n = 1. These
effects of B−σ are much stronger than those found for
the paramagnetic phase.

At n = 0.58 and T = 0 the system is fully polarized
(m = n). The spin splitting of the center of gravity of
the lower Hubbard band amounts to n↑B↑ − n↓B↓ =
0.73. This has to be removed as T approaches the Curie
temperature while the Hubbard gap still exists above
TC . The spin splitting is considerably smaller compared
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Fig. 7. TC(n) as obtained within the MPT (solid line) and
KK (dashed line) compared with the QMC result [49].

with the exchange splitting Un↑ − Un↓ = 2.32 within
Hartree-Fock (Stoner) theory where correlation effects
are neglected altogether. Consequently, the SDA yields
a Curie temperature that is smaller by more than a fac-

tor 3: kBT
(SDA)
C = 0.19 and kBT

(Stoner)
C = 0.74 (at

n = 0.58, U = 4). The difference becomes larger and
larger with increasing U since as a function of U the
Curie temperature is unbounded in the Stoner theory
while it reaches saturation within the SDA [30]. The un-
realistically high Stoner Curie temperature results from
the necessity to bridge an exchange splitting of order U
by the thermal energy kBTC .

A spin-dependent band shift is also realized within
the MAA approach. Stable ferromagnetism is found for
fillings 0 < n < 1 (close to half filling we have not
succeeded to obtain truely converged numerical solu-
tions). Compared with the SDA, the Curie temperature
is significantly lower for all fillings. While the mecha-
nism leading to ferromagnetic symmetry breaking is the
same in the SDA and MAA, ferromagnetism is destabi-
lized to some extent by means of quasi-particle damping
(see also Ref. [72]). The broadening of the respective
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spin-dependent bands tends to enhance their overlap
and leads to a (self-consistent) depression of the mag-
netization and thereby of TC . The decisive meaning of
the m = 3 sum rule becomes most apparent when we
“switch off” the possibility of a spin-dependent band
shift, i. e. if we compare the MAA results with those of
the conventional AA. There is no ferromagnetic instabil-
ity at all in the AA as has been proven in Ref. [93] and
also tested numerically for the fcc-type lattice considered
here. Therefore, ignoring the possible spin-dependent
band shift n−σB−σ, misses the most important route to
ferromagnetic order.

Quasi-particle damping becomes stronger when turn-
ing from the MAA to the IAA. Again, we notice a consid-
erable decrease of the Curie temperature for all fillings.
Fig. 6 shows that the maximum TC in the IAA is less
than half of the maximum TC predicted by the MAA.
Moreover, the ferromagnetic region shrinks to n < 0.61.
Comparing with the EHA, we again notice that the
spin-dependent band shift induced by B−σ favors fer-

romagnetic order: Since B−σ is replaced by B
(HF)
−σ in

the EHA [cf. Eq. (37)], the EHA partially accounts for
the band shift. However, we find the spin splitting of

B−σ to be larger than that of B
(HF)
−σ . Consequently, TC

is enhanced in the IAA although the differences seen in
Fig. 6 are moderate compared with the cases H-I/SDA
and AA/MAA.

The same arguments hold for the MPT and the KK
approach: The spin splitting of the center of gravity

due to B
(HF)
−σ is somewhat smaller than that due to B−σ.

This implies a higher TC in the MPT compared with the
KK approach [see Eq. (47)]. The filling dependence of
TC is shown in Fig. 7. The differences between the KK
approach and the MPT are moderate again and compa-
rable to the EHA/IAA case. Once more, this suggests
a one-to-one correspondence between the critical tem-
perature and the band shift due to B−σ in the m = 3
moment.

For comparison we included the essentially exact
QMC result [49] for TC(n) in Figs. 5-7. While the Stoner
theory yields a Curie temperature that is by more than
one order of magnitude too high (see Ref. [95], for ex-
ample), realistic values are found by the approximations
discussed here. Even the simplest scheme consistent
with the requirements of Harris and Lange, the SDA,
considerably improves upon the Stoner result. A quan-
titative agreement with the essentially exact result, how-
ever, cannot be expected since damping effects are ne-

glected completely. A further improvement towards the
QMC result is achieved by the MAA which takes into
account a finite quasi-particle life time. Yet, the Curie
temperatures are systematically too high since damp-
ing effects are underestimated (cf. previous section and
Fig. 9). The correct order of magnitude for TC can only
be expected if (i) the theory respects the m = 3 sum rule
and (ii) realistically accounts for quasi-particle damping
as is done by the IAA and the MPT.

