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Background
The notions of BCK-algebras and BCI-algebras were introduced by Iséki and Iséki and 
Tanaka (1980, 1978). The class of BCK-algebras is a proper subclass of the class of BCI-
algebras. We refer useful textbooks for BCK-algebras and BCI-algebras (Lorgulescu 
2008); Meng and Jun (1994); Yisheng (2006). The notion of d-algebras which is another 
useful generalization of BCK-algebras was introduced by Neggers and Kim (1999), and 
some relations between d-algebras and BCK-algebras as well as several other relations 
between d-algebras and oriented digraphs were investigated. Several aspects on d-alge-
bras were studied (Allen et al. 2007; Han et al. 2010; Kim et al. 2012; Lee and Kim 1999; 
Neggers et al. 1999, 2000). Simply d-algebras can be obtained by deleting two identities 
as a generalization of BCK-algebras, but it gives more wide ranges of research areas in 
algebraic structures. Allen et al. (2007) developed a theory of companion d-algebras in 
sufficient detail to demonstrate considerable parallelism with the theory of BCK-alge-
bras as well as obtaining a collection of results of a novel type. Han et al. (2010) defined 
several special varieties of d-algebras, such as strong d-algebras, (weakly) selective 
d-algebras and pre-d-algebras, and they showed that the squared algebra (X ,�, 0) of a 
pre-d-algebra (X , ∗, 0) is a strong d-algebra if and only if (X , ∗, 0) is strong. Allen et al. 
(2011) introduced the notion of deformations in d / BCK-algebras. Using such deforma-
tions, d-algebras were constructed from BCK-algebras. Kim et al. (2012) studied proper-
ties of d-units in d-algebras, and they showed that the d-unit is the greatest element in 
bounded BCK-algebras, and it is equivalent to the greatest element in bounded commu-
tative BCK-algebras. They obtained several properties related with the notions of weakly 
associativity, d-integral domain, left injective in d-algebras also.

In this paper we construct some real algebras by using elementary functions, and dis-
cuss some relations between several axioms and its related conditions for such func-
tions. We obtain some conditions for real-valued functions to be a (edge) d-algebra.
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Preliminaries
A d-algebra  (Neggers and Kim 1999) is a non-empty set X with a constant 0 and a binary 
operation "∗" satisfying the following axioms:

(I)  x ∗ x = 0,
(II) 0 ∗ x = 0,
(III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

For brevity we also call X a d-algebra. In X we can define a binary relation "≤" by x ≤ y if 
and only if x ∗ y = 0.

An algebra (X , ∗, 0) of type (2,0) is said to be a strong d-algebra (Han et al. 2010) if it 
satisfies (I), (II) and (III∗) hold for all x, y ∈ X, where

(III∗)  x ∗ y = y ∗ x implies x = y.

Obviously, every strong d-algebra is a d-algebra, but the converse need not be true (Han 
et al. 2010).

Example 1 (Han et  al. 2010) Let R be the set of all real numbers and e ∈ R. Define 
x ∗ y := (x − y) · (x − e)+ e for all x, y ∈ R where "·" and "−" are the ordinary prod-
uct and subtraction of real numbers. Then x ∗ x = e; e ∗ x = e; x ∗ y = y ∗ x = e yields 
(x − y) · (x − e) = 0, (y− x) · (y− e) = 0 and x = y or x = e = y, i.e., x = y, i.e., (R, ∗, e) 
is a d-algebra.

However, (R, ∗, e) is not a strong d-algebra. If x ∗ y = y ∗ x ⇔ (x − y) · (x − e)+ e 
= (y− x) · (y− e)+ e ⇔ (x − y)·(x − e) = −(x − y)·(y− e) ⇔ (x − y)·(x − e + y− e)

= 0 ⇔ (x − y) · (x + y− 2e) = 0 ⇔ (x = y or x + y = 2e), then there exist x = e + α 
and y = e − α such that x + y = 2e, i.e., x ∗ y = y ∗ x and x �= y. Hence, axiom (III∗) fails 
and thus the d-algebra (R, ∗, e) is not a strong d-algebra.

