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Abstract
The homogeneous balance of undetermined coefficients method is proposed to
obtain not only exact solutions but also multi-symplectic structure of some nonlinear
partial differential equations. Bilinear equation, N-soliton solutions, traveling wave
solutions and multi-symplectic structure are obtained by applying the proposed
method to the KdV equation. Accordingly, the definition and multi-symplectic
structure of the generalized KdV-type equation are given. The proposed method is
also a standard and computable method, which can be generalized to deal with
some types of nonlinear partial differential equations.
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1 Introduction
Nonlinear partial differential equations (NLPDEs) are used to describe a variety of phe-
nomena not only in physics, but also in several other fields.

The way to obtain the exact solutions of NLPDEs should be considered firstly for any
given NLPDEs. There are numerous powerful methods, such as the inverse scattering
method [], the homotopy perturbation method [], the first integral method [], the
( G′

G )-expansion method [, ], Hirota’s method [, ], the homogeneous balance method
[, ], the variational iteration method [], the tanh-sech method [], the modified sim-
ple equation method [], which can be used to construct the exact solutions of NLPDEs.

As is well known, for most of NLPDEs, it is difficult to obtain the exact solutions or
there is no exact solution. In these cases, it is natural to resort to the numerical meth-
ods. Analogous to the analytical methods, there are many numerical methods to solve
NLPDEs. However, considering the stability and effectiveness of numerical algorithms,
not all numerical methods can be used to solve NLPDEs []. Based on the basic rule that
all numerical methods should preserve the intrinsic properties of NLPDEs as much as
possible, a multi-symplectic algorithm for Hamiltonian PDEs was presented by Marsden
et al. [] who derived a numerical scheme from the Lagrangian formulation in first-
order field using a discrete variational principle. Bridges and Reich [, ] proposed
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multi-symplectic algorithms from Hamiltonian formalism. Bridges, Reich and Moore et
al. proposed multi-symplectic Runge-Kutta collocation scheme [], Euler box scheme,
Preissmen box scheme, explicit midpoint scheme, spectral discretization scheme for some
Hamiltonian PDEs [–]. Wang and Chen et al. developed multi-symplectic algorithms
[, , ]. Hu et al. proposed generalized multi-symplectic algorithms [–].

The above multi-symplectic algorithms for NLPDEs have been developed well. Long-
time numerical stability, high precision and preserving the intrinsic properties of NLPDEs
have been proved. Generally, for given NLPDEs, how to construct multi-symplectic struc-
ture of the NLPDEs is an important issue and a step to solve NLPDEs. Moreover, to our
knowledge, there are few methods which consider not only the exact solutions but also
the numerical solutions for given NLPDEs.

Based on these problems, a new method, which is called the homogeneous balance of
undetermined coefficients method, is used to construct not only the exact solutions but
also multi-symplectic structure for given NLPDEs.

To illustrate the validity of the proposed method, let us consider the celebrated KdV
equation in the form

ut + uux + δuxxx = , ()

where δ is a constant.
Firstly, the homogeneous balance of undetermined coefficients method is used to obtain

N-soliton solutions and traveling wave solutions of Eq. (). Secondly, we will construct
multi-symplectic structure of Eq. (). Thirdly, we will consider NLPDE

ut + f (u)ux +
(
g(ux)

)
xx = , ()

which is called generalized KdV-type equation with f and g being smooth functions. Fi-
nally, similar to constructed multi-symplectic structure of Eq. (), the multi-symplectic
structure of Eq. () is given.

The remainder of this paper is organized as follows: the homogeneous balance of unde-
termined coefficients method is described in Section . In Section , the proposed method
is used to obtain N-soliton solutions and traveling wave solutions of Eq. (). In Section ,
multi-symplectic structure of the KdV equation is given by the proposed method. In Sec-
tion , the definition of generalized KdV-type equation is given. Moreover, we construct
multi-symplectic structure of the generalized KdV-type equation. In Section , some con-
clusions are given.

