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Abstract
In this paper, we provide uniform design and analysis framework for iterative learning
control of a class of impulsive first-order distributed parameter systems in the time
domain. In particular, P-type and D-type iterative learning controls with initial state
learning are considered. We present convergence results for open-loop iterative
learning schemes in the sense of the Lp-norm and λ-norm, respectively. Finally, an
example is given to illustrate our theoretical results.
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1 Introduction
In , Arimoto et al. [] propose basic theories and algorithms on iterative learning con-
trol (ILC) and point out that ILC is a useful practical control approach for systems which
perform tasks repetitively over a finite time interval. The performance improvement can
be made step by step, and the output trajectory can be realized to track the desired one,
through updating the input signal by the error data. Through three decades of study and
development, one has achieved significant progress in both theories and applications, and
become one of the most active fields in intelligent control. For more details on the contri-
butions for linear and nonlinear ordinary differential equations, the reader is referred to
the monographs [–], and [–].

The issue on designing and analyzing an ILC for impulsive differential equations, dis-
continuous systems [, ], distributed parameter systems or PDEs has not been fully
investigated, and only a limited number of results [–] are available so far. In [], Liu
et al. explore P-type iterative learning control law with initial state learning for impulsive
ordinary differential equations to tracking the discontinuous output desired trajectory. In
[], Xu et al. study P-type and D-type ILC for linear first-order distributed parameter sys-
tems in the sense of the sup-norm. In [], Huang and Xu apply a P-type steady-state ILC
scheme to the boundary control of PDEs. In [], Huang et al. construct a uniform design
and analysis framework for iterative learning control of linear inhomogeneous distributed
parameter systems.

When dealing with impulsive distributed parameter systems, the ILC design and prop-
erty analysis become far more challenging. The existing ILC design and analysis should be
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improved. The main objective of this paper is extended [] to a study of the ILC for im-
pulsive nonlinear first-order distributed parameter systems with initial error in the sense
of the λ-norm (the symbol of λ-norm is introduced by Arimoto et al. []; cf. [] and [])
via semigroup theory.

This paper is a continuation of our recent related papers [, ]. The main contributions
of the paper are summarized as follows.

(i) A uniform design and analysis framework is presented for ILC of a class of impulsive
first-order distributed parameter systems in the time domain. Nevertheless, [] consider
the ILC of impulsive ordinary differential equations in finite dimensional spaces.

(ii) Instead of considering ILC of linear first-order distributed parameter systems with-
out initial error as in [], we consider a class of impulsive nonlinear first-order distributed
parameter systems with initial error and more general discontinuous output tracking
problem.

(iii) Instead of simplifying ILC updating law without initial state learning as in [], we
consider ILC updating law with initial state learning.

(iv) Instead of choosing the sup-norm as in [], we use the Lp-norm and λ-norm, re-
spectively.

2 System description and problem statement
Denote J := [, a] and let X, U and Y be three Hilbert spaces. We study ILC of the following
impulsive nonlinear first-order distributed parameter systems:

{
ẋk(t) = Axk(t) + f (t, xk(t)) + Buk(t), t ∈ J\D, k ∈N,
xk(t+

i ) = xk(t–
i ) + gi(xk(ti)), i ∈M,

()

and output equation

yk(t) = Cxk(t) + Duk(t), t ∈ J , ()

where k denotes the iterative times, xk is the state variable at the kth iteration, uk is the con-
trol input at the kth iteration, yk is the system output at the kth iteration,D := {t, t, . . . , tm},
M := {, , . . . , m}, xk : [, a] → X, uk : [, a] → U , yk : [, a] → Y . The linear unbounded
operator A is the infinitesimal generator of a C-semigroup T(t), t ≥  in X, B is a bounded
linear operator from U to X, i.e., B ∈ L(U , X), C is a bounded linear operator from X to Y ,
i.e., C ∈ L(X, Y ), and D is a bounded linear operator from U to Y , i.e., D ∈ L(U , Y ). The
nonlinear terms f : J × X → X and gi : X → X will be specified later. We have the im-
pulsive time sequences {ti}i∈M satisfying  = t < t < t < · · · < tm < tm+ = a. The jumps
xk(t–

i ) := limε→– xk(ti + ε) and xk(t+
i ) := limε→+ xk(ti + ε) represent the left and right limits

of xk(t) at t = ti, respectively.
Denote PC(J , X) := {x : J → X : x, continuous at t ∈ J\D, and x is continuous from the

left and has right hand limits at t ∈D} endowed with the λ-norm ‖x‖λ = supt∈J e–λt‖x(t)‖X

for some λ > . Define Lp(J , X) := {x : J → X is strongly measurable :
∫ a

 ‖x(s)‖p
X ds < ∞},

endowed with the norm ‖x‖Lp = (
∫ a

 ‖x(t)‖p
X dt)


p , p ∈ (,∞). Obviously, (PC(J , X),‖ · ‖λ)

and (Lp(J , X),‖ · ‖Lp ), p ∈ (,∞) are Banach spaces.
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By a PC-mild solution of () with initial value x() = x ∈ X, we mean the function xk ∈
PC(J , X) can be rewritten as the following expression []:

xk(t) = T(t)x +
∫ t


T(t – s)