Fig. 8 focuses on the temperature dependence of the
magnetization at n = 0.58. The QMC data can be well
fitted to an S = 1/2 Brillouin-function. Extrapolation
to T = 0 yields m = n [49]. A fully polarized ground
state is also obtained by the SDA and MAA, the MPT
predicts a slightly lower m. The filling n = 0.58 is near

to the quantum-critical point n
(IAA)
c = 0.61 in the IAA

(cf. Fig. 6). Since phase transitions have been found to
be always of second order within the IAA, a partially

polarized ground state near n
(IAA)
c is plausible from the

result in Fig. 6. The vicinity to n
(IAA)
c = 0.61 may

also explain the non-Brillouin-function-like shape of the
magnetization curve. Fig. 8 shows second-order transi-
tions for the SDA, MAA and MPT at n = 0.58. De-
pending on the filling, however, all three methods may
also predict first-order transitions to the paramagnetic
phase. Non-continuous transitions are observed for fill-
ings larger than∼ nmax where nmax is the filling at which
TC reaches its maximum. For the MPT the change of
second-order into first-order transitions is marked by the
kink in the TC(n) curve at n = 0.67 (Fig. 7). While mag-
netic first-order transitions may seem to be implausible,
they cannot be ruled out by a rigorous argument. On
the other hand, we cannot strictly exclude that they are
artefacts of the approximations.

For the second-order transitions shown in Fig. 8 the
homogeneous, static susceptibility χ = ∂m/∂H |H=0

diverges at T = TC . Within all approaches consid-
ered χ obeys the Curie-Weiss law for high tempera-
tures. But also for temperatures close to TC we ob-
serve an almost linear trend of χ−1. This is consistent
with the QMC result. Note that the different slopes in
the plot result from the different Curie temperatures.
From χ = C/(kBT − kBΘ) we have calculated the (di-
mensionless) Curie constant C. For the paramagnetic
Curie temperature we have assumed Θ = TC except
for the IAA where kBΘ = 0.057 has been obtained by
extrapolation of the linear trend of χ−1 at high temper-
atures. The QMC value C = 0.47 is to be compared
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with C = 0.42, 0.52, 0.50, 0.57 for the SDA, MAA, IAA
and MPT, respectively.

Finally, we compare the spin-dependent spectral den-
sity as obtained by the approximate schemes with the
essentially exact QMC result. Fig. 9 shows Aσ(E) in
the ferromagnetic phase for σ =↑ (majority) and σ =↓
(minority spin) at U = 4 and n = 0.58. For a mean-
ingful comparison the respective temperature has been
chosen to yield a magnetization of m = 0.4. In the
SDA spectrum we recognize the large Hubbard split-
ting ∼ U and a much smaller additional spin splitting
for each of the two Hubbard bands. Furthermore, a
correlation-induced spin-dependent narrowing as well as
a spin-dependent weight of the subbands is observed.
All features agree qualitatively well with the predictions
of Harris and Lange which are valid for U 7→ ∞. A
more quantitative estimate shows up discrepancies with
respect to the positions and weights given by Eq. (9)
which are due to the moderate value assumed for U .