2 Description of the homogeneous balance of undetermined coefficients
method

Let us consider a general NLPDE, say, in two variables

P(u, ut , ux, uxx, uxt , . . .) = , ()

where P is a polynomial function of its arguments, the subscripts denote the partial deriva-
tives. The homogeneous balance of undetermined coefficients method consists of three
steps.
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Step . Suppose that the solution of Eq. () is of the form

u = amn(ln w)m,n +
i=m,j=n∑

i,j=
i+j �=,m+n

aij(ln w)i,j + a, ()

where u = u(x, t), w = w(x, t), (ln w)i,j = ∂ i+j(ln w(x,t))
∂xi∂tj , m, n (balance numbers) and aij (i =

, , . . . , m; j = , , . . . , n) (balance coefficients) are constants to be determined later.
By balancing the highest nonlinear terms and the highest order partial derivative terms,

balance numbers are obtained. Substituting Eq. () into Eq. () and balancing the terms
with ( wx

w )i( wt
w )j yield a set of algebraic equations for balance coefficients.

Step . Solving the set of algebraic equations and simplifying Eq. (), we can get the
bilinear equation or homogeneous equation of Eq. () directly or after integrating some
times (generally, integrating times equals the orders of lowest partial derivative of Eq. ())
with respect to x, t.

Step . Generally, in order to obtain the exact solutions of Eq. (), there are two schemes
to deal with the bilinear equation or homogeneous equation of Eq. ().

(I) Applying the recursive method to the bilinear equation or homogeneous equation of
Eq. (), N-soliton solutions of Eq. () can be obtained.

(II) By using traveling wave transformations

w(x, t) = w(ξ ), ξ = x – Vt, ()

the bilinear equation or homogeneous equation of Eq. () satisfies the following ODE:

w′′ + λw′ + μw = , ()

where the prime denotes the derivation with respect to ξ and λ, μ and V are constants to
be determined later.

Substituting Eqs. () and () into the bilinear equation or homogeneous equation of Eq.
(), it is converted into the following equation:

lw + lww′ + lw′ = , ()

where l, l and l are polynomial functions of V , λ, μ.
Setting l = l = l =  yields a set of algebraic equations for V , λ, μ. Solving the set of

algebraic equations and using the solutions of Eq. (), w can be determined. Substituting
w into Eq. (), exact traveling wave solutions of Eq. () are obtained.

Next, we choose Eq. (), namely the KdV equation, to illustrate our method.

3 Application to the KdV equation
In this section, the method proposed in Section  is used to obtain N-soliton solutions
and traveling wave solutions of the KdV equation.

Suppose that the solution of Eq. () is in the form of Eq. (). Balancing uxxx and uux in
Eq. (), it is required that m +  = m + , n = n. Then Eq. () can be written as

u = a(ln w)xx + a(ln w)x + a, ()

where ai (i = , , ) are constants to be determined later.
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Substituting Eq. () into Eq. () and equating the coefficients of ( wx
w ) and ( wx

w ) on the
left-hand side of Eq. () to zero yield a set of algebraic equations for a and a as follows:

–a
 + δa = , aa – δa = .

Solving the above algebraic equations, we get a = δ, a = . Substituting a and a

back into Eq. (), we get

u = δ(ln w)xx + a, ()

where a is an arbitrary constant.
Substituting Eq. () into Eq. (), we get

δ(k + k + k) = , ()

where

k =
wxxt

w
–

wxwxt + wxxwt

w +
w

xwt

w , k = a

(
wxxx

w
–

wxxwx

w +
w

x
w

)
,

k = δ

(
wxxxxx

w
+

wxxxwxx – wxxxxwx

w +
wxxxw

x – wxw
xx

w

)
.

Simplifying Eq. () and integrating with respect to x once, we get

∂

∂x

(
(wxtw – wxwt) + δ(wxxxxw – wxwxxx + w

xx) + a(wxxw – w
x)

w

)
= . ()

Equation () is identical to

(wxtw – wxwt) + δ
(
wxxxxw – wxwxxx + w

xx
)

+ a
(
wxxw – w

x
)

– C(t)w = , ()

where C(t) is an arbitrary function of t.
Especially, taking C(t) as zero in Eq. (), we get the bilinear equation of Eq. ()

(wxtw – wxwt) + δ
(
wxxxxw – wxwxxx + w

xx
)

+ a
(
wxxw – w

x
)

= . ()

Equation () can be written concisely in terms of D-operator as

(
DxDt + δD

x + aD
x
)
w · w = , ()

where

Dm
x Dn

t a · b = (∂x – ∂x′ )m(∂t – ∂t′ )na(x, t)b
(
x′, t′)|x′=x,t′=t .