A BCK-algebra is a d-algebra X satisfying the following additional axioms:

(IV) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(V) (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

Example 2 (Neggers et al. 1999) Let X := {0, 1, 2, 3, 4} be a set with the following table: 

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 3 0

3 3 3 2 0 3

4 4 4 1 1 0

 Then (X , ∗, 0) is a d-algebra which is not a BCK-algebra.

Let X be a d-algebra and x ∈ X. X is said to be edge if for any x ∈ X, x ∗ X = {x, 0}. It is 
known that if X is an edge d-algebra, then x ∗ 0 = x for any x ∈ X (Neggers et al. 1999).
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Analytic real algebras
Let R be the set of all real numbers and let “∗” be a binary operation on R. Define a map 
� : R × R → R. If we define x ∗ y := �(x, y) for all x, y ∈ R, then we call such a groupoid 
(R, ∗) an analytic real algebra.

Given an analytic groupoid (R, ∗), we define

We call tr(∗, �) a trace of �. Note that the trace tr(∗, �) may or may not converge. Given an 
analytic groupoid (R, ∗), where x ∗ y := �(x, y), if x ∗ x = 0 for all x ∈ R, then tr(∗, �) = 0, 
but the converse need not be true in general.

Example 3 Let x0 ∈ R. Define

Then tr(∗, �) =
∫∞

−∞
�(x, x) dx = 0, but �(x0, x0) = 1 �= 0, i.e., x0 ∗ x0 �= 0.

Proposition 4 Let (R, ∗) be an analytic real algebra and let a, b, c ∈ R, where 
x ∗ y := ax + by+ c for all x, y ∈ R. If |tr(∗, �)| < ∞, then tr(∗, �) = 0 and 
x ∗ y = a(x − y) for all x, y ∈ R.

Proof Given x ∈ R, we have x ∗ x = (a+ b)x + c . Since |tr(∗, �)| < ∞, we have  
|
∫∞

−∞
[(a+ b)x + c]dx| < ∞. Now 

∫ A
0
[(a+ b)x + c] dx = (a+ b)A

2

2
+ cA = A[ a+b

2
A+ c]  

for a large number A, so that if |tr(∗, �)| < ∞, then a+ b = 0 and c = 0, i.e., we have 
x ∗ y = a(x − y), and thus x ∗ x = 0 for all x ∈ R.  �

Theorem 5 Let a, b, c, d, e, f ∈ R. Define a binary operation "∗" on R by

for all x, y ∈ R. If |tr(∗, �)| < ∞ and 0 ∗ x = 0 for all x ∈ R, then x ∗ y = ax(x − y) for all 
x, y ∈ R.

Proof Given x ∈ R, we have x ∗ x = (a+ b+ c)x2 + (d + e)x + f . Let A := a+ b+ c , 
B := d + e. If we assume |tr(∗, �)| < ∞, then |

∫∞

−∞
(Ax2 + Bx + f ) dx| < ∞. Now 

∫ L
0
(Ax2 + Bx + f ) dx = A

3
L3 + B

2
L2 + fL = L(A

3
L2 + B

2
+ f ) for a large number L so that 

|tr(∗, �)| < ∞ implies A = B = f = 0, i.e., a+ b+ c = 0, d + e = 0, f = 0. It follows that

If we assume 0 ∗ x = 0 for all x ∈ R, then, by (1), we have

for all x ∈ R. This shows that c = d = 0. Hence x ∗ y = ax(x − y) for all x, y ∈ R. �

tr(∗, �) :=

∫ ∞

−∞

�(x, x) dx

�(x, x) =

{

0 if x �= x0,
1 otherwise

x ∗ y := ax2 + bxy+ cy2 + dx + ey+ f

(1)x ∗ y = (ax − cy+ d)(x − y)

0 = 0 ∗ x

= (a0− cx + d)(0− x)

= cx2 − dx,
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Corollary 6 Let a, b, c, d, e, f ∈ R. Define a binary operation “∗” on R by

for all x, y ∈ R. If  x ∗ x = 0 and 0 ∗ x = 0 for all x ∈ R, then x ∗ y = ax(x − y) for all 
x, y ∈ R.

