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1 Introduction

Let Q@ ={x € R" : |x| <1} be the unit ball, n > 3, 3Q = {x € R" : |x| = 1} be the unit sphere,
|x|> = x} + x5 + - -+ + 2. Further, let u(x) be a smooth function in the domain €, r = |x|,
0 = x/|x|. For any O < «, the expression

J*[u](x) = ﬁfo (r— 1) u(0)dr

is called the operator of order « in the sense of Riemann-Liouville [1]. From here on, we
denote J°[u](x) = u(x). Let m—-1l<a <m,m=1,2,...,

I = fu 9 (oK u
—_ = -, — =\ — |, k=1,2,....
ar Z r 0x; ark — ar ( ark-1

j-1

The operators

m

D (1) (x) = 14,

ar”
DY [u](x) = J™“ [% [M]i| (%)

are called the derivative of order « in the sense of Riemann-Liouville and Caputo, respec-
tively [1]. Further, let 0 < 8 <1, 0 < @ < 1. Consider the operator

Dayﬁ[u] (x) :]ﬂ(lfa) di](l’ﬁ)(l"")u(x).
r
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D*# is said to be the derivative of the order « in the Riemann-Liouville sense and of
type B.

We note that the operator D*# was introduced in [2]. Some questions concerning solv-
ability for differential equations of a fractional order connected with D*# were studied in
[3, 4]. Introduce the notations:

B*Pu](x) = r*D™ [u] (x),

1 1
B *[u](x) = —/ 1—8)*Ls™u(sx) ds.
(%) T /. (
In what follows, we denote

Bot,O — Ba,

B! = B2,

2 Statement of the problem and formulation of the main result
Consider in the domain €2 the following problem:

Au(x) =glx), x€Q, (2.1)

D*Plu](x) = f(x), xed. (2.2)

We call a solution of the problem (2.1), (2.2) a function u(x) € C*(2) N C(2) such that
B*P{u](x) € C(S2), which satisfies the conditions (2.1) and (2.2) in the classical sense. If
a =1, then the equality

BLYA — ri - i
ar dv
holds for all x € 92, here v is the vector of the external normal to dQ2. Therefore, the
problem (2.1), (2.2) is represented the Neumann problem in the case of « =1, and the
Dirichlet problem for the equation (2.1) in the case of « = 0.

It is known, the Dirichlet problem is undoubtedly solvable, and the Neumann problem

is solvable if and only if the following condition is valid [5]:

/ £ ds, - / gx) dx. 23)
IR Q

Problems with boundary operators of a fractional order for elliptic equations are studied
in [6, 7]. The problem (2.1), (2.2) is studied for the Riemann-Liouville and Caputo oper-
ators in the case of the Laplace equation, i.e., when g(x) = 0, in the same works [8, 9].
It is established that the problem (2.1), (2.2) is undoubtedly solvable for the case of the
Riemann-Liouville operator

D" =D% 0O<ac<l,
and in the case of the Caputo operator

D' =D% 0<a<l,
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the problem (2.1), (2.2) is solvable if and only if the condition

/ f(x)ds; =0
aQ

is valid, i.e., in this case, the condition for solvability of the problem (2.1), (2.2) coincides
with the condition of the Neumann problem.

Let v(x) be a solution of the Dirichlet problem

(2.4)

Av(x) = g1(x), x€€,
v(x) =f(x), x €02

The main result of the present work is the following.
Theorem 2.1 Let0<a <1,0<8<1,0<x<1,f(x) € C?(3Q), glx) € C*|(Q).
Then:

1) If0<a<1,0< B <1, then a solution of the problem (2.1), (2.2) exists, is unique and

is represented in the form of

u(x) = B [v](x), (2.5)
where v(x) is the solution of the problem (2.4) with the function

@) = a7 B [la"g] ().

(2) If0 < <1, B =1, then the problem (2.1), (2.2) is solvable if and only if the condition

_ |x|2—n_1 -2 pa,l 2
é)Qf(x)dsx-/971/1_2 |x| B [|x| g](x)dx (2.6)

is satisfied.
If a solution of the problem exists, then it is unique up to a constant summand and is
represented in the form of (2.5), where v(x) is the solution of the problem (2.4) with the

function
@) = B! [|x*g] (),

satisfying to the condition v(0) = 0.
(3) If the solution of the problem exists, then it belongs to the class C***(Q).