The shape of the peaks only slightly deviates from
the shape of the BDOS. This is an artefact resulting
from the complete disregard of quasi-particle damping.
Turning to the MAA spectrum, a broadening of the
peaks is introduced. Damping effects are even more
pronounced by the IAA and the MPT. This turns out
to be quite realistic when comparing with the QMC
spectrum which also shows up a considerable peak
broadening. In all approximations the spin-dependent
position and weight of the lower Hubbard band is well
reproduced, the position of the upper Hubbard band,
however, is shifted to higher energies compared with
the QMC spectrum. This indicates that for U = 4 the
interaction is not sufficiently strong to reproduce the
position resulting from the 1/U perturbation theory.
An additional peak in the σ =↑ as well as in the σ =↓
channel of the QMC spectrum shows up at E ≈ 0.8 the
physical origin of which is unclear. It is not reproduced
by the approximate methods. At E ≈ 0 there is also
a weak shoulder in the σ =↑ QMC spectrum. This is
clearly reproduced by the MPT; but also in the IAA
spectrum there is a (very weak) structure at E ≈ 0.
As for the paramagnet the peak is interpreted as a
Kondo-like resonance. It cannot show up in the ↓
spectrum, since the filling of the ↓ band is too small.

VIII. CONCLUSIONS

The present paper has discussed the moment sum

rule as a valuable source of a priori information on
the physical properties of strongly interacting lattice
fermion models. The analysis has been restricted to the
single-band Hubbard model in infinite dimensions since
this allows to compare with numerically exact solutions.
Here the reliability of approximate approaches as well
as the usefulness of the sum rule for practical improve-
ments can be estimated safely. The general trends that
show up for d = ∞ are expected to hold also for finite di-
mensions, where extensive use of the sum rule has been
made in the past. Let us briefly list up the conclusions
evolving from our analysis:

(i) The moment sum rule fixes the norm, the cen-
ter of gravity, the variance, etc. of the interacting spec-
tral density at each k point in the Brillouin zone. To
some extent this determines the “global” single-particle
excitation spectrum for arbitrary U . The sum rule is
of special conceptual importance in the strong-coupling
regime. We could argue that any approximation that
predicts the Hubbard splitting for U 7→ ∞ and that
yields the correct moments up to m = 3 is fully consis-
tent with the first non-trivial results of the perturbation
theory in 1/U by Harris and Lange. This includes im-
portant correlation effects such as the U , filling and spin
dependence of the centers of gravity, the widths and the
weights of the two Hubbard bands.

(ii) The high-energy expansion of the Green func-
tion and of the self-energy provides a practicable way
to check to which order m a particular approximation is
consistent with the sum rule. The majority of analyt-
ical but approximate approaches commonly used turn
out to be at variance with the sum rule for m = 3. We
considered four methods in detail: The Hubbard-I and
the Hubbard-III alloy-analogy solutions as well as the
Edwards-Hertz and the Kajueter-Kotliar approaches. In
each case the sum rule is fulfilled up to m = 2 only.

(iii) We have shown that the compatibility with the
m = 3 moment sum rule can be restored by slight mod-
ifications of the original methods. Starting from the H-I
and the conventional AA solution, this yields an opti-
mized two-pole and an optimized alloy-analogy approach
which turn out to be identical with the spectral-density
approach and the so-called modified alloy-analogy solu-
tion, respectively. Analogously, the interpolating alloy-
analogy-based approximation and the modified pertur-
bation theory evolve straightforwardly from the EHA
and the KK approach. We have checked that the ap-
plied modifications do not affect the validity of the orig-
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inal methods in exactly solvable limiting cases of the
Hubbard model.

(iv) All approximation schemes have been imple-
mented for numerical evaluation. We have presented
and discussed new results for correlation functions and
dynamical quantities which are directly compared with
essentially exact QMC results on the hyper-cubic and
an fcc-type lattice in infinite dimensions. We observed
that with increasing complexity (which is necessary to
recover an increasing number of exact limits) the agree-
ment with the QMC results is improved. This corrob-
orates the usefulness of an interpolative analytical ap-
proach to the Hubbard model.

In particular, we found it necessary to account for
damping effects in a realistic way: If most of the total
weight of the imaginary part of the self-energy does not
contribute to quasi-particle damping, as in the MAA
and more extremely in the SDA, the peak widths that
are obtained by QMC cannot be recovered. Compar-
ing the results of the different methods we also found
that quasi-particle damping has a destabilizing effect on
ferromagnetism which manifests itself in an overall de-
crease of the Curie temperature.

