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1 Introduction
The theory of dynamic equations on time scales has been a new important mathematical
branch [1-3] since it was initiated by Hilger [4]. At the same time, the boundary value
problems of impulsive dynamic equations on time scales have received considerable at-
tention [5—21] since the theory of impulsive differential equations is much richer than the
corresponding theory of differential equations without impulse effects [22—-24].

In [18], by using the Guo-Krasnoselskii fixed point theorem, when the nonlinearity f
and the pulse function are positive, Wang considered the existence of one or two positive

solutions to the following PBVPs of impulsive dynamic equations on time scales:

x2(8) + pO)x(o (1) = f(t,x(0(t), te]:=[0,Tlr,t#t,
x(t]) - x(60) = L(x(5)),  k=1,2,...,m, (L.1)
x(0) = x(a(T)).

In [20], by using the Schaefer fixed point theorem, Wang and Weng obtained the exis-
tence of at least one solution to the problem (1.1).

Motivated by the results mentioned above, in this paper, we shall obtain the existence of
single and multiplicity positive solutions to the problem (1.1) where T is an arbitrary time
scale, T >0 is fixed, 0,T € T, f € C(J x [0,00),R), Iy € C([0,00),R), p: [0, Tl — (0,00)
is right-dense continuous, € (0, T)r, 0 < < --- < t,, < T, and for each k = 1,2,...,m,
x(tf) = limy,_, o+ x(tx + h1) and x(£;) = limy,_,o- x(¢x + /1) which represent the right and left
limits of x(¢) at ¢ = ;. The main tool used in this paper is the classical fixed point theorem

for operators on a cone.
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It is worth noticing that: (i) The nonlinearity f and the pulse function in this paper are
not positive, so our hypotheses on the nonlinearity f and the pulse function are weaker
than condition of [18]. (ii) For the case Ix(x) =0, k = 1,2,...,m, the problem (1.1) reduces
to the problem studied by [25, 26]; for the case p(f) = 0, the problem (1.1) reduces to the
problem studied by [12, 19]; for the case p(t) = 0 and T = Z, the problem (1.1) reduces to
the problem studied by [27]. This paper’s ideas come from [28].

Throughout this work, we assume the knowledge of time scales and time-scale notation,
first introduced by Hilger [4]. For more information on time scales, please see the texts by
Bohner and Peterson [2, 3].

In the remainder of this section, we state the following fixed point theorem [29].

Theorem 1.1 [29] Let X be a Banach space and K is a cone in X. Assume 21, Q, are open
subsets of X with 0 € Q, Q1 C Q. Let

O:KN(Q\Q)— K

be a continuous and completely continuous operator such that
(i) 1P|l < llxll for x € K N 082;
(ii) there exists e € K \ {0} such that x # ®x + le forx € KN 3dQy and A > 0.
Then ® has a fixed point in K N (S \ Q).

Remark 1.1 In Theorem 1.1, if (i) and (ii) are replaced by

(i) |Px] < ||lx]| for x € K N 0Qy;

(ii) there exists e € K \ {0} such that x # ®x + Le forx € KN 9dR; and A > 0,
then ® has also a fixed point in K N (23 \ ©1).

2 Main results
Throughout the rest of this paper, we always assume that the points of impulse # are right-
dense for each k=1,2,...,m.

We define

PC = {x € [O,O'(T)]T — R:xr € CUi,R),k=0,1,2,...,m,and there exist
x(t,ﬁ) and x(t,;) with x(t,:) =x(te), k=1, 2,...,m},
where xy is the restriction of x to J = (¢, tis1lT C (0,0 (T)]T,k=1,2,...,m,and Jy = [0, 1],
bs1 = U(T)
Let
X= {x:x € PC,x(0) = x(a(T))}

with the norm [|x]| = sup, (o, (7)), [%(¢)], then X is a Banach space.