3 Properties of the operators B*# and B™

It should be noted that properties and applications of the operators B*, BY and B~ in the
class of harmonic functions in the ball  are studied in [10]. Later on, we assume that #(x)
is a smooth function in the domain 2. The following proposition establishes a connection

between operators B*# and B*.

Page 3 0of 18
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Lemma 3.1 Let0 <« <1,0 < 8 <1. Then the equalities

B*[u](x), 0<B<1,0<axl,

_ 3.1
B [u](x) - 4, 3D

B o) = B=10<a<1

hold for any x € Q.

Proof Denote

8 = ﬂ(l —Oé),
S=1-p)1-a).

Let 0 <& < 1,0 < 8 < 1. Using definition of the operator B*#, we obtain

d](l -B)(1— otu(x)

- d [* -
) { ') Jo r(ag) dr/ (r=s) (sG)dsdr}
_el L (r-tu) 1 5r-1

- { I'(81) %/‘ 81 T(8)dr / (z-5) M(Se)dsdt}

_« 1 1 d s -
=7 1"(51)1"(82)51;"{/ (r-7) /0( T-5) u(se)dsdr}

_ 1 1 i r r T }
-7 r'(61) F(Sz)dr{fo M(SQ)]; (r—o)"(r —s)? drdsy.

Consider the inner integral. If we change variables t = r + £(s — r), this integral can be

B [u)(x) = PO

represented in the form of

r 1
/ (r=1)" Yt —s)2 dr = (r —5)21#%71 / (1-—g)1 g2l g,
S 0

Since
! L(8))T(5,)
1- 81-1 52_1d =— 4 S =1-q,
/0 (1-&)1& & NOETS 1+82 a
we have

o.p A2 Y P
B [u](x)-r(51+52)dr{fo (r—3) u(s@)ds}

r* d

i [ e oreunas| - .

The first equality from (3.1) is proved.
If 8 =1, then
T a){/ (r—t)‘)‘ ‘E@)d‘[}

(r-t)* d
ra- a)dr{/ -« d— (t@)dr}

B ul(x) =
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o d 1-a ’
i F(lr—a)ﬁ{‘lr_a”‘o“ fo <f—f)‘“u<r9)dr}

- ril-ow)

= B"[u](x) -

{ r‘“u(0)+—/ (r-t)” u(t@)dr}

u(0)
rl-o)

The lemma is proved. O

This lemma implies that forany 0 < 8 <1, the problem (2.1), (2.2) can be always reduced

to the problems with the boundary Riemann-Liouville or Caputo operators.

Corollary 3.2 If0 <« <1, 8 =1, then the equality

u(0)

B (1)) = B )@) ~ 1~ s

is correct.

Lemma 3.3 If0 <« <1, B =1, then the equality
BY[u](0) =0
holds.

Proof Since

B“[u](x)—md / (r—8)"“u(sh)ds

l-«o

=m | (1—5)_au(§x)d§

rod ! u
TR /0 (1 - &) “u(Ex) de,

by virtue of smoothness of the function u(x) at x — 0, the second integral converges to
zero.

Then the equality (3.2) implies

timy B o) = i B0)) - |
l1-« 1 i u(0)
“Ta- a)imé (=9 ulExn)ds - 2
l-a 1 i u(0)
m_a)”(o)/o (-8 dt - 52 =0,

The lemma is proved. d

Page 5 of 18
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Lemma 3.4 Let 0 <« < 1. Then the equality

1
u(x) = ﬁ /(; (1-1)* e B*[u](rx) dt (3.3)

holds for any x € Q.

Proof Letx € Q and ¢ € (0,1]. Consider the function

S [u](x) = ﬁ /0 (¢ - 1)t BY[u](tx) dt.

Represent 3;[u](x) in the form of

N 1 d Pe-o)2 .,
S [u](x) = m%{/o T B [u](rx)dr}.

o

Further, using definition of the operator B*, we have

Se[u](x)
1 d t(t_r)a - _o d ‘ —a
:r(l_a)E{ 0o al@) E/O (t-8) u(éx)dsdr}
_ 1 d[@-7) [7 i T=t
_F(a)F(l—a)Z{ p /O(f—é) u(§x)dé .