Remark  Applying Hirota’s method [] to Eq. (), the bilinear equation of Eq. () can be
written as

(
DxDt + δD

x
)
w · w = . ()
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Equation () is obtained by setting a =  in Eq. (). Obviously, Eq. () is a special case
of Eq. ().

(I) Now, by using the bilinear and recursive properties of Eq. (), N-soliton solutions
of Eq. () can be obtained.

Equation () can be written as

XTBX + YTFY = , ()

where X = (w, wx, wt , wxt)T, Y = (w, wx, wxx, wxxx, wxxxx)T and

B =

⎛

⎜⎜
⎜
⎝

   


  – 
 

 – 
  


   

⎞

⎟⎟
⎟
⎠

, F =

⎛

⎜⎜
⎜⎜⎜
⎜
⎝

  a
  δ


 –a  –δ 

a
  δ  
 –δ   
δ
    

⎞

⎟⎟
⎟⎟⎟
⎟
⎠

.

Obviously, hi = ePix–(aPi+δP
i )t+ξ

i (i = , , . . .) (Pi and ξ
i are arbitrary constants) are solu-

tions of Eq. (). Suppose that hi �= hj (i �= j; i, j = , , . . .). Setting

w =  + h, ()

it is easy to find that w is a solution of Eq. ().
Substituting w = w + h(, h)(, b)T (b is a constant to be determined) into Eq. ()

and using linear independence of functions , h, h, hh, we get

w =  + h + h + bhh, ()

where b = (P–P)

(P+P) .
Substituting w = w + h(, h, h, hh)(, b, b, b)T (b, b and b are constants

to be determined) into Eq. () and using linear independence of functions , h, h, h,
hh, hh, hh, hhh, we get

w =  + h + h + bhh + bhh + bhh + bhhh, ()

where

b =
(P – P)

(P + P) ,

b =
(P – P)

(P + P) ,

b = bbb =
(P – P)(P – P)(P – P)

(P + P)(P + P)(P + P) .

Similarly, wN can be obtained by recursiveness.
Substituting w, w, . . . , wN into Eq. (), N-soliton solution of Eq. () can be obtained.
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Remark  N-soliton solution of Eq. () can be obtained by applying the perturbation
method to Eq. (). Suppose that w can be expanded as follows:

w =  + εc + εc + · · · + εN cN + · · · , ()

where ε is a parameter and ci = ci(x, t) (i = , , . . .).
Substituting Eq. () into Eq. () and arranging it at each order of ε, we get

ε: Dx
(
Dt + aDx + δD

x
)
(c ·  +  · c) = ,

ε: Dx
(
Dt + aDx + δD

x
)
(c ·  + c · c +  · c) = ,

ε: Dx
(
Dt + aDx + δD

x
)
(c ·  + c · c + c · c +  · c) = ,

. . . .

The order-ε equation can be rewritten as a linear differential equation for c as follows:

∂

∂x

(
∂

∂t
+ a

∂

∂x
+ δ

∂

∂x

)
c = . ()

Solving Eq. (), we get

c = ePx–(aP+δP
 )t+ξ

i , ()

where P and ξ
 are arbitrary constants.

The coefficient of ε can be rearranged as follows:


∂

∂x

(
∂

∂t
+ a

∂

∂x
+ δ

∂

∂x

)
c = –Dx

(
Dt + aDx + δD

x
)
c · c. ()

Substituting Eq. () into Eq. (), the right-hand side of Eq. () equals zero. Therefore,
we can choose

c = . ()

Substituting Eqs. () and () into Eq. (), we get

w =  + ePx–(aP+δP
 )t+ξ

 , ()

where P and ξ
 are arbitrary constants.

