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Abstract—This paper presents a large scale longitudinal study
of the spatial and temporal features of malicious source addresses.
The basis of our study is a 402-day trace of over 7 billion Internet
intrusion attempts provided by DShield.org, which includes 160
million unique source addresses. Specifically, we focus on spatial
distributions and temporal characteristics of malicious sources.
First, we find that one out of 27 hosts is potentially a scanning
source among 232 IPv4 addresses. We then show that malicious
sources have a persistent, non-uniform spatial distribution. That
is, more than 80% of the sources send packets from the same 20%
of the IPv4 address space over time. We also find that 7.3% of
malicious source addresses are unroutable, and that some source
addresses are correlated. Next, we show that most sources have a
short lifetime. 57.9% of the source addresses appear only once in
the trace, and 90% of source addresses appear less than 5 times.
These results have implications for both attacks and defenses.

I. INTRODUCTION

With attack traffic on the rise, both defenders and attackers
have a keen interest in identifying networks and hosts that are
responsible for a significant portion of malicious activities or
expose vulnerabilities. For example, attackers can implement
a worm that propagates rapidly (e.g., hitlist-scanning worms
[11]) by focusing on hosts that are suspected to be vulnerable
to specific exploits. On the other hand, defenders can use
methods (e.g., blacklisting [7]) to filter out the traffic from
suspected malicious sources. Therefore, it is important to
understand the locations of malicious sources in the IPv4
address space and how the locations evolve over time.

Recently, Casado et al. proposed the use of spurious traffic
to gain insights on Internet measurements, such as the usage of
NATs and the bandwidth of worm victims [4]. Inspired by their
work, we analyze a large data set provided by DShield.org
[13] to gain a deeper understanding of the behaviors and
characteristics of sources that send malicious packets at Inter-
net scale. DShield aggregates firewall and intrusion detection
system logs from networks throughout the global Internet.
Each log entry provided by a network represents one or more
packets that violated a local rule. DShield transforms all of
the logs into a normalized form. Each entry in the DShield
trace includes: time-detected, submitter’s ID, count, source
IP, source port, destination IP, destination port, protocol-
exploited, and flags. The source IP can be used for identifying
a malicious/infected scanning source if the IP address is not
spoofed, and is thus a focus of this work. Broadly speaking,
the DShield trace provides a unique opportunity to extract the

spatial-temporal characteristics of attacking machines.
In general, malicious sources are compromised hosts that

can be either a part of IRC botnets or simply worm/virus
victims. IRC bots operating in DoS mode send out requests
to exhaust the resources on targets so that the targets cannot
response to normal requests. On the other hand, worm infected
systems constantly probe the Internet to find new vulnerable
hosts. Compromised hosts are also used for network recon-
naissance by scanning hosts to find available services or open
ports. The traffic of these attacking sources can potentially be
recorded by intrusion detection systems or firewalls. A subset
of these records are submitted to DShield on a daily basis.

The task of protecting networks from scans and attacks
has many significant challenges. First, there are no inherent
security mechanisms in the current Internet architecture, and
thus security must be implemented as a collection of “add-
on” capabilities. Next, the sophistication of attackers and the
code that they write is clearly on the rise [2], while the
common user is often left behind from a technology standpoint
- unable to decipher or keep up with good security practices.
Finally, the increasing complexity and constant change and
expansion in host and network technologies suggest that there
will be new vulnerabilities (including zero-day exploits) in
the foreseeable future. We believe that network-wide defenses,
such as distributed firewalls [6], offer an opportunity to address
these serious challenges, and thus understanding the details of
source IP address characteristics is an important step toward
making such systems viable.

In our prior work, a one-week DShield trace was used
to show that malicious source addresses are highly unevenly
distributed and form a relatively small number of tight clusters
[1][5]. Moreover, this clustering feature can be characterized
by a multiscale multiplicative innovations model and the Renyi
information entropy. It is unclear, however, whether the highly
uneven distribution of malicious sources is persistent over
time. Furthermore, it would be interesting to understand the
details of malicious source IP addresses in the small number
of tight clusters.

In this paper, we extend the prior work to study the spatial-
temporal characteristics of malicious sources in a greater detail
and a larger scale. We focus on the two behaviors of malicious
sources and attempt to answer the following questions:

• Spatial behavior: Is the distribution of malicious sources
non-uniform across the IP address space over a long time
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period? If so, which sub-networks are mainly responsible
for malicious hosts? What are the invariants of the spatial
distribution of malicious sources over time?