+lﬂtu—rrﬁijj(r—srﬂu@x)der}

_l"(a)l"(l—a)dt{/o (t-1) /O(r £) M(éx)dédr}

_ 1 d t ¢ . D
- rrim |, e [ oo aas,

It is easy to show that
t
f (t-1) Nt -&)dr =T(a)I'A - ).
&

Then

d t
Slulw) = & [ (e de ()
tJo

If now we suppose ¢ = 1, then

1
u(x) = ﬁ /0 (1-1)* B [u](rx) dx.

The lemma is proved. d

Page 6 of 18
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Using connection between operators B* and B, one can prove the following.

Lemma 3.5 Let O < « < 1. Then the representation

(%) = u(0) ! 11 * 1B [u)(tx) d (3.4)
ulx)=u +m/0(—t) T B u](tx)dt .

is valid for any x € Q.

Proof Using the equality (3.3), taking into account (3.2), we obtain

1
u(e) = ﬁ /0 (= )T B [u) (rx) d

_ 1 ! a-1_-a M(O) "
) m./.o (=0 [F(1_a) +B. [u](rx)] dt
1 1

_ \a-1_-apa
F(a),/o Q-7)* B ul(tx)dz.

=u(0) +

The lemma is proved. d
Lemma 3.6 Let 0 <« < 1. Then the equalities

B [B"‘ [u]] (x) =B* [B’“ [u]] (%) = u(x) (3.5)
hold for any x € Q.

Proof Let us prove the first equality. Apply to the function B*[u], the operator B™*. By
definition of B™%, we have

1 1
B™¥|B%[u]|(x) = —/ (1-7)* v B*[u](rx) dt.
[ ] ') Jo
But by virtue of the equality (3.3), the last integral is equal to u(x), i.e.,
B [B"‘ [u]](x) = u(x).

Now let us prove the second equality. Applying the operator B to the function B~ [u](x),
we obtain

.. 4
T T(l-a)dr

B [B’“ [u]] €3] /o (r—=1) B *[u](tx)dt

r

s d r N 1 o
-t [ e [ amot et dsar .

Further, it is not difficult to verify correctness of the following equalities:

r“ d [ o
mafo (r—1)%u(st0)dr

B ¥ d [ f;‘_“ dg
s;sim_a);/o ("2) uE0)—+

Page 7 of 18
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r.asal d rs

bl _E)y@ d
s fo (57— &) u(£6) d
(sr)°

F(l o) d(sr)

/ (sr — &) u(£0) dit =B*[u](sx).

Here, it is taken into account 6 = m = Igl Therefore,

B"‘[B""[u]] (x)= — /(1 $)* L™ B* [u] (sx) ds.

['(a)
Hence, using the equality (3.3), we obtain
B [B_“ [u]](x) = u(x).
The lemma is proved. O
n [11], the following is proved.

Lemma 3.7 Let u(x) € CH(Q). Then the equality

& dulsx)
=u(0)+‘/0 [;xk ™ :|ds (3.6)

holds for any x € Q.

Since

n

ou(x) _ ou(x)
2 oxe | or

= B'[u](x) = B [u](x),
k=1

the equality (3.5) can be represented in the form of

1
u(x) = u(0) +/0 s B [u](sx) ds. (3.7)

Then Lemma 3.5 and the equality (3.6) imply the following.

Corollary 3.8 Let 0 <« <1. Then for any x € 2, the representation

u(x) = u(0) +

1 ! a—1_—-a po
F(oe)/o A-70) "t B ul(zx)dt

is valid. Hence, as the inverse operator to B, we can consider the following operator:
1
ul(x) = / t u(ex) dr.
0
Note that if

u(0) #0,

Page 8 of 18


http://www.boundaryvalueproblems.com/content/2013/1/93

Torebek and Turmetov Boundary Value Problems 2013, 2013:93 Page9of 18
http://www.boundaryvalueproblems.com/content/2013/1/93

then the operator B! is not defined in such functions. Let #(x) be a smooth function.
Obviously,

Bu](0) = 0.

Consider action of the operator B! to the function B![u](x). By definition of the operator
B71, we have

1
B‘I[Bl[u]](x):/ LB u (#x) dt.

0

By virtue of (3.7), the value of the last integral is equal to u(x) — #(0). Thus, the equality
B [Bl[u]](x) = u(x) — u(0)

holds.

Conversely, let #(0) = 0. Then the operator B! is defined for such functions, and

1 r
BI[B’I[M]](x) = r% [/0 s u(sx) ds] = r% |:/0 élu(ée)df] = u(x).

