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Abstract
By using the classical fixed point theorem for operators on a cone, in this paper, some
results of single and multiple positive solutions to a class of nonlinear first-order
periodic boundary value problems of impulsive dynamic equations on time scales are
obtained. It is worth noticing that the nonlinearity f and the pulse function in this
paper are not positive.
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1 Introduction
The theory of dynamic equations on time scales has been a new important mathematical
branch [–] since it was initiated by Hilger []. At the same time, the boundary value
problems of impulsive dynamic equations on time scales have received considerable at-
tention [–] since the theory of impulsive differential equations is much richer than the
corresponding theory of differential equations without impulse effects [–].

In [], by using the Guo-Krasnoselskii fixed point theorem, when the nonlinearity f
and the pulse function are positive, Wang considered the existence of one or two positive
solutions to the following PBVPs of impulsive dynamic equations on time scales:

⎧
⎪⎨

⎪⎩

x�(t) + p(t)x(σ (t)) = f (t, x(σ (t))), t ∈ J := [, T]T, t �= tk ,
x(t+

k ) – x(t–
k ) = Ik(x(t–

k )), k = , , . . . , m,
x() = x(σ (T)).

(.)

In [], by using the Schaefer fixed point theorem, Wang and Weng obtained the exis-
tence of at least one solution to the problem (.).

Motivated by the results mentioned above, in this paper, we shall obtain the existence of
single and multiplicity positive solutions to the problem (.) where T is an arbitrary time
scale, T >  is fixed, , T ∈ T, f ∈ C(J × [,∞),R), Ik ∈ C([,∞),R), p : [, T]T → (,∞)
is right-dense continuous, tk ∈ (, T)T,  < t < · · · < tm < T , and for each k = , , . . . , m,
x(t+

k ) = limh→+ x(tk + h) and x(t–
k ) = limh→– x(tk + h) which represent the right and left

limits of x(t) at t = tk . The main tool used in this paper is the classical fixed point theorem
for operators on a cone.
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It is worth noticing that: (i) The nonlinearity f and the pulse function in this paper are
not positive, so our hypotheses on the nonlinearity f and the pulse function are weaker
than condition of []. (ii) For the case Ik(x) ≡ , k = , , . . . , m, the problem (.) reduces
to the problem studied by [, ]; for the case p(t) = , the problem (.) reduces to the
problem studied by [, ]; for the case p(t) =  and T = Z, the problem (.) reduces to
the problem studied by []. This paper’s ideas come from [].

Throughout this work, we assume the knowledge of time scales and time-scale notation,
first introduced by Hilger []. For more information on time scales, please see the texts by
Bohner and Peterson [, ].

In the remainder of this section, we state the following fixed point theorem [].

Theorem . [] Let X be a Banach space and K is a cone in X. Assume �, � are open
subsets of X with  ∈ �, � ⊂ �. Let

� : K ∩ (� \ �) → K

be a continuous and completely continuous operator such that
(i) ‖�x‖ ≤ ‖x‖ for x ∈ K ∩ ∂�;

(ii) there exists e ∈ K \ {} such that x �= �x + λe for x ∈ K ∩ ∂� and λ > .
Then � has a fixed point in K ∩ (� \ �).

Remark . In Theorem ., if (i) and (ii) are replaced by
(i) ‖�x‖ ≤ ‖x‖ for x ∈ K ∩ ∂�;

(ii) there exists e ∈ K \ {} such that x �= �x + λe for x ∈ K ∩ ∂� and λ > ,
then � has also a fixed point in K ∩ (� \ �).

2 Main results
Throughout the rest of this paper, we always assume that the points of impulse tk are right-
dense for each k = , , . . . , m.

We define

PC =
{

x ∈ [
,σ (T)

]

T
→R : xk ∈ C(Jk ,R), k = , , , . . . , m, and there exist

x
(
t+
k
)

and x
(
t–
k
)

with x
(
t–
k
)

= x(tk), k = , , . . . , m
}

,

where xk is the restriction of x to Jk = (tk , tk+]T ⊂ (,σ (T)]T, k = , , . . . , m, and J = [, t]T,
tm+ = σ (T).

Let

X =
{

x : x ∈ PC, x() = x
(
σ (T)

)}

with the norm ‖x‖ = supt∈[,σ (T)]T |x(t)|, then X is a Banach space.