If we choose w = ePx–(aP+δP
 )t + ePx–(aP+δP

)t in Eq. (), similar to the above pro-
cess, we can get

w =  + eη + eη +
(P – P)

(P + P) eη+η , ()

where ηi = Pix – (aPi + δP
i )t + ξ

i , Pi, ξ
i (i = , ) are arbitrary constants.

Substituting Eqs. () and () into Eq. (), -soliton and -soliton solutions of Eq. ()
can be obtained respectively.

Similarly, N-soliton solution of Eq. () can be obtained.



Yang et al. Advances in Difference Equations  (2015) 2015:271 Page 7 of 15

Comparing our method with the perturbation method, our method is simpler than the
perturbation method because of recursiveness.

Remark  Obviously, setting a =  in Eqs. (), () and (), -soliton, -soliton and
-soliton solutions of Eq. () are identical to Hirota’s results [].

Remark  By using the properties of D-operator [], a Bäcklund transformation of Eq.
() can be obtained as follows:

(
Dt + (a + α)Dx + δD

x
)
w∗ · w = ,

(
D

x – βDx – α
)
w∗ · w = ,

where w∗ and w satisfy Eq. (), and α, β and a are arbitrary constants.

(II) Now, we discuss the traveling wave solutions of Eq. () by using traveling wave trans-
formations.

Using transformations w(x, t) = w(ξ ), ξ = x – Vt, Eq. () is reduced to

(a – V )
(
w′′w – w′) + δ

(
w′′′′w – w′w′′′ + w′′) =  (a)

or

Y∗TF∗Y∗ = , (b)

where Y∗ = (w, w′, w′′, w′′′, w′′′′)T, the prime denotes the derivation with respect to ξ , and
V is a constant to be determined later, and

F∗ =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

  a–V
  δ


 V – a  –δ 

a–V
  δ  
 –δ   
δ
    

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

.

Noticing the bilinear property of Eqs. (a) and (b), w can satisfy the following ODE:

w′′ + λw′ + μw = , ()

where λ and μ are parameters.
Substituting Eq. () into Eqs. (a) and (b), we get

lw + lww′ + lw′ = , ()

where

l = μ
(
V – a + δ

(
μ – λ)), l = λ

(
V – a + δ

(
μ – λ)),

l = V – a + δ
(
μ – λ).
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Setting l = l = l =  yields a set of algebraic equations for V , λ, μ. Solving this set of
algebraic equations, we get

V = a + δ
(
λ – μ

)
, ()

where λ, μ and a are arbitrary constants. Substituting Eq. () into Eq. (), we get

u = –δ

(
w′

w
+

λ



)

+ δ
(
λ – μ

)
+ a. ()

Substituting the general solutions of Eq. () into Eq. (), we get three types of traveling
wave solutions of Eq. () as follows.

When λ – μ > ,

u(x, t) = u(ξ ) = –δA
(

Ce
√

A
 ξ – Ce–

√
A

 ξ

Ce
√

A
 ξ + Ce–

√
A

 ξ

)

+ δA + a, ()

where

A = λ – μ, V = a + Aδ, ξ = x – (a + Aδ)t, ()

λ, μ, C, C and a are arbitrary constants.
Taking C = C+C

 and C = C–C
 , Eq. () can be rewritten as

u(x, t) = u(ξ ) = –δA
(C sinh

√
A

 ξ + C cosh
√

A
 ξ

C cosh
√

A
 ξ + C sinh

√
A

 ξ

)

+ δA + a, ()

where C, C and a are arbitrary constants, A, V and ξ are given by Eq. ().
Especially, if |C

C
| < , then Eq. () is reduced to

u(x, t) = u(ξ ) = δAsech
(√

A


ξ + ξ

)
+ a, ()

where C, C and a are arbitrary constants, A, V and ξ are given by Eq. (), ξ =
arctanh C

C
.

When λ – μ < ,

u(x, t) = u(ξ ) = δA
(–C sin

√
–A
 ξ + C cos

√
–A
 ξ

C cos
√

–A
 ξ + C sin

√
–A
 ξ

)

+ δA + a, ()

where C, C and a are arbitrary constants, A, V and ξ are given by Eq. ().
Obviously, Eq. () can be written as

u(x, t) = u(ξ ) = δAsec
(√

–A


ξ + ξ

)
+ a, ()

where C, C and a are arbitrary constants, A, V and ξ are given by Eq. (), ξ =
– arctan C

C
.