Lemma 2.1 [18] Suppose h: [0, Tt — R is rd-continuous, then x is a solution of

o(T) m
x(t) = /0 Gt )h(s)As+ Y Gt t)lk(x(t)),  t€[0,0(T)]y

k=1
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where
ep(s:t)ep(@(T),0)
Glts)= ] «oDoT” 0<s<t=o(T),
) e,(s,t
semo  0st<s=a(D)

if and only if x is a solution of the boundary value problem

x2(t) + p(t)x(o (£)) = h(t),
x(Eg) = x(t) = Ie(x (),
x(0) = x(a (T)).

te]rt#tk;
k=1,2,...,m,

Lemma 2.2 Let G(t,s) be defined as in Lemma 2.1, then

1 ep(0(T),0)

T o@(D)0-1- Gt,s )_W:B forallt,s € [0,0(T)],.

Remark 2.1 Let G(¢,s) be defined as in Lemma 2.1, then f(;T(T) G(t,s)p(s)As =1.

Let
K={xeX:x(t)>|x|,t € [0,0(T)],}
where &

= % € (0,1). It is not difficult to verify that K is a cone in X.

For convenience, we denote

f(t,x) 0 I (x)
li I = l —
f x—1>r(l)l+ Sup ter[r(l)aT]T p)x’ () = l , SUP X
t,
fo = lim inf min A x)’ I(k) = lim in fM
=0t te[o, Ty p(t)x x—>0% x
&%) . ( )
fe= xlgrolo sup tEr[I(l)aT]T oS I®(k) = 11m sup —
f(t,%) k(x)
oo = xlirgo 1nfz:eI[I(‘)l Tl p(t)x Lol = x1—> inf
t, 1
f*= sup max VAGL) I"(k) = sup &;
xesu,u] t€(0,TIT P(t)x xelsuul ¥
t, 1
fu= inf YAGL) I,(k)= inf &

min ,
xeuul te[0,T1y p(t)x xelsuu] X

Now we state our main results.

Theorem 2.1 Suppose there exist 0 < o < B such that

f(t)x) >0 and Ik(x) >0, te [07 T]'I[‘vx € [8051 IB]

Then the problem (1.1) has at least one positive solution if one of the following two condi-
tions holds:

() fa+AY L) =1, fP + BY L IP(k) < 1;

(i) f« +sz=11"‘(k) <Lfp+AY L Ig(k) > 1.
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Proof We define an operator ® : K — X by
a(T) m
O(x)(t) = /(; G(t,s)f(s,x(a(s)))As + Z G(t, tk)lk(u(tk)), te [0,0’(T)],ﬂ,.
k=1

It is obvious that fixed points of @ are solutions of the problem (1.1). Similar to [18],
® : K — X is completely continuous.
Define the open sets

Q= {xeX: [l%]| <C\!},

Q= {xeX: [l <ﬁ}.

Firstly, we claim that ® : K N (2, \ ;) — K.
In fact, forany x € KN (92 \ ©1), we have o <x < 8, by Lemma 2.2

o(T) m
| Px|| < B|:f0 f(sx(o(s)))As+ ZI"(x(tk))j|

k=1

and

o(T) m
(®x)(£) = fo G(t,)hu(s)As + Y Glt, )i (x(80))

k=1

o(T) m
> A [ /0 F(sx(0 )25 + sz(x(m)}.

k=1

So

A
(Px)(t) > 3 |Px|| =§||Px||, ie,dxeK.

Therefore, ®: K N (Q \ 1) = K.
Secondly, we prove the result provided condition (i) holds.
Since

ft,x) = fup(t)x, Li(x) > I,(k)x, k=1,2,...,m,x € [da,a].
Let e =1, then e € K. We assert that
x#Ox+re forxe KNa;and A > 0. (2.1)
If not, there would exist xo € K N 9£2; and Ag > 0 such that xy = ®xy + Age.
Since xg € KN 3Ry, then da = 8]|xo || < x0(£) < . Let = minyeo,6(71 %o (t), then for any
t € [0,0(T)]r, by the first inequality of (i) we have

xo(t) = (Pxo)(t) + Ao

o(T) m
= /0 G(6,5)f (s,%0(c (5))) As + Z G(&, t) Ik (%o (1)) + Ao

k=1
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o(T) m
> /0 Glt, $)faup(s)x0(0 () As + A L (K)x(ti) + ko

k=1

> /L|:fa +AZL,(/()] + 20

k=1
> U+ Ag.