Proof The condition, x ∗ x = 0 for all x ∈ R, implies |tr(∗, �)| < ∞. The conclusion fol-
lows from Theorem 5.  �

Proposition 7 Let a, b, c, d, e, f ∈ R. Define a binary operation “∗” on R by

for all x, y ∈ R. If |tr(∗, �)| < ∞ and the anti-symmetry law holds for “∗”, then 
(ax − cy+ d)2 + (ay− cx + d)2 > 0 for x �= y.

Proof If |tr(∗, �)| < ∞, then by (1) we obtain x ∗ y = (ax − cy+ d)(x − y). Assume 
the anti-symmetry law holds for “∗”. Then either x ∗ y �= 0 or y ∗ x �= 0 for x �= y. It fol-
lows that (x ∗ y)2 > 0 or (y ∗ x)2 > 0, and hence (x ∗ y)2 + (y ∗ x)2 > 0. This shows that 
(ax − cy+ d)2 + (ay− cx + d)2 > 0.  �

Note that in Proposition  7 it is clear that if (ax − cy+ d)2 + (ay− cx + d)2 > 0 for 
x �= y, then the anti-symmetry law holds.

Corollary 8 If we define x ∗ y := ax(x − y) for all x, y ∈ R where a �= 0, then (R, ∗) is a 
d-algebra.

Proof It is easy to see that x ∗ x = 0 = 0 ∗ x for all x ∈ R . Assume that x �= y. Since  
x ∗ y = ax(x − y) = ax2 − axy, by applying Proposition  7, we obtain b = −a, c = 0, 
d = e = f = 0. It follows that (ax − 0y+ 0)2 + (ay− 0x + 0)2 = a2x2 + a2y2

= a2(x2 + y2) > 0 when a �= 0. By Proposition 7, (R, ∗) is a d-algebra.  �

Proposition 9 Let a, b, c, d, e, f ∈ R. Define a binary operation “∗” on R by

for all x, y ∈ R. If |tr(∗, �)| < ∞ and x ∗ 0 = x for all x ∈ R, then x ∗ y = (1− cy)(x − y) 
for all x, y ∈ R.

Proof If |tr(∗, �)| < ∞, then by (1) we obtain x ∗ y = (ax − cy+ d)(x − y) for all 
x, y ∈ R. If we let y := 0, then x = x ∗ 0 = (ax + d)x. It follows that ax2 + (d − 1)x = 0 
for all x ∈ R. This shows that a = 0, d = 1. Hence x ∗ y = (1− cy)(x − y) for all x, y ∈ R . 
 �

Theorem 10 If we define x ∗ y := (ax − cy+ d)(x − y) for all x, y ∈ R where a, c, d ∈ R 
with a+ c �= 0, then the anti-symmetry law holds.

x ∗ y := ax2 + bxy+ cy2 + dx + ey+ f

x ∗ y := ax2 + bxy+ cy2 + dx + ey+ f

x ∗ y := ax2 + bxy+ cy2 + dx + ey+ f
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Proof Assume that there exist x �= y in R such that x ∗ y = 0 = y ∗ x. Then 
(ax − cy+ d)(x − y) = 0 and (ay− cx + d)(y− x) = 0. Since x �= y, we have

It follows that (a+ c)(x − y) = 0. Since a+ c �= 0, we obtain x = y, a contradiction.  �

Remark The analytic algebra (R, ∗), x ∗ y = ax(x − y) for all x, y ∈ R , 
was proved to be a d-algebra in Corollary  8 by using Proposition  7. Since 
x ∗ y = ax(x − y) = (ax − 0y+ 0)(x − y), we know that a+ 0 = a �= 0. Hence the alge-
bra (R, ∗) can be proved by using Theorem 10 also.

Note that the analytic real algebra (R, ∗) discussed in Corollary 8 need not be an edge 
d-algebra, since x ∗ 0 = ax(x − 0) = ax2 �= x.

Analytic real algebras with functions
Let α,β : R → R be real-valued functions. Define a binary operation “∗” on R by

where c ∈ R.