Yang et al. Advances in Difference Equations  (2015) 2015:271 Page 9 of 15

When λ – μ = ,

u(x, t) = u(ξ ) = –δ

(
C

C + Cξ

)

+ a, ()

where V = a, ξ = x – at, C, C and a are arbitrary constants.
Comparing with the ( G′

G )-expansion method, ui(x, t) (i = , . . . , ) are identical to the re-
sults of using the ( G′

G )-expansion method. Our method is simpler than the ( G′
G )-expansion

method because our method preserves the intrinsic properties (e.g., symmetry and bilin-
earity) of the KdV equation. Moreover, N-soliton solution of the KdV cannot be obtained
by the ( G′

G )-expansion method because traveling wave transformation is used somewhat
early.

4 Multi-symplectic structure of the KdV equation
In this section, multi-symplectic structure of the KdV equation is given by using the results
of Section . Firstly, we quote the definition of multi-symplectic structure which is given
by Bridges and Reich [].

Definition  [] Let M and K be any skew-symmetric matrices on Rn (n ≥ ) and let S :
Rn → R be any smooth function. A system of the following form is a Hamiltonian system
on a multi-symplectic structure:

MZt + KZx = ∇ZS(Z), Z ∈ Rn, (x, t) ∈ R, ()

where the gradient ∇Z is defined with respect to the standard inner product on Rn, denoted
by 〈·, ·〉.

Given a PDE, how to determine Hamiltonian function S and state variable Z is key of
constructing multi-symplectic structure.

Consider Eq. (), setting a =  in Eq. () (see Section ) and substituting it into Eq. ()
yield

(ln w)xxt + δ(ln w)xx(ln w)xxx + δ(ln w)xxxxx = .

Integrating the above equation with respect to x once and setting integration constant to
zero yield

(ln w)xt + δ
(
(ln w)xx

) + δ(ln w)xxxx = . ()

Introducing a state variable Z∗ = ((ln w)x, (ln w)xx, (ln w)xxx, (ln w)xt)T, we have

MZ∗
t + KZ∗

x = H,

where

M =

⎛

⎜
⎜⎜
⎝

   
   
   
   

⎞

⎟
⎟⎟
⎠

, K =

⎛

⎜
⎜⎜
⎝

   
  –δ 
   
   

⎞

⎟
⎟⎟
⎠

,
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H =

⎛

⎜⎜⎜
⎝


δ((ln w)xx) + (ln w)xt




⎞

⎟⎟⎟
⎠

.

Noticing antisymmetry of state variable’s coefficient matrix, we have

MZ∗
t + KZ∗

x = H,

where

M =

⎛

⎜
⎜⎜
⎝

   
   
   
   

⎞

⎟
⎟⎟
⎠

, K =

⎛

⎜
⎜⎜
⎝

   
  –δ 
 δ  
   

⎞

⎟
⎟⎟
⎠

,

H =

⎛

⎜
⎜⎜
⎝


δ((ln w)xx) + (ln w)xt

δ(ln w)xxx



⎞

⎟
⎟⎟
⎠

.

Noticing (ln w)xx = ((ln w)x)x, we have

MZ∗
t + KZ∗

x = H,

where

M =

⎛

⎜⎜
⎜
⎝

   
   
   
   

⎞

⎟⎟
⎟
⎠

, K =

⎛

⎜⎜
⎜
⎝

   
  –δ 
 δ  
   

⎞

⎟⎟
⎟
⎠

,

H =

⎛

⎜⎜
⎜
⎝


δ((ln w)xx) + (ln w)xt

δ(ln w)xxx

(ln w)xx

⎞

⎟⎟
⎟
⎠

.