Lemma . [] Suppose h : [, T]T →R is rd-continuous, then x is a solution of

x(t) =
∫ σ (T)


G(t, s)h(s)�s +

m∑

k=

G(t, tk)Ik
(
x(tk)

)
, t ∈ [

,σ (T)
]

T
,
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where

G(t, s) =

⎧
⎨

⎩

ep(s,t)ep(σ (T),)
ep(σ (T),)– ,  ≤ s ≤ t ≤ σ (T),

ep(s,t)
ep(σ (T),)– ,  ≤ t < s ≤ σ (T),

if and only if x is a solution of the boundary value problem

⎧
⎪⎨

⎪⎩

x�(t) + p(t)x(σ (t)) = h(t), t ∈ J , t �= tk ,
x(t+

k ) – x(t–
k ) = Ik(x(t–

k )), k = , , . . . , m,
x() = x(σ (T)).

Lemma . Let G(t, s) be defined as in Lemma ., then

A =


ep(σ (T), ) – 
≤ G(t, s) ≤ ep(σ (T), )

ep(σ (T), ) – 
= B for all t, s ∈ [

,σ (T)
]

T
.

Remark . Let G(t, s) be defined as in Lemma ., then
∫ σ (T)

 G(t, s)p(s)�s = .
Let

K =
{

x ∈ X : x(t) ≥ δ‖x‖, t ∈ [
,σ (T)

]

T

}
,

where δ = A
B ∈ (, ). It is not difficult to verify that K is a cone in X.

For convenience, we denote

f  = lim
x→+

sup max
t∈[,T]T

f (t, x)
p(t)x

, I(k) = lim
x→+

sup
Ik(x)

x
;

f = lim
x→+

inf min
t∈[,T]T

f (t, x)
p(t)x

, I(k) = lim
x→+

inf
Ik(x)

x
;

f ∞ = lim
x→∞ sup max

t∈[,T]T

f (t, x)
p(t)x

, I∞(k) = lim
x→∞ sup

Ik(x)
x

;

f∞ = lim
x→∞ inf min

t∈[,T]T

f (t, x)
p(t)x

, I∞(k) = lim
x→∞ inf

Ik(x)
x

;

f u = sup
x∈[δu,u]

max
t∈[,T]T

f (t, x)
p(t)x

, Iu(k) = sup
x∈[δu,u]

Ik(x)
x

;

fu = inf
x∈[δu,u]

min
t∈[,T]T

f (t, x)
p(t)x

, Iu(k) = inf
x∈[δu,u]

Ik(x)
x

.

Now we state our main results.

Theorem . Suppose there exist  < α < β such that

f (t, x) ≥  and Ik(x) ≥ , t ∈ [, T]T, x ∈ [δα,β].

Then the problem (.) has at least one positive solution if one of the following two condi-
tions holds:

(i) fα + A
∑m

k= Iα(k) ≥ , f β + B
∑m

k= Iβ (k) ≤ ;
(ii) f α + B

∑m
k= Iα(k) ≤ , fβ + A

∑m
k= Iβ (k) ≥ .



Guan Advances in Difference Equations  (2015) 2015:60 Page 4 of 9

Proof We define an operator � : K → X by

�(x)(t) =
∫ σ (T)


G(t, s)f

(
s, x

(
σ (s)

))�s +
m∑

k=

G(t, tk)Ik
(
u(tk)

)
, t ∈ [

,σ (T)
]

T
.

It is obvious that fixed points of � are solutions of the problem (.). Similar to [],
� : K → X is completely continuous.

Define the open sets

� =
{

x ∈ X : ‖x‖ < α
}

,

� =
{

x ∈ X : ‖x‖ < β
}

.

Firstly, we claim that � : K ∩ (� \ �) → K .
In fact, for any x ∈ K ∩ (� \ �), we have δα ≤ x ≤ β , by Lemma .

‖�x‖ ≤ B

[∫ σ (T)


f
(
s, x

(
σ (s)

))�s +
m∑

k=

Ik
(
x(tk)

)
]

and

(�x)(t) =
∫ σ (T)


G(t, s)hx(s)�s +

m∑

k=

G(t, tk)Ik
(
x(tk)

)

≥ A

[∫ σ (T)


f
(
s, x

(
σ (s)

))�s +
m∑

k=

Ik
(
x(tk)

)
]

.

So

(�x)(t) ≥ A
B

‖�x‖ = δ‖�x‖, i.e.,�x ∈ K .

Therefore, � : K ∩ (� \ �) → K .
Secondly, we prove the result provided condition (i) holds.
Since

f (t, x) ≥ fαp(t)x, Ik(x) ≥ Iα(k)x, k = , , . . . , m, x ∈ [δα,α].

Let e ≡ , then e ∈ K . We assert that

x �= �x + λe for x ∈ K ∩ ∂� and λ > . (.)