(v) Out of all approximation schemes considered
here, the modified perturbation theory turns out to be
most reliable. In the paramagnetic phase it correctly re-
covers the Kondo-type resonance, shows up the expected
Fermi-liquid properties and approximately fulfills the
Luttinger sum rule. The MPT yields the qualitatively
correct density of states in the weak- and intermediate-
coupling regime as confirmed by comparison with the
QMC results. At half filling the approach reduces to
the iterative perturbation theory (IPT) which is known
to yield a rather realistic description of the Mott tran-
sition. For the ferromagnetic phase the MPT is able
to predict the Curie temperature within an accuracy of
∼ 30%. Thereby, the MPT turns out to be superior com-
pared with the IAA. The main drawback of the latter
surely consists in its inability to predict a Fermi sur-
face in wide regions of the phase diagram. The same
defect is found in the MAA. However, the straightfor-
ward and physically well motivated concept of an “opti-
mized alloy-analogy” remains rather attractive. Finally,
the SDA is surely too simple to compete with the more
elaborate methods. On the other hand, its simplicity is
advantageous when a quick though rough estimation of
the magnetic phase diagram is required.

(vi) The comparative opposition of the different

methods has particularly shown the importance of the
m = 3 moment sum rule with respect to ferromag-
netism. While the differences between the methods
with and without regard of Bσ are unimportant or even
negligibly small for the paramagnetic phase, the cor-
relation function Bσ considerably affects the ferromag-
netic/paramagnetic phase boundary as well as the Curie
temperature. The effect is most striking when compar-
ing the AA, where ferromagnetic instabilities are ruled
out completely, with the MAA which yields a reasonable
dependence TC(n) for the fcc-type lattice and even over-
estimates TC . The reason is found in the term Bσ that
appears first in the expression for the m = 3 moment.
It opens the possibility for a spin-dependent shift of the
centers of gravity of the Hubbard bands. In the AA
and also in the H-I solution this is missing completely
(Bσ 7→ T0). In the EHA and the KK approach it is

only approximately accounted for (Bσ 7→ B
(HF)
σ ). Since

B
(HF)
σ is found to be too small in the EHA and the KK

approach, both methods yield a lowered TC .
From the recent QMC studies [21, 48, 49], in par-

ticular from Ref. [95], but also from variational results
[58, 59, 60], the importance of the lattice structure for
ferromagnetism well established. It is striking that all
presently considered approximations that account for
Bσ yield a ferromagnetic instability for the non-bipartite
fcc-type lattice while (at least up to U < 6) the param-
agnet is stable on the hc lattice. In Ref. [48] Vollhardt
et al. argue that a strongly asymmetric BDOS with high
spectral weight at the lower band edge favors ferromag-
netism because this minimizes the kinetic energy of the
fully polarized state. The shape of the non-interacting
BDOS is relevant since the ↑ DOS is unrenormalized if
n↑ = n < 1. If it is assumed that details of the BDOS are
not so relevant for the paramagnetic state where corre-
lation effects dominate, the ferromagnetic state becomes
energetically more favorable. Considering the moment
sum rule or, equivalently, the Harris and Lange results,
the argumentation can be refined: For the fully polar-
ized state the expression (10) for the band shift reduces

to (1 − n)nB↑ = −〈
∑

Tijc
†
i↑cj↑〉 = −Ekin. This implies

that a strong asymmetry of the BDOS not only mini-
mizes the kinetic energy (at a given filling n) but also
maximizes the shift n↑B↑ > 0 of the center of gravity
of the lower ↓ Hubbard band to higher energies. There-
with, the spin splitting n↑B↑ − n↓B↓ = n↑B↑ of the
lower Hubbard band becomes maximal which enhances
the stability (reduces the instability) of the fully polar-
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ized state. This mechanism is already present within the
simple SDA. While the approach overestimates the pos-
sibility for ferromagnetism, it predicts the correct trend
when comparing different lattices [22].

As an intermediate to strong-coupling phenomenon,
ferromagnetism in all its different aspects is hardly
amenable to a simple explanation. We feel, how-
ever, that by considering the spin-dependent band
shift appearing in 1/U perturbation theory and the
m = 3 moment one is able to capture some of the
essentials in a rather simple and physically intuitive way.
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[61] V. Janĭs and D. Vollhardt, Z. Phys. B 91, 317 (1993).
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