Noticing antisymmetry of state variable’s coefficient matrix, we have

MZ∗
t + KZ∗

x = H,

where

M =

⎛

⎜⎜⎜
⎝

   
   
   
   

⎞

⎟⎟⎟
⎠

, K =

⎛

⎜⎜⎜
⎝

   –
  –δ 
 δ  
   

⎞

⎟⎟⎟
⎠

,

H =

⎛

⎜
⎜⎜
⎝

–(ln w)xxt

δ((ln w)xx) + (ln w)xt

δ(ln w)xxx

(ln w)xx

⎞

⎟
⎟⎟
⎠
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or

MZ∗
t + KZ∗

x = H,

where

M =

⎛

⎜
⎜⎜
⎝

   
   
   
   

⎞

⎟
⎟⎟
⎠

, K =

⎛

⎜
⎜⎜
⎝

   –
  –δ 
 δ  
   

⎞

⎟
⎟⎟
⎠

,

H =

⎛

⎜
⎜⎜
⎝


δ((ln w)xx) + (ln w)xt

δ(ln w)xxx

(ln w)xx

⎞

⎟
⎟⎟
⎠

.

Noticing antisymmetry of state variable’s coefficient matrix, we have

MZ∗
t + KZ∗

x = H

or

MZ∗
t + KZ∗

x = ∇Z∗S
(
Z∗), ()

where

S
(
Z∗) = δ

(
(ln w)xx

) + (ln w)xx(ln w)xt + δ
(
(ln w)xxx

)

and

M =

⎛

⎜⎜
⎜
⎝

   
–   
   
   

⎞

⎟⎟
⎟
⎠

, K =

⎛

⎜⎜
⎜
⎝

   –
  –δ 
 δ  
   

⎞

⎟⎟
⎟
⎠

,

H =

⎛

⎜
⎜⎜
⎝


δ((ln w)xx) + (ln w)xt

δ(ln w)xxx

(ln w)xx

⎞

⎟
⎟⎟
⎠

.

Multiplying δ to Eq. () and noticing u = δ(ln w)xx, and introducing a state variable
Z = δZ∗ = (φ, u, v,ω)T, we have

⎛

⎜
⎜⎜
⎝

   
–   
   
   

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

φ

u
v
ω

⎞

⎟
⎟⎟
⎠

t

+

⎛

⎜
⎜⎜
⎝

   –
  –δ 
 δ  
   

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

φ

u
v
ω

⎞

⎟
⎟⎟
⎠

x

=

⎛

⎜
⎜⎜
⎝


u + ω

δv
u

⎞

⎟
⎟⎟
⎠



Yang et al. Advances in Difference Equations  (2015) 2015:271 Page 12 of 15

or

MZt + KZx = ∇ZS(Z), ()

where u = φx, v = ux, ω = φt and S(Z) = u

 + δv + uω.
Equation () is multi-symplectic structure of the KdV equation.
In summary, applying the homogeneous balance of undetermined coefficients method

to the KdV equation and noticing the differential linearity with respect to x, t on the left-
hand side of Eq. (), we get Eq. () which can inspire one how to define the state variable.
Then considering antisymmetry of state variable’s coefficient matrix and total differential
of Hamiltonian function, Eq. () is naturally obtained.

Remark  Similar to the above process, let f (y) = f (y(t)) be a smooth function on R, α, γ
(γ �= ) are constants and ÿ = dy

dt , the second-order ODE

αy +
∫

f (y) dy + γ ÿ = , ()

which has a compact form

AẎ = ∇YH(Y), ()

with Y = (ϕ, y,ν,ρ)T, H(Y) = 
∫∫

f (y) dy + ρy + γ ν and

A =

⎛

⎜
⎜⎜
⎝

 α  –
–α  –γ 
 γ  
   

⎞

⎟
⎟⎟
⎠

.

In fact, introducing y = ϕ̇, ν = ẏ, ρ = αy, Eq. () can be stated as a system of first-order
equations such that

αẏ – ρ̇ = , (a)

–αϕ̇ – γ ν̇ = 
∫

f (y) dy + ρ, (b)

γ ẏ = γ ν, (c)

ϕ̇ = y, (d)

which is equivalent to Eq. ().
It is easily seen by noting that

d
dt

H(Y) =
(∇YH(Y)

)TẎ = –ẎTAẎ = , ()

because A is a skew-symmetric matrix. Thus, H is constant along trajectories, and this
implies conservation of total energy.

