
Jankowski Advances in Difference Equations  (2015) 2015:184 
DOI 10.1186/s13662-015-0528-1

R E S E A R C H Open Access

Fractional differential equations with
causal operators
Tadeusz Jankowski*

*Correspondence:
tjank@mif.pg.gda.pl
Department of Differential
Equations and Applied
Mathematics, Gdansk University of
Technology, 11/12 G. Narutowicz
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1 Introduction
Let J = [, T], J = (, T], E = C(J,R), E = C(J ,R) and Q ∈ C(E, E). We shall say that Q
is a causal operator, or nonanticipative, if the following property holds: for each couple of
elements of E such that u(s) = v(s) for  ≤ s ≤ t, there are the results (Qu)(s) = (Qv)(s) for
 ≤ s ≤ t with t < T arbitrary; for details, see [].

In this paper, we investigate the existence of solutions to fractional differential problems
with causal operators Q of the form

{
Dqx(t) = (Qx)(t), t ∈ J,
x̄() = k ∈R,

()

where Dqx is the standard Riemann-Liouville derivative of x with q ∈ (, ] and x̄() =
t–qx(t)|t=. We introduce the space C–q by

C–q(J ,R) =
{

u ∈ C(, t] : t–qu ∈ C(J ,R)
}

, q ∈ (, ),

and C(J ,R) = C(J ,R) if q = .
Two significant examples of causal operators are: the Niemytzki operator

(Qu)(t) = f
(
t, u(t)

)
and the Volterra integral operator

(Qu)(t) = g(t) +
∫ t


k(t, s)f

(
s, u(s)

)
ds.
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For other concrete examples which serve to illustrate that the class of causal operators is
very large, we refer the reader to the monographs [, ]. The study of functional equations
with causal operators has seen a rapid development in the last few years. Various problems
for functional differential equations with causal operators were considered, for example,
in papers [–], in particular, the existence of solutions by using the monotone iterative
method; see, for example, [, –]. Fractional calculus is a generalization of ordinary dif-
ferentiation and integration to arbitrary non-integer order. The idea of fractional calculus
has been a subject of interest not only among mathematicians, but also among physicists
and engineers. Fractional differential equations arise in many fields, such as physics, me-
chanics, chemistry, engineering and biological sciences; see, for example, [–]. To our
knowledge, fractional differential equations with causal operators have not been studied
extensively. Fractional differential equations of Caputo type with causal operators have
been discussed in papers [, ] by using the monotone iterative technique.

This paper is organized as follows. In Section , the existence of solution for problem ()
is investigated by the successive approximate method. We showed it under the assumption
that operator Q satisfies a Lipschitz condition. The error estimation is also given using a
Mittag-Leffler function (Theorem ). In Section , corresponding existence results are
formulated for special cases of causal operators, using the main result of Section . The
existence of a unique solution for the problem with a linear operator Q is also discussed
and this solution is given by a corresponding formula with the Mittag-Leffler function
(Theorem ). Examples are also given to demonstrate some results.

2 Existence of solutions by the successive approximate method
Let us introduce the following assumptions:

H: Q is a causal operator, Q ∈ C(E, E),
H: there exists L ∈R+ = [,∞) such that

∣∣(Qu)(t) – (Qū)(t)
∣∣ ≤ L|u – ū|t ,

where |u|t = sups∈[,t] |x(s)|.
Fractional differential problem () is equivalent to

x(t) = ktq– +


�(q)

∫ t


(t – s)q–(Qx)(s) ds ()

by []. We can also write () in the form x(t) = ktq– + Iq(Qx)(t).
To find a solution of () we use the method of successive approximations:

{
x(t) = ktq–,
xn(t) = ktq– + Iq(Qxn–)(t), n = , , . . . .

()

Let


�(q)

sup
s∈[,t]

∫ s


(s – r)q–∣∣(Qx)(r)

∣∣dr ≤ M. ()
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Indeed, xn – x ∈ C(J ,R), xn ∈ C–q(J ,R), n = , , . . . . Put

wn(t) = |xn – xn–|t , n = , , . . . .

Then

w(t) = |x – x|t ≤ 
�(q)

sup
s∈[,t]

∫ s


(s – r)q–∣∣(Qx)(r)

∣∣dr ≤ M ≡ u(t).