Proposition 11 Let (R, ∗) be an analytic real algebra defined by (3). If x ∗ x = 0 = 0 ∗ x 
for all x ∈ R, then x ∗ y = 0 for all x, y ∈ R.

Proof Assume that x ∗ x = 0 for all x ∈ R. Then

If we let x := 0, then c = 0. If x �= 0, then α(x)+ β(x) = 0, i.e., β(x) = −α(x) for all 
x �= 0 in R. It follows that

Assume 0 ∗ x = 0 for all x ∈ R. Then

It follows that β(x) = 0 for all x �= 0 in R. Hence we have x ∗ y = 0 for all x, y ∈ R.  �

Proposition 12 Let (R, ∗) be an analytic real algebra defined by (3). If x ∗ x = 0 and 
x ∗ 0 = x for all x ∈ R, then x ∗ y = x − y for all x, y ∈ R.

(2)ax − cy+ d = 0 = ay− cx + d

(3)x ∗ y := α(x)x + β(y)y+ c

0 = x ∗ x

= α(x)x + β(x)x + c

= [α(x)+ β(x)]x + c

(4)x ∗ y = α(x)x − α(y)y

0 = 0 ∗ x

= α(0)0+ β(x)x + c

= β(x)x
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Proof If we assume x ∗ x = 0 for all x ∈ R, then by (4) we obtain x ∗ y = α(x)x − α(y)y . 
Assume that x ∗ 0 = x for all x ∈ R. Then x = x ∗ 0 = α(x)x − α(0)0 = α(x)x. This 
shows that α(x) = 1 for any x �= 0 in R. Hence x ∗ y = x − y for all x, y ∈ R.  �

Let a, b1, b2, c, d, e : R → R be real-valued functions and let f ∈ R. Define a binary 
operation “∗” on R by

for all x, y ∈ R. Assume 0 ∗ x = 0 for all x ∈ R. Then

for all x ∈ R. It follows that f = 0 and c(x)x + e(x) = 0 for all x �= 0 in R. Hence 
c(y)y2 + e(y)y = 0 for all y ∈ R. Hence

Assume x ∗ x = 0 for all x ∈ R. Then by (6) we obtain

It follows that d(x)x = −[a(x)x2 + b1(x)b2(x)x
2]. By (6) we obtain

Theorem 13 Let b1, b2 : R → R be real-valued functions. Define a binary operation “∗”  
on R as in (7). If we assume b2(x)x �= b2(y)y and b21(x)x

2 + b21(y)y
2 > 0 for any x �= y in 

R , then (R, ∗) is a d-algebra.

Proof Assume the anti-symmetry law holds. Then it is equivalent to that if x �= y then 
x ∗ y �= 0 or y ∗ x �= 0, i.e., if x �= y then (x ∗ y)2 + (y ∗ x)2 > 0. Since x ∗ y is defined by 
(7), we obtain that if x �= y then

By assumption, we obtain that (R, ∗) is a d-algebra.  �

Example 14 Consider x ∗ y := ax(x − y) for all x, y ∈ R. If we compare it with 
(7), then we have b1(x) = a, b2(y) = −1 and b2(x) = −1 for all x ∈ R. This shows 
that b2(x)x − b2(y)y = (−1)x − (−1)y = y− x �= 0 when x �= y. Moreover, 
b21(x)x

2 + b21(y)y
2 = a2x2 + b21(y)y

2 > 0 since a �= 0. By applying Theorem  13, we see 
that an analytic real algebra (R, ∗) where x ∗ y := ax(x − y), a �= 0 is a d-algebra.

Example 15 Consider x ∗ y := x tan 2x[eyy− exx] for all x, y ∈ R. By comparing it 
with (7), we obtain b1(x) = tan 2x, b2(y) = ey and b2(x) = ex. If x �= y, then it is easy to 
see that xex �= yey and b21(x)x

2 + b21(y)y
2 = (tan 2x)2x2 + (tan 2y)2y2 > 0 when x �= y. 