• Temporal behavior: How long are the lifetimes of
malicious source addresses?

We also explore the correlations between the above spatial
and temporal dimensions. We use the terminology “sources”
to denote IPv4 source addresses in our data set.

We use a 402-day trace from DShield.org that contains
over 7 billion Internet intrusion attempts. We extract and
analyze over 160 million unique source addresses from the
trace. The size of this trace presents significant challenges in
computation and analysis. The collected measurements form a
unique, high-dimensional time series. There are more than 400
million hosts in the Internet today. If each host is a probable
scanning source, the time series could have a dimension in
the order of hundred-million! In fact, our first discovery is
that 1 out of 27 host IP addresses is potentially a malicious
scan source. Furthermore, malicious sources can send scan
packets as frequently as tens per second. This can easily
result in tens or hundreds of Gigabytes for a week’s worth
of data. These measurements exhibit complex and dynamic
patterns as attacking sources are changing with time. All these
factors make it a daunting task for identifying the features of
malicious sources individually and in groups.

Our findings include the following observations: (a) Sources
have a persistent non-uniform spatial distribution. More than
80% of sources concentrate on the same 20% of the IPv4
address space over time. Moreover, the top 20 prefixes contain
16.27% distinct sources. (b) Under the current state of network
filtering, sources can still use IP spoofing techniques. For
example, 7.3% of sources are unroutable that may result
from IP spoofing. (c) Sources exhibit spatial correlations. For
example, some top 20 prefixes belong to the same AS domain.
(d) Most sources have a short lifetime. 57.9% of sources
appear only in one day among the 402-day trace, whereas
90% of sources appear less than 5 times. Only few sources
(0.04%) have a lifetime of no less than 100 days.

II. DATA SET

Our data set is obtained from DShield [13]. DShield collects
logs from firewalls and intrusion detection systems (IDS) from
approximately 2,000 organizations distributed throughout the
globe. The firewall/IDS platforms include BlackIce Defender,
CISCO PIX Firewalls, ZoneAlarm, Linux IPchains, Portsentry,
and Snort [12]. The logs are reported automatically by client
programs running on the submitting hosts, typically once per
hour. The objectives of the DShield are to provide aggregated
information to the community, detect and analyze new worms
and vulnerabilities, notify ISPs of exploited systems, publish
the blacklists of worst offenders, and send feedback to sub-
mitters to improve firewall/IDS configurations. Our data set is
a 402-day trace collected in the time period from Novem-
ber 10, 2004 to September 10, 20061. This trace contains

1Among these 670 days, 402-day data are available to us.
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(a) DShield records.
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(b) Unique source addresses.

Fig. 1. Numbers of records and unique sources over time. The y-axis uses
a log scale.

7,535,357,813 records. In these records, the total number of
distinct source addresses is 160,590,790, which is in the order
of 227. This suggests that one out of every 27 IP addresses
in IPv4 could be considered as a potential malicious source.
Hence, DShield observes a large number of IP addresses that
are potentially IRC bots, worm infected machines, scanners,
spoofed addresses, or other attacking hosts. A data set at such
a large scale presents significant challenges in computation and
analysis. For example, it took about a week for a computer
with high power processors just to identify unique source
addresses from the original data set.

Figures 1(a) and 1(b) show the numbers of records and
sources observed on a daily basis. Note that the y-axis uses a
log scale. The numbers of records are mostly in the order of
106 or 107, whereas for most days the numbers of sources
remain in the order of 105 or 106. This implies that the
appearance of sources is relatively consistent over time. It is
noted that day 451 (Feb. 04, 2006) and day 647 (Aug. 19,
2006) have a lot fewer records and sources than other days
and are likely to be caused by malfunctions in the DShield
data collection system.
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Fig. 2. CDF of sources of the entire trace in the IPv4 address space.

III. SPATIAL BEHAVIOR

In this section, we study the spatial behavior of sources. We
start from aggregated observations and then delve into finer
granularities.

1) Spatial Distribution: To quantify the distribution of
sources in IPv4 address space, we consider the cumulative
distribution function (CDF) of the distribution. Figure 2 shows
the CDF of unique sources of the entire trace (160,590,790
addresses) in the IPv4 address space. Since the curve in some
ranges of the IPv4 address space is much steeper than others,
the distribution of sources is highly uneven. That is, some
ranges of the address space contain a large number of sources.
For example, 60.0.0.0/8 ∼ 90.0.0.0/8 includes almost 50% of
sources, whereas 195.0.0.0/8 ∼ 220.0.0.0/8 holds about 35%
of attacking hosts.