Moreover, in view of assumption H, we obtain

wn+(t) =


�(q)
sup

s∈[,t]

∣∣∣∣
∫ s


(s – r)q–[(Qxn)(r) – (Qxn–)(r)

]
dr

∣∣∣∣
≤ L

�(q)
sup

s∈[,t]

∫ s


(s – r)q–wn(r) dr ≡ un+(t), n = , , . . . .

Hence

u(t) =
L

�(q)
sup

s∈[,t]

∫ s


(s – r)q–w(r) dr ≤ LM

�(q)
sup

s∈[,t]

∫ s


(s – r)q– dr =

LM
�(q + )

tq.

Using the method of mathematical induction, we can show that

un(t) ≤ MLn–

�((n – )q + )
tq(n–), n = , , . . . . ()

Now we have to show that the sequence {xn} is convergent. Note that

xn(t) = x(t) +
n∑

j=

[
xj(t) – xj–(t)

]
, n = , , . . . . ()

In view of (), we see that

∞∑
j=

uj(t) ≤
∞∑
j=

MLj–

�((j – )q + )
t(j–)q = M

∞∑
j=

Lj

�(jq + )
tjq

≤ M
∞∑
j=

Lj

�(jq + )
Tjq = MEq,

(
LTq),

where Eq, is the Mittag-Leffler function defined by

Eq,(z) =
∞∑
j=

zj

�(jq + )
.

Using the Weierstrass test, this shows that the series

∞∑
j=

[
xj(t) – xj–(t)

]
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is uniformly convergent. This asserts that the sequence {xn – x} is uniformly convergent
too. It proves that limn→∞ xn(t) exists, so x(t) = limn→∞ xn(t). Indeed, x–x is a continuous
function on J and x is a continuous function on J. Taking the limit n → ∞ in (), we see
that x ∈ C–q(J ,R) is a solution of problem (), it is also a solution of problem ().

Now we have to prove that x is a unique solution of (). Let v ∈ C–q(J ,R) be another
solution of (). Put U(t) = |x – v|t , A = U(T). Then

U(t) = sup
s∈[,t]

∣∣Iq(Qx)(s) – Iq(Qv)(s)
∣∣ ≤ L

�(q)
sup

s∈[,t]

∫ s


(s – r)q–U(r) dr,

by assumption H. This shows that

U(t) ≤ AL
�(q)

sup
s∈[,t]

∫ s


(s – r)q– dr =

AL
�(q + )

tq ≤ AL
�(q + )

Tq ≡ D.

Repeating it, we can show that

U(t) ≤ DLn

�(nq + )
tnq, n = , , . . . ,

so

U(t) ≤ DLn

�(nq + )
Tnq, n = , , . . . .

Indeed,

lim
n→∞

Ln

�(nq + )
Tnq = .

This shows that x is the unique solution of (). This also proves that x is the unique solution
of ().

Now, we need to obtain the error estimation. Put Zn+(t) = |x – xn+|t , n = , , . . . . In view
of () and (), we obtain

∣∣xn(t) – x(t)
∣∣ ≤

∞∑
j=

uj(t) ≤ MEq,
(
LTq) ≡ B.

Because, xn → x, so Z(t) ≤ B. Moreover,

Zn+(t) = sup
s∈[,t]

∣∣Iq(Qx)(s) – Iq(Qxn)(s)
∣∣ ≤ L

�(q)
sup

s∈[,t]

∫ s


(s – r)q–Zn(r) dr,

by assumption H. Repeating it we obtain the result

Un(t) ≤ BLn

�(nq + )
tnq, n = , , . . . ,

by the mathematical induction method.
In this way we proved the following theorem.
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Theorem  Let assumptions H, H hold and let q ∈ (, ]. Assume that there exists a
constant M ∈ R+ such that condition () holds. Then the sequence {xn} converges to the
unique solution x ∈ C–q(J ,R) of problem (). Moreover, we have the error estimation

|x – xn|t ≤ BLn

�(nq + )
tnq, n = , , . . . ,

where B = Eq,(LTq) is the Mittag-Leffler function.

Remark  If |(Qu)(t)| ≤ M, then M = M
�(q+) Tq. Indeed, we have


�(q)

∫ t


(s – r)q–∣∣(Qu)(r)

∣∣dr ≤ M

�(q)

∫ t


(s – r)q– dr

=
M

�(q + )
tq ≤ M

�(q + )
Tq = M.