[
f
(
s, xk(s)

)
+ Buk(s)

]
ds

+
∑

<tj<t

T(t – tj)gj
(
xk(tj)

)
, t ∈ J . ()

By adopting the same methods as in [], Theorem ., one can obtain the existence
and uniqueness of a mild solution of () with x() = x when f and gi satisfy the standard
Lipschitz conditions.

Submitting () into (), we have

yk(t) = CT(t)x +
∫ t


CT(t – s)

[
f
(
s, xk(s)

)
+ Buk(s)

]
ds

+
∑

<tj<t

CT(t – tj)gj
(
xk(tj)

)
+ Duk(t), t ∈ J .

Let yd(·) be the desired trajectory. Denote �uk := uk+(t) – uk(t), �xk := xk+(t) – xk(t),
and ek(t) := yd(t) – yk(t) where k represents the iteration index. Consider the open-loop
P-type ILC updating law with initial state learning:

{
xk+() = xk() + Lek(),
uk+(t) = uk(t) + γek(t),

()

and the open-loop D-type ILC updating law with initial state learning:

{
xk+() = xk() + Lek(),
uk+(t) = uk(t) + γėk(t),

()

where L, L ∈ L(Y , X) and γ,γ ∈ L(Y , U) are unknown parameters to be determined.
Concerning the system (), we will design P-type and D-type iterative learning schemes

to generate the control input uk(·) such that the system piecewise continuous output yk(·)
tracks the discontinuous desired output trajectory yd(·) as accurately as possible as k → ∞
for t ∈ J in the sense of suitable norms. We shall give two convergence results for open-
loop iterative learning schemes in the sense of the Lp-norm and λ-norm, respectively, in
the next sections.

3 Convergence results for P-type ILC updating law
We need the following assumptions:

(H) A: D(A) ⊆ X → X is the generator of a C-semigroup T(t), t ≥  on X . Denote M :=
supt∈J ‖T(t)‖L(X,X).

(H) f : J × X → X is strongly measurable for the first variable and continuous for the
second variable. Moreover, there exists a Lf >  such that

∥∥f (t, u) – f (t, v)
∥∥

X ≤ Lf ‖u – v‖X , u, v ∈ X, t ∈ J .
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(H) There exists a Lg >  such that

∥∥gi(u) – gi(v)
∥∥

X ≤ Lg‖u – v‖X , u, v ∈ X, t ∈ J , i ∈M.

(H) Let IY be an identity operator in Y and IY – Dγ – CL ∈ L(Y , Y ) satisfy

ρ := ‖IY – Dγ – CL‖L(Y ,Y ) < . ()

Now we are ready to give the first convergence result in the sense of the Lp-norm.

Theorem . Assume that (H)-(H) hold. If

‖IY – Dγ‖L(Y ,Y )
q√a + ‖C‖L(X,Y )M‖B‖L(U ,X)‖γ‖L(Y ,U)

q√a( + MLg)meMLf a < , ()

then for arbitrary initial input u, () guarantees that yk tends to yd ∈ Lp(J , Y ) as k → ∞
in the sense of the Lp-norm where  < p, q < ∞ and 

p + 
q = .

Proof Linking () and (), we have

ek+(t) = yd(t) – yk+(t) = (IY – Dγ)ek(t) – C�xk(t). ()

In what follows, we prove ‖ek+‖Lp →  as k → ∞.
Step . We prove that ‖ek+()‖Y →  as k → ∞.
In fact, for t = , by using () we have

ek+() = (I – Dγ)ek() – CL�ek(). ()

Substituting () into () and taking the Y -norm, we have

∥∥ek+()
∥∥

Y = ‖IY – Dγ – CL‖L(Y ,Y )
∥∥ek()

∥∥
Y := ρ

∥∥ek()
∥∥

Y ,

which implies that

∥∥ek+()
∥∥

Y ≤ ρk∥∥e()
∥∥

Y . ()

Linking () and (), we conclude that

lim
k→∞

∥∥ek+()
∥∥

Y = . ()