(5)x ∗ y := a(x)x2 + b1(x)b2(y)xy+ c(y)y2 + d(x)x + e(y)y+ f

0 = 0 ∗ x

= c(x)x2 + e(x)x + f

= [c(x)x + e(x)]x + f

(6)x ∗ y = a(x)x2 + b1(x)b2(y)xy+ d(x)x

0 = x ∗ x

= a(x)x2 + b1(x)b2(x)x
2 + d(x)x

(7)x ∗ y = b1(x)x[b2(y)y− b2(x)x]

(b21(x)x
2 + b21(y)y

2)(b2(x)x − b2(y)y)
2 > 0
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Hence an analytic real algebra (R, ∗) where x ∗ y := x tan 2x[eyy− exx] is a d-algebra by 
Theorem 13.

In Theorem 13, we obtained some conditions for analytic real algebras to be d-alge-
bras. In addition, we construct an edge d-algebra from Theorem 13 as follows.

Theorem 16 If we define a binary operation “∗” on R by

where b1(x) is a real-valued function such that b1(y) �= 0 if y �= 0. Then (R, ∗) is an edge 
d-algebra.

Proof Define a binary operation “∗” on R as in (7) with additional conditions: 
b2(x)x �= b2(y)y and b21(x)x

2 + b21(y)y
2 > 0 for any x �= y in R. Assume x ∗ 0 = x for all 

x ∈ R. Then

Combining with (7) we obtain

If we let xy �= 0, then

If we let x ∗ y := x when y = 0, then (R, ∗) is an edge d-algebra.  �

Example 17 Define a map b1(x) := e�x for all x ∈ R. Then x ∗ y = x[1− e�x

e�y
]

= x(1− e�(x−y)) when y �= 0. If we define a binary operation “∗” on R by

then (R, ∗) is an edge d-algebra.

x ∗ y :=

{

x[1− b1(x)
b1(y)

] if y �= 0,

x otherwise

x = x ∗ 0

= b1(x)x[b2(0)0− b2(x)x]

= − b1(x)b2(x)x
2

x ∗ y = b1(x)b2(y)xy− b1(x)b2(x)x
2

= b1(x)b2(y)xy+ x

= x[b1(x)b2(y)y+ 1]

x ∗ y = x

[

b1(x)(−
1

b1(y)
)+ 1

]

= x

[

1−
b1(x)

b1(y)

]

x ∗ y :=

{

x(1− e�(x−y)) if y �= 0,

x otherwise,
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Proposition 18 If we define a binary operation “∗” on R by

where b1(x) is a real-valued function such that b1(y) �= 0 if y �= 0. Assume that if x �= y, 
then either b1(x ∗ y) = b1(x) or b1(x ∗ (x ∗ y)) = b1(y). Then

for all x, y ∈ R.

Proof By Theorem 16, (R, ∗) is an edge d-algebra and hence (8) holds for x ∗ y = 0 or 
y = 0. Assume x ∗ y �= 0 and y �= 0. Then

It follows that

proving the proposition.  �

Conclusions
We constructed some algebras on the set of real numbers by using elementary functions. 
The notions of (edge) d-algebras were developed from BCK-algebras, and widened the 
range of research areas. It is useful to find linear (quadratic) polynomial real algebras 
by using the real functions. In "Analytic real algebras" section, we obtained some linear 
(quadratic) algebras related to some algebraic axioms, and found suitable binary opera-
tions for (edge) d-algebras. In "Analytic real algebras with functions" section, we devel-
oped the idea of analytic methods, and obtained necessary conditions for the real valued 
function so that the real algebra is an edge d-algebra. We may apply the analytic method 
discussed here to several algebraic structures, and it may useful for find suitable condi-
tions to construct several algebraic structures and many examples.
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x ∗ y :=

{

x[1− b1(x)
b1(y)

] if y �= 0,

x otherwise

(8)(x ∗ (x ∗ y)) ∗ y = 0

x ∗ (x ∗ y) = x

[

1−
b1(x)

b1(x ∗ y)

]

(x ∗ (x ∗ y)) ⋆ y = [x ∗ (x ∗ y)]

[

1−
b1(x ∗ (x ∗ y))

b1(y)

]

= x

[

1−
b1(x)

b1(x ∗ y)

][

1−
b1(x ∗ (x ∗ y))

b1(y)

]

= 0,
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