This implies that i > u + A, and this is a contradiction. Therefore (2.1) holds.
On the other hand, by using the second inequality of (i), we have

fltx) < |:1—BZIﬁ(k)i|p(t)x, t € [0, Tr,x € [88, B
k=1

We assert that
[[Px|| < |lx|] forxe KNaL,. (2.2)

In fact, for any x € K N 32, then §8 = §||x|| < x(¢) < B, we have

o(T) m
(®x)(2) = /0 Gt,5)f (s,2(c(5))) As+ Y G(t, ti) i (¥(tx))

k=1

m o(T) m
< (1 -B Zlﬂ (k)) / G(t, s)p(s)x(a (s))As +B Zlﬁ(k)x(tk)
k=1 0

k=1

m a(T) m
< |:(1 - BZ[ﬁ(k)) / G(t,s)p(s)As + B Zlﬂ(k):| llxll
k=1

0 k=1

= [l

Therefore, || Px|| < ||x]|.
It follows from Remark 1.1, (2.1), and (2.2) that ® has a fixed point x € K N (2, \ Q).
In a similar way, we can prove the result by Theorem 1.1 if condition (ii) holds. O

Theorem 2.2 Suppose there exist 0 < a < p < 8 such that
ft,x) >0 and Ii(x)>0, tel0,T]r,xe€[ba,p].

Then the problem (1.1) has at least two positive solution if one of the following two condi-
tions holds:

() fa+ AD L Lo(k) =1, P +BY [ 1P (k) <1, fp + AY L Ip(k) > 1;

(i) f*+BY L (k) <1/, +AY L L,(k) > 1, fP + BY ;" 1P (k) <1.

Proof We only prove the result when condition (i) holds. In a similar way we can obtain
the result if condition (ii) holds.
Define Q1, £, as in Theorem 2.1 and define

Qs ={xeX:|xll<p}
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Similar to the proof of Theorem 2.1, we can prove that

xZPx+ie forxe KNI and A >0, (2.3)

x#Px+Xre forxe KNaQ,and A >0, (2.4)
where e=1 € K, and
[|®x|| < ||x|| forx e K Nas. (2.5)

Thus we can obtain the existence of two positive solutions x; and x, by using Theo-

rem 1.1 and Remark 1.1, respectively. It is easy to see that & < ||lx1]| < p < [|x2]] < B. g

Theorem 2.3 Suppose that there exist positive 0 < a1 < B1 <y < o <+ <, < By, such
that

ft,x) >0 and I(x)>0, t€][0,T]r,x€ [Sa,B]

Then the problem (1.1) has at least n positive solutions x; (1 < i < n) satisfying o; < ||x;|| <
Bi» 1 <i<n,ifone of the following two conditions holds:

() fo, + A0 Lo (K) > 1, fPi + BY 1L TPi(k) < 1;

(ii) fo +BY L I%(k) <1, f5, +AY I, (k) > 1.

Remark 2.2 In Theorem 2.3, assume (i) and (ii) are replaced by
() fo, +AD L L, (k) > 1, fPi + BY 1L TPi(k) < 1
(ii) fo+BY Jo I1%(k) <1, fg, + A Yy Ig (k) > 1.
Then the problem (1.1) has at least 2# — 1 positive solutions.

3 Application
In this section, we are going to apply our main existence results obtained in Section 2 to

some illustrating examples.

Theorem 3.1 Suppose that f(t,x) > 0 and Iy(x) > 0, t € [0, T, x € R* = [0, 00). Then the
problem (1.1) has at least one positive solution if one of the following two conditions holds:
(M) fo+ AY L do(k)>1,f® +BY L I°(k) < 1;
(ii) fO+BY 1 I0k) <1, foo + A Y 11 Lo (K) > 1.