If not, there would exist x ∈ K ∩ ∂� and λ >  such that x = �x + λe.
Since x ∈ K ∩ ∂�, then δα = δ‖x‖ ≤ x(t) ≤ α. Let μ = mint∈[,σ (T)]T x(t), then for any

t ∈ [,σ (T)]T, by the first inequality of (i) we have

x(t) = (�x)(t) + λ

=
∫ σ (T)


G(t, s)f

(
s, x

(
σ (s)

))�s +
m∑

k=

G(t, tk)Ik
(
x(tk)

)
+ λ
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≥
∫ σ (T)


G(t, s)fαp(s)x

(
σ (s)

)�s + A
m∑

k=

Iα(k)x(tk) + λ

≥ μ

[

fα + A
m∑

k=

Iα(k)

]

+ λ

≥ μ + λ.

This implies that μ ≥ μ + λ, and this is a contradiction. Therefore (.) holds.
On the other hand, by using the second inequality of (i), we have

f (t, x) ≤
[

 – B
m∑

k=

Iβ (k)

]

p(t)x, t ∈ [, T]T, x ∈ [δβ ,β].

We assert that

‖�x‖ ≤ ‖x‖ for x ∈ K ∩ ∂�. (.)

In fact, for any x ∈ K ∩ ∂�, then δβ = δ‖x‖ ≤ x(t) ≤ β , we have

(�x)(t) =
∫ σ (T)


G(t, s)f

(
s, x

(
σ (s)

))�s +
m∑

k=

G(t, tk)Ik
(
x(tk)

)

≤
(

 – B
m∑

k=

Iβ (k)

)∫ σ (T)


G(t, s)p(s)x

(
σ (s)

)�s + B
m∑

k=

Iβ (k)x(tk)

≤
[(

 – B
m∑

k=

Iβ (k)

)∫ σ (T)


G(t, s)p(s)�s + B

m∑

k=

Iβ (k)

]

‖x‖

= ‖x‖.

Therefore, ‖�x‖ ≤ ‖x‖.
It follows from Remark ., (.), and (.) that � has a fixed point x ∈ K ∩ (� \ �).
In a similar way, we can prove the result by Theorem . if condition (ii) holds. �

Theorem . Suppose there exist  < α < ρ < β such that

f (t, x) ≥  and Ik(x) ≥ , t ∈ [, T]T, x ∈ [δα,β].

Then the problem (.) has at least two positive solution if one of the following two condi-
tions holds:

(i) fα + A
∑m

k= Iα(k) ≥ , f ρ + B
∑m

k= Iρ(k) < , fβ + A
∑m

k= Iβ (k) ≥ ;
(ii) f α + B

∑m
k= Iα(k) ≤ , fρ + A

∑m
k= Iρ(k) > , f β + B

∑m
k= Iβ (k) ≤ .

Proof We only prove the result when condition (i) holds. In a similar way we can obtain
the result if condition (ii) holds.

Define �, � as in Theorem . and define

� =
{

x ∈ X : ‖x‖ < ρ
}

.
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Similar to the proof of Theorem ., we can prove that

x �= �x + λe for x ∈ K ∩ ∂� and λ > , (.)

x �= �x + λe for x ∈ K ∩ ∂� and λ > , (.)

where e ≡  ∈ K , and

‖�x‖ < ‖x‖ for x ∈ K ∩ ∂�. (.)

Thus we can obtain the existence of two positive solutions x and x by using Theo-
rem . and Remark ., respectively. It is easy to see that α ≤ ‖x‖ < ρ < ‖x‖ ≤ β . �

Theorem . Suppose that there exist positive  < α < β < α < β < · · · < αn < βn such
that

f (t, x) ≥  and Ik(x) ≥ , t ∈ [, T]T, x ∈ [δα,βn].

Then the problem (.) has at least n positive solutions xi ( ≤ i ≤ n) satisfying αi ≤ ‖xi‖ ≤
βi,  ≤ i ≤ n, if one of the following two conditions holds:

(i) fαi + A
∑m

k= Iαi (k) ≥ , f βi + B
∑m

k= Iβi (k) ≤ ;
(ii) f αi + B

∑m
k= Iαi (k) ≤ , fβi + A

∑m
k= Iβi (k) ≥ .

Remark . In Theorem ., assume (i) and (ii) are replaced by
(i) fαi + A

∑m
k= Iαi (k) > , f βi + B

∑m
k= Iβi (k) < ;

(ii) f αi + B
∑m

k= Iαi (k) < , fβi + A
∑m

k= Iβi (k) > .
Then the problem (.) has at least n –  positive solutions.

3 Application
In this section, we are going to apply our main existence results obtained in Section  to
some illustrating examples.

Theorem . Suppose that f (t, x) ≥  and Ik(x) ≥ , t ∈ [, T]T, x ∈R
+ = [,∞). Then the

problem (.) has at least one positive solution if one of the following two conditions holds:
(i) f + A

∑m
k= I(k) > , f ∞ + B

∑m
k= I∞(k) < ;

(ii) f  + B
∑m

k= I(k) < , f∞ + A
∑m

k= I∞(k) > .