Step . For any t ∈ (ti, ti+], i = , , . . . , m, we have

∥∥�xk(t)
∥∥

X

=
∥∥xk+(t) – xk(t)

∥∥
X

≤ M
∥∥�xk()

∥∥
X + MLf

∫ t



[∥∥�xk(s)
∥∥

X + ‖B‖L(U ,X)
∥∥�uk(s)

∥∥
U

]
ds
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+ MLg
∑

<tj<t

∥∥�xk(tj)
∥∥

X

≤ M‖L‖L(Y ,X)
∥∥ek()

∥∥
Y + MLf

∫ t



∥∥�xk(s)
∥∥

X ds

+ M‖B‖L(U ,X)‖γ‖L(Y ,U)

∫ t



∥∥ek(s)
∥∥

Y ds + MLg
∑

<tj<t

∥∥�xk(tj)
∥∥

X .

Using the impulsive Gronwall inequality (see []) and the Hölder inequality, we have

∥∥�xk(t)
∥∥

X

≤
(

M‖L‖L(Y ,X)
∥∥ek()

∥∥
Y + M‖B‖L(U ,X)‖γ‖L(Y ,U)

∫ t



∥∥ek(s)
∥∥

Y ds
)

( + MLg)meMLf a

≤ (
M‖L‖L(Y ,X)

∥∥ek()
∥∥

Y + M‖B‖L(U ,X)‖γ‖L(Y ,U)
q√a‖ek‖Lp

)
( + MLg)meMLf a, ()

where 
p + 

q =  and p, q > .
Taking the Y -norm for () and substituting () into it, we have

∥∥ek+(t)
∥∥

Y

≤ ‖IY – Dγ‖L(Y ,Y )
∥∥ek(t)

∥∥
Y + ‖C‖L(X,Y )

(
M‖L‖L(Y ,X)

∥∥ek()
∥∥

Y

+ M‖B‖L(U ,X)‖γ‖L(Y ,U)
q√a‖ek‖Lp

)
( + MLg)meMLf a

≤ ‖IY – Dγ‖L(Y ,Y )
∥∥ek(t)

∥∥
Y + ‖C‖L(X,Y )M‖L‖L(Y ,X)( + MLg)meMLf a∥∥ek()

∥∥
Y

+ ‖C‖L(X,Y )M‖B‖L(U ,X)‖γ‖L(Y ,U)
q√a‖ek‖Lp ( + MLg)meMLf a.

For the above inequality, one can take the Lp-norm to derive that

‖ek+‖Lp

≤ ‖C‖L(X,Y )M‖L‖L(Y ,X)( + MLg)meMLf a q√a
∥∥ek()

∥∥
Y

+
(‖IY – Dγ‖L(Y ,Y )

q√a + ‖C‖L(X,Y )M‖B‖L(U ,X)‖γ‖L(Y ,U)
q√a( + MLg)meMLf a)

× ‖ek‖Lp .

Finally, one can use () and () to derive that

lim
k→∞

‖ek+‖Lp = .

The proof is completed. �

Remark . The condition () in Theorem . seems to be a bit strong since we choose
the Lp-norm. However, one can choose another suitable norm, the λ-norm, to weaken this
condition.

Next we give the second convergence result in the sense of the λ-norm.
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Theorem . Assume that (H)-(H) hold and

ρ̃ := ‖IY – Dγ‖L(Y ,Y ) < . ()

For arbitrary initial input u, () guarantees that yk tends to yd ∈ PC(J , Y ) as k → ∞ in
the sense of the λ-norm for a sufficiently large λ > .

Proof By our assumptions and Theorem ., we know () holds. Next, we only need to
prove ‖ek+‖λ →  as k → ∞.

Note that

e–λt
∫ t



∥∥ek(s)
∥∥

Y ds ≤ 
λ

‖ek‖λ.

Then () turns to

∥∥�xk(t)
∥∥

X ≤
(

M‖L‖L(Y ,X)
∥∥ek()

∥∥
Y +

eλtM‖B‖L(U ,X)‖γ‖L(Y ,U)

λ
‖ek‖λ

)

× ( + MLg)meMLf a. ()

Substituting () into () again, we have

∥∥ek+(t)
∥∥

Y ≤ ‖IY – Dγ‖L(Y ,Y )
∥∥ek(t)

∥∥
Y + ‖C‖L(X,Y )

(
M‖L‖L(Y ,X)

∥∥ek()
∥∥

Y

+
eλtM‖B‖L(U ,X)‖γ‖L(Y ,U)

λ
‖ek‖λ

)
( + MLg)meMLf a.