Next, we study whether the source distribution varies signif-
icantly over time, i.e., individual days. To answer this question,
we randomly select 10 days among 402 days and plot the
distributions in these days in Figure 3. It can be seen that all
curves in Figure 3 are similar to the curve in Figure 2 and do
not vary significantly (similar characteristics were observed on
other days). This implies that the uneven spatial pattern could
be consistent across days.

2) 80-20 Rule: We further consider the uneven distribution
characteristics of sources in /16 clusters. Specifically, we
abstract 9 ranges of /16 subnets that account for a significant
number of sources and summarize them in Table I. These
subnets comprise 20% of all /16 subnets. Figure 4 plots the
percentages of sources in these /16 clusters over time. We
observe that except for day 4512, the percentages are larger
than 80%.

This observation is related to the well known 80-20 rule.
The 80-20 rule is also called the Pareto principle, the law of
the vital few, or the principle of factor sparsity [16]. This rule
states that for many phenomena, 80% of the consequences

2We believe that this may be a outlier, since this day (Feb. 04, 2006)
contains only 793 sources.
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Fig. 3. CDF of sources in IPv4 address space for 10 randomly chosen days.
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Fig. 4. Percentages of sources in /16 clusters over time.

stem from 20% of the causes. We find that the distribution of
sources is consistent with this rule: about 80% sources locate
in the same 20% IP address space over time.

TABLE I
9 RANGES OF /16 SUBNETS OR /16 CLUSTERS.

59.0.0.0/16 ∼ 72.57.0.0/16
80.0.0.0/16 ∼ 86.141.0.0/16

192.38.0.0/16 ∼ 196.204.0.0/16
198.53.0.0/16 ∼ 213.255.0.0/16
216.6.0.0/16 ∼ 222.253.0.0/16

4.0.0.0/8
12.0.0.0/8
24.0.0.0/8

172.0.0.0/8

3) Unroutable Sources: A domain may not be a /16 sub-
net. Thus, we continue our study by considering the source
distribution among prefixes. Specifically, we extract a list of
prefixes along with the corresponding ASes from the BGP
repository at Oregon route-views [15] on December 19, 2006.
The routing table contains 217,025 prefixes. We find that
among 160,590,790 sources, 11,722,206 (7.3%) of the IP
addresses do not match the corresponding prefixes, and are
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Fig. 5. CDF of unroutable sources in the IPv4 address space.

either truly unroutable or simply invisible from route-views.
If they are unroutable, it implies that some attacks still use the
IP spoofing techniques to hide the actual sources. We expect
this to be the case. These could be DoS attacks or simply
attacks for which a response is unnecessary. Figure 5 shows the
distributions of all sources, routable sources, and unroutable
sources. It is noted that the distributions of all sources and
routable sources are almost identical, while unroutable sources
are more evenly distributed than routable sources. The near-
linear curve of the CDF of the unroutable-source distribution
indicates that the spoofed addresses are relatively random. On
the other hand, some regions of IPv4 addresses have more
sources for both routable and unroutable sources, such as
65.0.0.0/8 ∼ 71.0.0.0/8 and 193.0.0.0/8 ∼ 220.0.0.0/8. One
possible reason is that attackers used the spoofed IP addresses
with the same short prefixes as the actual sources (like /8) to
avoid the outbound traffic filtering.

Hence, the passive measurements from DShield indicate that
IP spoofing techniques are still possible under the current state
of network filtering and are used by attackers. This observation
confirms the result in [3] based on active measurements.

4) Top 20 Prefixes: Based on the list of prefixes obtained
from the route-views repository on December 19, 2006, we
list the top 20 prefixes according to the number of sources in
Table II. For each prefix, we also record the corresponding AS
number, country, and ISP. The mapping from the IP prefix to
ISP is based on the ip2location tool [14]. It is noted that the
prefixes are not exclusive and some of them are overlapping,
such as 4.0.0.0/8 and 4.0.0.0/9. There are totally 26,135,555
(16.27%) sources in these top 20 prefixes. We observe that
among the top 20 prefixes, many of them are in the United
States. Also, except 38.0.0.0/8, these prefixes belong to /16
clusters shown in Table I. Moreover, we are surprised to find
that some top 20 prefixes belong to the same AS domain. For
example, 84.128.0.0/10, 80.128.0.0/11, and 217.224.0.0/11 are
in AS 3320. This demonstrates some degree of correlations
among sources.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Number of days

 P
er

ce
nt

ag
e 

of
 c

um
ul

at
iv

e 
un

iq
ue

 s
ou

rc
e 

ad
dr

es
se

s

(a) Number of days.