3 Some applications
. Let operator Q be defined by

(Qx)(t) = f
(
t, x

(
α(t)

)
, . . . , x

(
αp(t)

))
. ()

We introduce the following assumption:

H: f ∈ C(J ×R
p,R), αi ∈ C(J , J), αi(t) ≤ t, i = , , . . . , p, and there exist constants Li ∈ R+

such that

∣∣f (t, u, . . . , up) – f (t, v, . . . , vp)
∣∣ ≤

p∑
i=

Li|ui – vi|.

Indeed, Q is a causal operator. Put ᾱ(t) = max{αi(t) : i = , , . . . , p}, so ᾱ(t) ≤ t, t ∈ J. We
see that

∣∣(Qu)(t) – (Qv)(t)
∣∣ ≤

p∑
i=

Li
∣∣u(

αi(t)
)

– v
(
αi(t)

)∣∣ ≤
p∑

i=

Li sup
s∈[,αi(t)]

∣∣u(s) – v(s)
∣∣

≤
p∑

i=

Li sup
s∈[,ᾱ(t)]

∣∣u(s) – v(s)
∣∣ ≤ |u – v|t

p∑
i=

Li.

It shows that assumption H holds with L =
∑p

i= Li. Basing on Theorem , we have the
following.

Theorem  Let assumption H hold and let q ∈ (, ]. Assume that there exists a constant
M ∈ R+ such that condition () holds with operator Q defined by (). Then the sequence
{xn} converges to the unique solution x ∈ C–q(J ,R) of problem () with Q defined by ().
Moreover, we have the error estimation

|x – xn|t ≤ BLn

�(nq + )
tnq, n = , , . . . ,

where L =
∑p

i= Li.
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. Let

(Qx)(t) = g
(

t, x
(
α(t)

)
, max

s∈[,α(t)]
x(s),

∫ t


h(t, r)x

(
α(r)

)
dr

)
. ()

We introduce the following assumption:

H: g ∈ C(J × R
,R), h ∈ C(J × J ,R), αi ∈ C(J , J), αi(t) ≤ t, i = , ,  and there exist con-

stants L, L, L ∈ R+ such that

∣∣g(t, u, u, u) – g(t, v, v, v)
∣∣ ≤

p∑
i=

Li|ui – vi|.

Indeed, Q is a causal operator. Put z(t) = |u(t) – v(t)|. In this case, we have

∣∣(Qu)(t) – (Qv)(t)
∣∣ ≤ Lz

(
α(t)

)
+ L max

s∈[,α(t)]
z(s) + L

∫ t



∣∣h(t, r)
∣∣z(α(r)

)
dr

≤
(

L + L + L max
s∈J

∫ s



∣∣h(s, r)
∣∣dr

)
|z|t ,

so assumption H holds with L = L + L + L maxs∈J
∫ s

 |h(s, r)|dr.
Basing on Theorem , we have the following.

Theorem  Let assumption H hold and let q ∈ (, ]. Assume that there exists a constant
M ∈ R+ such that condition () holds with operator Q defined by (). Then the sequence
{xn} converges to the unique solution x ∈ C–q(J ,R) of problem () with Q defined by ().
Moreover, we have the error estimation

|x – xn|t ≤ BLn

�(nq + )
tnq, n = , , . . . ,

where L = L + L + L maxs∈J
∫ s

 |h(s, r)|dr.

. Let

(Qx)(t) =


�(q)

∫ t


(t – s)q–f

(
t, s, x(s)

)
ds, q > . ()

We see that Q is also a causal operator. Assume that

H: f ∈ C(J × J ×R,R), q >  and there exists a constant D ∈R+ such that

∣∣f (t, s, u) – f (t, s, v)
∣∣ ≤ D|u – v|.

Under assumption H we see that

∣∣(Qu)(t) – (Qv)(t)
∣∣ ≤ D

�(q)

∫ t


(t – s)q–∣∣u(s) – v(s)

∣∣ds ≤ DTq

�(q + )
|u – v|t ,

so assumption H holds with L = DTq
�(q+) .

Basing on Theorem , we have the following.
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Theorem  Let assumption H hold and let q ∈ (, ]. Assume that there exists a constant
M ∈ R+ such that condition () holds with operator Q defined by (). Then the sequence
{xn} converges to the unique solution x ∈ C–q(J ,R) of problem () with Q defined by ().
Moreover, we have the error estimation

|x – xn|t ≤ BLn

�(nq + )
tnq, n = , , . . . ,

where L = DTq
�(q+) .

Now we consider the following linear problem:

{
Dqx(t) = λIq x(t) + σ (t), q > ,λ ∈R,σ ∈ C–q(J ,R),
x̄() = k ∈ R.