For the above inequality, one can take the λ-norm to derive that

‖ek+‖λ ≤ ‖C‖L(X,Y )M‖L‖L(Y ,X)( + MLg)meMLf a)
∥∥ek()

∥∥
Y

+
(

‖IY – Dγ‖L(Y ,Y ) +
M‖B‖L(U ,X)‖γ‖L(Y ,U)( + MLg)meMLf a

λ

)
‖ek‖λ.

Then for some λ >  large enough and linking (), we obtain

‖ek+‖λ ≤ ρ̃‖ek‖λ,

which gives

lim
k→∞

‖ek+‖λ = .

The proof is completed. �

Remark . One can use the same method in Theorem . to weaken assumption () in
Theorem . if one replaces the standard Lp-norm with an exponentially weighted term
e–λt for some sufficiently large λ.
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4 Convergence results for D-type ILC updating law
In this section we assume that f (t, xk) = xk , gi(xk) = xk in (), and D =  in (). Moreover,
we need the assumption below.

(H) T(t) is differentiable for t > . Then by [], Lemma ., d
dt T(t) = AT(t) is a bounded

linear operator, i.e., AT(t) ∈ L(X, X).

Theorem . Assume that (H)-(H) hold and

δ :=
∥∥IY – CT()Bγ

∥∥
L(Y ,Y ) < .

For arbitrary initial input u, () guarantees that yk tends to yd ∈ PC(J , Y ) as k → ∞ in
the sense of the λ-norm for a sufficiently large λ > .

Proof In order to prove ‖ek+‖λ →  as k → ∞, we divide our proof into two steps.
Step . We first compute the time derivative of the tracking error at each iteration. In

fact, linking () and (), we have

ėk+(t) = ẏd(t) – ẏk+(t)

= ẏd(t) – C
d
dt

[
T(t)x +

∫ t


T(t – s)

[
xk+(s) + Buk+(s)

]
ds

+
∑

<tj<t

T(t – tj)xk+(tj)
]

= ẏd(t) – C
d
dt

T(t)x – CT()xk+(t) – C
∫ t



d
dt

T(t – s)xk+(s) ds

– CT()Buk+ – C
∫ t



d
dt

T(t – s)Buk+(s) ds

– C
d
dt

∑
<tj<t

T(t – tj)xk+(tj)

= ẏd(t) – C
d
dt

T(t)x – CT()xk(t) – CT()�xk+(t)

– C
∫ t



d
dt

T(t – s)xk(s) ds – C
∫ t



d
dt

T(t – s)�xk+(s) ds

– CT()Buk(t) – CT()Bγėk(t)

– C
∫ t



d
dt

T(t – s)Buk(s) ds – C
∫ t



d
dt

T(t – s)Bγėk(s) ds

– C
d
dt

∑
<tj<t

T(t – tj)�xk+(tj) – C
d
dt

∑
<tj<t

T(t – tj)xk(tj)

= ẏd(t) – C
d
dt

T(t)x – CT()xk(t) – C
∫ t



d
dt

T(t – s)xk(s) ds

– CT()Buk(t) – C
∫ t



d
dt

T(t – s)Buk(s) ds – C
d
dt

∑
<tj<t

T(t – tj)xk(tj)

– CT()Bγėk(t) – C
∫ t



d
dt

T(t – s)Bγėk(s) ds
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– C
d
dt

∑
<tj<t

T(t – tj)�xk+(tj)

– CT()�xk+(t) – C
∫ t



d
dt

T(t – s)�xk+(s) ds

=
(
IY – CT()Bγ

)
ėk(t) – C

∫ t


AT(t – s)Bγėk(s) ds

– CT()�xk+(t) – C
∫ t


AT(t – s)�xk+(s) ds

– C
∑

<tj<t

AT(t – tj)�xk+(tj).

This yields

∥∥ėk+(t)
∥∥

Y

≤ ∥∥IY – CT()Bγ
∥∥

L(Y ,Y )

∥∥ėk(t)
∥∥

Y

+ ‖C‖L(X,Y ) max
t∈[,a]

∥∥AT(t)
∥∥

L(X,X)‖B‖L(U ,X)‖γ‖L(Y ,U)

∫ t



∥∥ėk(s)
∥∥

Y ds

+ M‖C‖L(X,Y )
∥∥�xk+(t)

∥∥
X + ‖C‖L(X,Y ) max

t∈[,a]

∥∥AT(t)
∥∥

L(X,X)

∫ t



∥∥�xk+(s)
∥∥ds

+ ‖C‖L(X,Y ) max
t∈[a–tm ,a–t]

∥∥AT(t)
∥∥

L(X,X)

∑
<tj<t

∥∥�xk+(tj)
∥∥.