It means that
B! [B’l[u]](x) = u(x).
Thus, we prove the following.
Lemma 3.9 For any x € Q, the following equalities are valid:
(1) B [B'[u]](x) = u(x) - u(0);
(2) if u(0) = 0, then
B! [B_l[u]](x) = u(x).
Using Lemma 3.9 and connection between operators B* and BY, we get the following.

Corollary 3.10 Let 0 < o < 1. Then for any x € 2, the following equalities hold: if 0 < o < 1,
then

o[ par B u(0)
B [B*e [u]](x) = u(x) — 7F(1 — )
BB [ul](x) = u(x) - u(0);
if0<a <1and u(0) =0, then
BY [B_a[u]](x) = u(x).

Lemma 3.11 Let

Au(x)=gx), xeQ,0<a<l.
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Then for any x € 2, the equality

AB*[u](x) = x| B*[|x*g](x) (3.8)

holds.

Proof Let 0 <« < 1. After changing of variables, the function B*[u](x) can be represented

in the form of

B*u)(x) = ] (L= &) “u(ex) di + ]0 (F(f)_; u(Ex) d = 1,(x) + bx).
Since

Au(x) = g(x),

it is easy to show that

M) = o / (1- £)E2g(ex) de.

Further, if v(x) is a smooth function, then obviously,
0 bl
Alr—v(x) | = r— Av(x) + 2Av(x).
ar ar

That is why

o 1 _ —a
ab@=rd (99" openae va [ S0 e e,

dr 0 F(l— ) 0 F(l—Ol)
Consider the integral
1
| a-eresenas.
0

After changing of variables &r = 7, & = r"I7, the integral can be transformed to the fol-

lowing form:

1 r
] (1) E2(6x) dE = 1= / (r— 1) “r2g(z6) dr.
0 0

Then
d [ta-6=, Cd[
VE/O Ti_a® (6@ =rg [ /(r )™ (re)df}

= (o - 3)r*3 /r (r-1)t%g(t0)dr
0

+r°“2%/0 (r-1)“t’g(z0)dr.

Page 10 of 18
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Hence,

AL(x) + AL(x) = Ftl_—aa) o3 /r (r-1)“t’g(t0)dr

+(oe 3) a3
F(

/(r )" 1%g(10)dr

2
- dr/ (r—7)™“t°g(z0)dr

— _ —o 2
1_(1 a)d / (r—7)™“t°g(z0)dr

[ ety - el

Let now o = 1. In this case,

ou(x)
r

1 -
B'[u](x) = oy

’

and therefore.

d A d
ABMu](x) = A |:r u(x)] =r ulx) +2Au(x) = rM +2g(x).
ar or
On the other hand,
A |xr2r3[r2g(x>] = x| B! [|x*g] ).
or or
The lemma is proved. d

4 Some properties of a solution of the Dirichlet problem

Let v(x) be a solution of the problem (2.4). It is known (see [12]), if functionsf (x) and gi (x)
are sufficiently smooth, then a solution of the problem (2.4) exists and is represented in
the form of

1 1
v(x) = —— / G, nay)dy+ — / P(x,y)f () dsy, (4.1)
Wy JQ Wy Jaq
here w, is the area of the unit sphere, G(x,y) is the Green function of the Dirichlet problem
for the Laplace equation, and P(x, y) is the Poisson kernel.

In addition, the representations

1 2—-n
G(x,y) = [Ix yI* ‘Iylx— i ]
1- |«
P(?C;)’) = |x_y|n

take place.

Page 11 0of 18
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Lemma 4.1 Let v(x) be a solution of the problem (2.4).

Then
(1) if v(0) = 0, then
Pt ,
[ sords = [ P Zai)an @2)

(2) if the equality (4.2) is valid, then the condition v(0) = 0 is fulfilled for a solution of the
problem (2.4).

Proof Let a solution of the problem (2.4) exist. Represent it in the form of (4.1). We have
from the representation of the function G(x, y)

G0.) = [p*" 1]

and
P(0,y) = 1.