Proof Ttisadirect consequence of Theorem 2.1 taking « small enough and g large enough,

respectively. O
In particular, we have the following results, the main results of [18].

Corollary 3.1 Suppose thatf(t,x) > 0 and It(x) > 0, t € [0, T, x € R*. Then the problem
(1.1) has at least one positive solution if one of the following two conditions holds:

(i) fo=o000rd JL Io(k) =00, f>*=0,> " 1K) =0;

(i) foo =00 0r Ing(k) = 00, f0 =0, Y L, I°(k) = 0.
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Example 3.1 We consider the following problem on T:

x2(8) + p(O)x(o (£) = k(o (1)* + (x(0 (2)?, te],t+t,
x(t)) —x(t) = () + ()Y, k=1,2,...,m, (3.1)
x(0) = (o (1)),

where p : [0, T]t — (0, 00) is right-dense continuous, 0 <a,b<1,0<a’,b' <lora,b>1,
a,b >1.

Then it is easy to see that

fo=oo, Y Llk)=oo,  f®=0, Y I®(k)=0
k=1 k=1

forO<a,b<1,0<da,b <1,
m
Jfoo =00, I (k) = o0, f=o0, Zlo(k)=0
k=1
fora,b>1,a,b >1.

Therefore, by Corollary 3.1, it follows that the problem (3.1) has at least one positive

solution.

Theorem 3.2 Suppose that f(t,x) > 0 and I(x) > 0, t € [0, T]t, x € R*. Then the problem
(1.1) has at least two positive solutions if one of the following two conditions holds:
(W) fo+ AY i do(k) > 1, foo + A}  Ino(k) > 1 and there exists a p > 0 such that
3p <x < p implies

f&®)pt)x+BY I°(k) <1, tel0,Tlr;
k=1

(ii) fO+BY 1 I°(k) <1,/ + BY -, I°°(k) < 1 and there exists a p > O such that
3p <x < p implies

f&x)pt)x+AY 1,(k)>1, te[0, Ty
k=1
Corollary 3.2 Suppose thatf(t,x) > 0 and Iy(x) > 0, t € [0, T, x € R*. Then the problem
(1.1) has at least two positive solutions if one of the following two conditions holds:
(i) fo=00o0r > ;1 Io(k) = 00, foo = 00 0r I (k) = 00, and there exists a p > 0 such that
3p <x < p implies

f&®)p)x+BY I°(k) <1, tel0,Tlr;
k=1

(ii) £ =0, > 1K) = 0,0 =0, Y [, I°(k) = 0, and there exists a p > 0 such that
3p <x < p implies

f&x)pt)x+AY L(k)>1, te[0,Tlr.
k=1
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Example 3.2 We consider the following problem on T:

x2(t) + p(O)x(o (t) = q(O[(x(o (D)) + k(o ()], €], t#t,
x(ty) —x(ty) = arx(ty), k=1,2,...,m, (3.2)
x(0) = x(o (7)),

where0<a<1<b,p:[0,T]r — (0,00) is right-dense continuous and g : [0, Tt — (0, 00)
is continuous such that
q(t)

max — <d8(1—mBa*) su
tel0,T]r p(t) ( ) xe(o};) x4 + xb

holds, where a* = max{ay,as,...,d,}.
In fact, f(t,%) = q(t)(x” + x°), it is easy to see that
S (&%) f(t,%)

fo = lim inf =00, foo = lim inf =00, uniformly for ¢ € [0, T]y.

x—07% X x—>00 X

Set
x
Flx)= ——, x>0,
) x% +xb
then F(0+) = F(00) = 0, so there exists a p > 0 such that

F(p)= sup F(x).

x€(0,00)

So, for §p <x < p, we have

“ ONES +xb .
S+ BY 1709 - M( ' )+mBa

- @(p”wb

< max ) +mBa* < 1.
te(0,TIr p(t) 8p

Therefore, together with Corollary 3.2, it follows that the problem (3.2) has at least two
positive solutions.
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