Taking the λ-norm, we get

‖ėk+‖λ ≤ δ‖ėk‖λ

+
‖C‖L(X,Y ) maxt∈[,a] ‖AT(t)‖L(X,X)‖B‖L(U ,X)‖γ‖L(Y ,U)

λ
‖ėk‖λ := I

+ M‖C‖L(X,Y )‖�xk+‖λ

+
‖C‖L(X,Y ) maxt∈[,a] ‖AT(t)‖L(X,X)

λ
‖�xk+‖λ := I

+
m∑
j=

‖C‖L(X,Y ) maxt∈[a–tm ,a–t] ‖AT(t)‖L(X,X)

eλ(t–tj)
‖�xk+‖λ := I.

Obviously, the terms Ii, i = , , , tend to zero if we choose λ >  large enough.
Concerning () and changing k to k + , we take the λ-norm,

‖�xk+‖λ ≤ M‖L‖L(Y ,X)( + MLg)meMLf a∥∥ek+()
∥∥

Y := I

+
M‖B‖L(U ,X)‖γ‖L(Y ,U)( + MLg)meMLf a

λ
‖ek+‖λ := I.

Using () and taking λ >  large enough, we see that Ii, i = , , tend to zero. This yields
‖�xk+‖λ →  as k → ∞.

Next, noting that δ < , we obtain

lim
k→∞

‖ėk+‖λ = . ()
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Step . We compute the tracking error at each iteration,

∥∥ek+(t)
∥∥ ≤ ∥∥ek+()

∥∥
Y +

∫ t



∥∥ėk+(s)
∥∥

Y ds.

Taking the λ-norm, we get

‖ek+‖λ ≤ ∥∥ek+()
∥∥

Y +

λ

‖ėk+‖λ. ()

Linking () and () and () we derive the desired results. �

5 Example
In this section, we consider the following impulsive partial differential equation with Neu-
mann boundary conditions:

⎧⎪⎨
⎪⎩

∂
∂t x(t, z) = ∂

∂z x(t, z) + l cos t sin x(t, z) + lu(t, z), z ∈ (, ), t ∈ [, 
 ) ∪ ( 

 , ],
∂
∂z x(t, ) = ∂

∂z x(t, ) = , t ∈ [, 
 ) ∪ ( 

 , ],
x( 


+, z) – x( 


–, z) = lx( 

 , z), l ∈R, z ∈ (, ),
()

where li, i = , ,  ∈R
+, and

y(t, z) = cx(t, z) + du(t, z), c ∈R
+, d ≥ , t ∈ J , z ∈ (, ). ()

Let X = U = Y = L(, ). Set J = [, ], m = , and t = 
 . Define A : D(A) ⊂ X → X by

Ax = ∂

∂z x := xzz, where D(A) = {x ∈ H((, )) : xz() = xz() = }. Then A can be written as

Ax = –
∑∞

n= n〈x, xn〉, x ∈ D(A) where xn(z) =
√


π

cos nπz, n = , , . . . . Next, A generates a

C-semigroup T(t), t ≥  written as T(t)x :=
∑∞

n= e–nt〈x, xn〉xn, with ‖T(t)‖L(X,X) ≤ e–t ≤
 = M. Thus, (H) holds. Moreover, T(t) is differentiable for t >  and d

dt T(t)x = AT(t)x =
–

∑∞
n=

n

ent 〈x, xn〉xn and ‖AT(t)‖L(X,X) ≤ . Thus, (H) holds.
Denote x(·)(z) = x(·, z), f (·, x)(z) = l cos · sin x(·, z), Bu(·)(z) = lu(·, z), g(x(t–

 ))(z) =
lx(t–

 , z), then () can be abstracted to (). Thus, (H) and (H) hold.
Denote y(·)(z) = y(·, z) and C = cIY and D = dIY , then () can be rewritten as (). Thus,

( – c)IY ∈ L(Y , Y ), i.e., (H) holds.
We consider () and () where L = L = IX ∈ L(Y , X) and γ = γ = IU ∈ L(Y , U). Then

we have the following conclusions:
• Choosing d =  and c satisfying c < 

l(+l)el implies () holds. By Theorem ., yk

tends to yd as k → ∞ in the sense of the Lp-norm.
• Set  > d > . Then  – d > , which implies () holds. By Theorem ., yk tends to yd

as k → ∞ in the sense of the λ-norm (λ must be a sufficiently large).
• Set d = . Clearly, δ =  – cl <  since cl > . By Theorem ., yk tends to yd as

k → ∞ in the sense of the λ-norm (λ must be a sufficiently large).
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