()

Note that problem () is a special case of problem () with Q defined by (). Problem ()
has a unique solution, and we can write this solution by a corresponding formula. The
next theorem concerns this fact.

Theorem  Let q ∈ (, ], q > , λ, k ∈ R, σ ∈ C–q(J ,R). Then problem () has a unique
solution given by the formula

x(t) = k�(q)tq–Eq+q,q
(
λtq+q

)
+

∫ t


(t – s)q–Eq+q,q

(
λ(t – s)q+q

)
σ (s) ds, ()

where Eν,β (ζ ) =
∑∞

r=
ζ r

�(νr+β) is the Mittag-Leffler function.

Proof Indeed, problem () is equivalent in the space C–q(J ,R) to the following fractional
integral equation:

x(t) = x(t) + λIq+q x(t) + Iqσ (t), t ∈ J ()

with x(t) = ktq–.
To find the solution of problem () we use the method of successive approximations.

For n = , , . . . , we have

xn+(t) = x(t) + λIq+q xn(t) + Iqσ (t).

Hence,

x(t) = x(t) + λIq+q x(t) + Iqσ (t),

x(t) = x(t) + λIq+q x(t) + Iqσ (t)

= x(t) + λIq+q
[
x(t) + λIq+q x(t) + Iqσ (t)

]
+ Iqσ (t)

= x(t) + λIq+q x(t) + λI(q+q)x(t) + λIq+qσ (t) + Iqσ (t),

using the relation IrImx(t) = Ir+mx(t), r, m > .
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Thus, in general, we get by induction xn as follows:

xn(t) = x(t) +
n∑

i=

λiIi(q+q)x(t) +
n∑

i=

λi–I(i–)(q+q)+qσ (t), n = , , . . . . ()

Using the following formula

Iδx(t) = x(t)
�(q)

�(δ + q)
tδ , δ > 

to (), we obtain

xn(t) = x(t)

[
 + �(q)

n∑
i=

λi 
�(i(q + q) + q)

ti(q+q)

]

+
n∑

i=

λi– 
�((i – )(q + q) + q)

∫ t


(t – s)(i–)(q+q)+q–σ (s) ds

= x(t)�(q)
n∑

i=

λi 
�(i(q + q) + q)

ti(q+q)

+
∫ t


(t – s)q–

[ n–∑
i=

λi 
�(i(q + q) + q)

(t – s)i(q+q)

]
σ (s) ds

for n = , , . . . . Taking the limit as n → ∞, we obtain the unique solution x in terms of the
Mittag-Leffler function given by formula (). �

Example  Consider the following problem:

{
Dqx(t) = Iq x(t) + 


√

π
( 

 t 
 – t 

 ) – 
√

π , t ∈ (, T],
x̄() = 

()

with q = q = 
 . In view of formula (), we have

x(t) = 
√

π t– 
 E, 


(t) +

∫ t


(t – s)– 

 E, 


(t – s)
[



√

π

(



s

 – s




)
– 

√
π

]
ds

= 
√

π t– 


∞∑
i=

ti

�(i + 
 )

+
∞∑
i=


�(i + 

 )

{



√

π

[



�(i + 
 )�( 

 )
�(i + )

ti+

–
�(i + 

 )�( 
 )

�(i + )
ti+

]
– 

√
π

�(i + 
 )

�(i + 
 )

ti+ 


}

= t– 
 +



√

π

{


�

(



) ∞∑
i=

ti+

�(i + )
– �

(



)[ ∞∑
i=

ti+

�(i + )
– t

]}

= t– 
 + t.

It shows that x(t) = t– 
 + t is the unique solution of problem ().
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Theorem  Let q ∈ (, ], q > , λ,λ, k, k ∈R, σ,σ ∈ C–q(J ,R). Then the system

⎧⎪⎨
⎪⎩

Dqx(t) = λIq x(t) + λx(t) – λIq y(t) + λy(t) + σ(t), t ∈ (, T],
Dqy(t) = –λIq x(t) + λx(t) + λIq y(t) + λy(t) + σ(t), t ∈ (, T],
x̄() = k, ȳ() = k, k, k ∈R

()

has a unique solution given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(t) = 
 [k�(q)tq–Eq,q(λtq) +

∫ t
 (t – s)q–Eq,q(λ(t – s)q)σ (s) ds

+ k̄�(q)tq–Eq+q,q(λtq+q ) +
∫ t

 (t – s)q–Eq+q,q(λ(t – s)q+q )σ̄ (s) ds],
y(t) = 

 [k�(q)tq–Eq,q(λtq) +
∫ t

 (t – s)q–Eq,q(λ(t – s)q)σ (s) ds
– k̄�(q)tq–Eq+q,q(λtq+q ) +

∫ t
 (t – s)q–Eq+q,q(λ(t – s)q+q )σ̄ (s) ds].