Proof It is a direct consequence of Theorem . taking α small enough and β large enough,
respectively. �

In particular, we have the following results, the main results of [].

Corollary . Suppose that f (t, x) ≥  and Ik(x) ≥ , t ∈ [, T]T, x ∈ R
+. Then the problem

(.) has at least one positive solution if one of the following two conditions holds:
(i) f = ∞ or

∑m
k= I(k) = ∞, f ∞ = ,

∑m
k= I∞(k) = ;

(ii) f∞ = ∞ or I∞(k) = ∞, f  = ,
∑m

k= I(k) = .
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Example . We consider the following problem on T:

⎧
⎪⎨

⎪⎩

x�(t) + p(t)x(σ (t)) = (x(σ (t)))a + (x(σ (t)))b, t ∈ J , t �= tk ,
x(t+

k ) – x(t–
k ) = (x(t–

k ))a′ + (x(t–
k ))b′ , k = , , . . . , m,

x() = x(σ (T)),
(.)

where p : [, T]T → (,∞) is right-dense continuous,  < a, b < ,  < a′, b′ <  or a, b > ,
a′, b′ > .

Then it is easy to see that

f = ∞,
m∑

k=

I(k) = ∞, f ∞ = ,
m∑

k=

I∞(k) = 

for  < a, b < ,  < a′, b′ < ,

f∞ = ∞, I∞(k) = ∞, f  = ,
m∑

k=

I(k) = 

for a, b > , a′, b′ > .

Therefore, by Corollary ., it follows that the problem (.) has at least one positive
solution.

Theorem . Suppose that f (t, x) ≥  and Ik(x) ≥ , t ∈ [, T]T, x ∈R
+. Then the problem

(.) has at least two positive solutions if one of the following two conditions holds:
(i) f + A

∑m
k= I(k) > , f∞ + A

∑m
k= I∞(k) >  and there exists a ρ >  such that

δρ ≤ x ≤ ρ implies

f (t, x)/p(t)x + B
m∑

k=

Iρ(k) < , t ∈ [, T]T;

(ii) f  + B
∑m

k= I(k) < , f ∞ + B
∑m

k= I∞(k) <  and there exists a ρ >  such that
δρ ≤ x ≤ ρ implies

f (t, x)/p(t)x + A
m∑

k=

Iρ(k) > , t ∈ [, T]T.

Corollary . Suppose that f (t, x) ≥  and Ik(x) ≥ , t ∈ [, T]T, x ∈R
+. Then the problem

(.) has at least two positive solutions if one of the following two conditions holds:
(i) f = ∞ or

∑m
k= I(k) = ∞, f∞ = ∞ or I∞(k) = ∞, and there exists a ρ >  such that

δρ ≤ x ≤ ρ implies

f (t, x)/p(t)x + B
m∑

k=

Iρ(k) < , t ∈ [, T]T;

(ii) f ∞ = ,
∑m

k= I∞(k) = , f  = ,
∑m

k= I(k) = , and there exists a ρ >  such that
δρ ≤ x ≤ ρ implies

f (t, x)/p(t)x + A
m∑

k=

Iρ(k) > , t ∈ [, T]T.
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Example . We consider the following problem on T:

⎧
⎪⎨

⎪⎩

x�(t) + p(t)x(σ (t)) = q(t)[(x(σ (t)))a + (x(σ (t)))b], t ∈ J , t �= tk ,
x(t+

k ) – x(t–
k ) = akx(t–

k ), k = , , . . . , m,
x() = x(σ (T)),

(.)

where  < a <  < b, p : [, T]T → (,∞) is right-dense continuous and q : [, T]T → (,∞)
is continuous such that

max
t∈[,T]T

q(t)
p(t)

< δ
(
 – mBa+)

sup
x∈(,∞)

x
xa + xb

holds, where a+ = max{a, a, . . . , am}.
In fact, f (t, x) = q(t)(xa + xb), it is easy to see that

f = lim
x→+

inf
f (t, x)

x
= ∞, f∞ = lim

x→∞ inf
f (t, x)

x
= ∞, uniformly for t ∈ [, T]T.

Set

F(x) =
x

xa + xb , x > ,

then F(+) = F(∞) = , so there exists a ρ >  such that

F(ρ) = sup
x∈(,∞)

F(x).

So, for δρ ≤ x ≤ ρ , we have

f (t, x)/p(t)x + B
m∑

k=

Iρ(k) =
q(t)
p(t)

(
xa + xb

x

)

+ mBa+

≤ max
t∈[,T]T

q(t)
p(t)

(
ρa + ρb

δρ

)

+ mBa+ < .

Therefore, together with Corollary ., it follows that the problem (.) has at least two
positive solutions.
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