Assuming ψt(Y) is the time t flow map of Eq. (), we get the variational equation

d
dt

(∂Yψt) = A–HYY∂Yψt , ()
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which implies

d
dt

(
(∂Yψt)TA(∂Yψt)

)
=

(
d
dt

(∂Yψt)
)T

A(∂Yψt) + (∂Yψt)TA
(

d
dt

(∂Yψt)
)

= (∂Yψt)THYYA–TA(∂Yψt) + (∂Yψt)TAA–HYY(∂Yψt)

= –(∂Yψt)THYY(∂Yψt) + (∂Yψt)THYY(∂Yψt) = . ()

Equations () and () are similar to the properties of symplectic structure.

5 Multi-symplectic structure of the generalized KdV-type equation
In this section, the definition of generalized KdV-type equation and its multi-symplectic
structure are given respectively.

Definition  Let u, f and g be smooth functions on R, PDE

ut + f (u)ux +
(
g(ux)

)
xx = , ()

is called the generalized KdV-type equation.

When f (u) = u and g(ux) = δux, Eq. () is the KdV equation. When f (u) = α +βuλ +γ uλ

and g(ux) = δux, Eq. () is the generalized KdV-mKdV equation

ut +
(
α + βuλ + γ uλ

)
ux + δuxxx = , ()

where α, β , γ and λ are known constants. Equation () has applications in a variety of
areas such as fluid mechanics, quantum and crystal lattice theory. Obviously, the KdV
equation and the KdV-mKdV equation are special cases of Eq. (). Moreover, Eq. ()
has multi-symplectic structure. Now, we construct multi-symplectic structure of Eq. ().

Similar to Section , setting u = φx, Eq. () becomes

φxt + f (φx)φxx +
(
g(φxx)

)
xx = . ()

Integrating the above equation with respect to x once and setting integration constant to
zero yield

φt +
∫

f (φx) dφx +
(
g(φxx)

)
x = . ()

Introducing u = φx, v = ux, ω = φt , σ = g(φxx) = g(v), Eq. () can be stated as a system of
first-order equations such that

–φt – σx = 
∫

f (u) du + ω, (a)

ut – ωx = , (b)

φx = u, (c)

ux = v, (d)

 = σ – g(v). (e)



Yang et al. Advances in Difference Equations  (2015) 2015:271 Page 14 of 15

This is equivalent to a multi-symplectic structure as follows:

MZt + KZx = ∇ZS(Z), ()

where Z = (u,φ,ω,σ , v)T, S(Z) = uω + σv – 
∫

g(v) dv+
∫∫

f (u) du and

M =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

 –   
    
    
    
    

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

, K =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

   – 
  –  
    
    
    

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

.

Taking f (u) = u and g(v) = g(ux) = δux, Eq. () is reduced to Eq. (). Obviously, taking
f (u) = α + βuλ + γ uλ and g(ux) = δux, multi-symplectic structure of the generalized KdV-
type equation is reduced to multi-symplectic structure of the generalized KdV-mKdV
equation.

Remark  From Eq. (), by using Lagrangian density, covariant Legendre transformation
and covariant Hamiltonian [], one can also get Eq. (). The process is more tedious than
our method.

For a given NLPDE, once its multi-symplectic structure is obtained, some algorithms
which show long-time numerical stability, high precision and preserve the intrinsic
properties of NLPDE such as multi-symplectic Runge-Kutta collocation scheme, Euler
box scheme, Preissmen box scheme, explicit midpoint scheme, spectral discretizations
scheme, can be easily applied to NLPDE.

6 Conclusions
The homogeneous balance of undetermined coefficients method is successfully used to
establish the exact solutions and multi-symplectic structure of NLPDEs. Bilinear equa-
tion or homogeneous equation, N-soliton solutions, traveling wave solutions and multi-
symplectic structure are obtained respectively by applying the proposed method to the
KdV equation. Accordingly, the definition and multi-symplectic structure of the gener-
alized KdV-type equation are given. Many well-known NLPDEs can be handled by this
method. The performance of this method is found to be simple and efficient. The avail-
ability of computer systems like Maple facilitates the tedious algebraic calculations. The
homogeneous balance of undetermined coefficients method is also a standard and com-
putable method, which allows us to solve complicated and tedious algebraic calculations.
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