Proof Put u = x + y, v = x – y. Then from system () we have two following systems for
solving

{
Dqu(t) = λu(t) + σ (t), σ (t) = σ(t) + σ(t), t ∈ (, T],
ū() = k + k ≡ k,

()

{
Dqv(t) = λIq v(t) + σ̄ (t), σ̄ (t) = σ(t) – σ(t), t ∈ (, T],
v̄() = k – k ≡ k̄.

()

The solution of () is given by

u(t) = k�(q)tq–Eq,q
(
λtq) +

∫ t


(t – s)q–Eq,q

(
λtq)σ (s) ds.

The solution of () has the form

v(t) = k̄�(q)tq–Eq+q,q
(
λtq+q

)
+

∫ t


(t – s)q–Eq+q,q

(
λ(t – s)q+q

)
σ̄ (s) ds

by Theorem . Solving the system

x + y = u, x – y = v

we have the solution of x and y. This ends the proof. �

Example  Consider the system

⎧⎪⎨
⎪⎩

Dqx(t) = 
 [Iq x(t) + x(t) – Iq y(t) + y(t)] + σ(t), t ∈ (, T],

Dqy(t) = 
 [–Iq x(t) + x(t) + Iq y(t) + y(t)] + σ(t), t ∈ (, T],

x̄() = , ȳ() = ,
()

with q = 
 , q = 

 and

σ(t) = –t– 
 +

√
π

t

 –

(√
π +




)
t –




t –



√

π
t


 +




√
π

t

 ,

σ(t) = –t– 
 +

(√
π –




)
t +

√
π

t

 –




t +



√

π
t


 –




√
π

t

 .
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We see that

U(t) ≡ 
√

π t– 
 E 

 , 


(
t



)

+
∫ t


(t – s)– 

 E 
 , 



(
(t – s)



)[

σ(s) + σ(s)
]

ds

= 
√

π t– 
 E 

 , 


(
t



)

+
∞∑
i=


�( 

 (i + ))

∫ t


(t – s)


 (i–)

[
–s– 

 +
√
π

s

 – s – s +

√
π

s



]
ds

= 
√

π t– 
 E 

 , 


(
t



)

– 
√

π

∞∑
i=

t 
 i

�( 
 (i + ))

+ 
∞∑
i=

t 
 i+

�( 
 (i + ))

– 
∞∑
i=

t 
 i+ 



�( 
 (i + ))

– 
∞∑
i=

t 
 i+ 



�( 
 (i + ))

+ 
∞∑
i=

t 
 i+

�( 
 (i + ))

= 
√

π t– 
 E 

 , 


(
t



)

– 
√

π

[
 +

√
π

t

 + t +



√

π
t


 +

t


+ t


 E 

 , 


(
t



)]

+ 
[

t +



√

π
t


 +




t + t

 E 

 , 


(
t



)]

– 
[



√

π
t


 +




t + t

 E 

 , 


(
t



)]

– t

 E 

 , 


(
t



)

+ 
[




t + t

 E 

 , 


(
t



)]

= t– 
 + t + t

and

V (t) ≡ 
√

π t– 
 E, 



(
t) +

∫ t


(t – s)– 

 E, 


(
(t – s))[σ(s) – σ(s)

]
ds

= 
√

π t– 
 E, 



(
t) +

∞∑
i=


�(i + 

 )

∫ t


(t – s)i– 



[
√
π

s

 – 

√
πs –

√
π

s



–



√

π
s


 +




√
π

s



]
ds

= 
√

π t– 
 E, 



(
t) + 

∞∑
i=

ti+

�(i + )
– 

√
π

∞∑
i=

ti+ 


�(i + 
 )

– 
∞∑
i=

ti+

�(i + )

– 
∞∑
i=

ti+

�(i + )
+ 

∞∑
i=

ti+

�(i + )
= t– 

 + t – t.

By Theorem , the pair of functions

x(t) = t– 
 + t, y(t) = t

is the unique solution of system ().
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