1 10 100 402
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 Times of appearance

 P
er

ce
nt

ag
e 

of
 c

um
ul

at
iv

e 
un

iq
ue

 s
ou

rc
e 

ad
dr

es
se

s

(b) Number of appearances. The x-axis uses a log scale.

Fig. 6. Percentage of cumulative unique sources.

IV. TEMPORAL BEHAVIOR

In this section, we study the lifetimes of all sources. We
plot the percentage of cumulative unique sources for the
entire trace in Figure 6. In Figure 6(a), the percentage of
cumulative unique sources increases with time almost linearly.
This indicates that each day DShield observes a large number
of new sources that have not been recorded in the previous
days. Figure 6(b) shows the number of appearances of unique
sources. To our surprise, most of the individual IP addresses
appear only a few times among 402 days. For example, 57.9%
of sources appear only once, whereas 90% of sources appear
less than 5 times. Only 0.04% sources have a lifetime of
no less than 100 days. Thus, sources demonstrate significant,
dynamic temporal behavior.

To further study the spatial-temporal behavior of sources,
we divide sources into three groups according to the lifetime:
a lifetime equal to 1; a lifetime in the range between 2 and
99; and a lifetime no less than 100. Figure 7 shows the spatial
distributions of these three groups. It is observed that about
60% of sources are in the ranges of 60.0.0.0/8 ∼ 90.0.0.0/8
for the group that has a lifetime between 2 and 99, and 50%
of sources are in the ranges of 195.0.0.0/8 ∼ 220.0.0.0/8 for
the group that has a lifetime of no less than 100.



TABLE II
TOP 20 PREFIXES.

IP prefix AS# # of sources Country ISP
210.0.0.0/8 7474 3643064 AU OPTUSONLINESERVICES-AP

84.128.0.0/10 3320 3115791 DE DEUTSCHE TELEKOM AG
61.0.0.0/8 4678 2359184 IN NATIONAL INTERNET BACKBONE

172.128.0.0/10 1668 2045237 US AMERICA ONLINE
4.0.0.0/8 3356 1961772 US LEVEL 3 COMMUNICATIONS INC

12.0.0.0/8 7018 1851807 US ATT LINCROFT ORT
65.128.0.0/11 209 1781094 US QWEST COMMUNICATIONS CORPORATION
65.192.0.0/11 701 1416188 US UUNET TECHNOLOGIES INC

38.0.0.0/8 174 1031860 US PERFORMANCE SYSTEMS INTERNATIONAL INC
80.128.0.0/11 3320 994636 DE DEUTSCHE TELEKOM AG

83.0.0.0/11 5617 956003 PL VOIP SERVICES BY POLISH TELECOM
82.224.0.0/11 12322 935487 FR PROXAD / FREE SAS
65.112.0.0/12 209 881941 US HARVARD UNIVERSITY

12.0.0.0/9 7018 760014 US ATT LINCROFT ORT
86.128.0.0/10 2856 742166 US BT-CENTRAL-PLUS

65.0.0.0/12 6389 737370 US BELLSOUTH.NET INC
4.0.0.0/9 3356 598696 US LEVEL 3 COMMUNICATIONS INC

81.128.0.0/11 2856 583225 UK BT-N3SP
217.224.0.0/11 3320 567963 DE DEUTSCHE TELEKOM AG
172.192.0.0/12 1668 530767 US AMERICA ONLINE
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Fig. 7. Spatial distributions of sources with different lifetimes.

V. CONCLUSIONS

In this paper, we study the spatial-temporal characteristics of
malicious sources at Internet. Our analysis is based on a huge
trace provided by DShield.org that describes the long-term
evolution of sources from a global viewpoint. We have focused
on the distributional characteristics of sources in IPv4 address
space and how actively a source sends malicious traffic in
time. Our study leads to some interesting observations, which
provide the implications on both attacks and defenses. For
instance, 20% of the IP address space that contains over 80%
of sources should be the focus for both attackers and defenders.
Furthermore, the information on the spatial distribution of
sources could be incorporated into the defense systems, such
as packet filtering [8].
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