Then

1 1
00 === [ GONe D+ [ POf0)ds,

n

Hence,

[
[ rords = [ B—aian

The equality (4.2) is proved. The second assertion of the lemma is proved in the inverse

order. The lemma is proved. O

Lemma4.2 Letv(x) be a solution of the problem (2.4), and the function g, (x) be represented
in the form of

d
=(p—+2 . o=yl
a) (p o )g(y) o =1yl
Then the condition (4.2) can be represented in the form of

/ ) ds, = / 20) db. 3)
R Q

Proof Using representation of the function g;(y), we have

2-n _ 1
|2 a0
Q

n—

1 2-n
n-1 p _1( 0 >
- — +2 ) g(pE) dt dp.
/Op /|g=1 2 \Pap g(p§)dé dp

Page 12 0of 18
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Then

1 2—n_1 J 1 ! d
/ il (p— + 2) (0€)dp = — [P2 - 0"]55 18 w) dp
0 n-2 Y op

1
n-1 _
n_z[) ['0_10 ]g(Pé)d,O—Il+12.

Consider [;. After integrating by parts, we get

1 1
L= g dp,
1= /0 [np plg(p€)dp

what follows

]1+12
1 1
- — {f (n—2)p""g(p&)dp - 2/ pg(pé)dp+2/ pg(pS)dp}
Hence,
P -1 -
[ aoar- [ o [ sperdeds- [ soray
Q@ h-2 0 l&l=1 Q
The lemma is proved. O

5 The proof of the main proposition
Let 0 <a <1,0 < B <1, and u(x) be a solution of the problem (2.1), (2.2). In this case, by
Lemma 3.1, B*# = B*. Apply to the function u(x) the operator B%, and denote
v(x) = B*[u](x).
Then, using the equality (3.8), we obtain
Av(x) = AB*[u)(x) = x| B[ |x°g] (%) = @1 (x).
Since B*# = B%, it is obviously,
V(#)yo =B [u] (%), =f(%).
Thus, if u(x) is a solution of the problem (2.1), (2.2), then we obtain for the function
v(x) = B*[u](x)

the problem (2.4) with

a1(%) = x| B*[|x*g] (x).

Page 13 0f 18
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Further, since

£°g(€x) ds,

} Li-g)™
dr

d
@) = [+ B [eg] ) = [’_ 5] )y Ta-w

for g(x) € C**1(Q), we have g, (x) € CH(Q).

Then for gi(x) € C*(Q), f(x) € C***(3Q), a solution of the problem (2.4) exists and be-
longs to the class C**(Q) (see, for example, [13]).

Further, applying to the equality

v(x) = B*[u](x)
the operator B~*, by virtue of the first equality of the formula (3.5), we obtain
u(x) = B™*[v](x).

The last function satisfies to all the conditions of the problem (2.1), (2.2).
Really,

1 1
Aufx) = AB[](x) = @) / (1-1)* 2 Av(rx) dt
0
1
i ﬁfo A~ g (ea)de
1
= ﬁ/‘o (1 — -L-)Ot—l,L,Z—O!T—Z|x|—23a[|x|2g](l_x) dr

1
= ﬁ/o a- r)“‘lr“"|x|_2B°‘[|x|2g](tx) dr

C

1
- _ a-1_-a pa 2 _ 9 9 _
- F(a)/o 1-7)""t™B [le g](rx)dr 72 |x)2g (%) = g(x).

Now, using the second equality from (3.5), we obtain
Blu)(x)lyq = B*[B V] @), = v(®),q = f ().

So, the function u(x) = B™[v](x) satisfies equation (2.1) and the boundary condition
(2.2). Let now 0 < @ <1, B =1, and u(x) be a solution of the problem (2.1), (2.2). Apply
to the function u(x) the operator B¥! = B%, and denote v(x) = BY[u](x). In this case, we

obtain for the function v(x) the problem (2.4) with the function

a(x) = x| 2BY[|1x]*g] (x).

Since B¢ [u](0) = 0, the function v(x) must satisfy in addition to the condition v(0) = 0.
Arbitrary solution of the problem (2.4) at smooth f(x) and g(x) is represented in the
form of (4.1). And in order that this solution satisfies to the condition v(0) = 0, according

to Lemma 3.11, it is necessary and sufficient fulfillment of the condition (4.2).
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In our case, the condition (4.2) has the form

_ WP =1 a2
[ soras = [ 2R [

In this case, B*! = BY and, therefore, the condition (4.2) coincides with the condition
(2.6).

Thus, necessity of (2.6) is proved. This condition is also sufficient condition for existence
of a solution for the problem (2.1), (2.2).

In fact, if the condition (2.6) holds, then v(0) = 0, and the function

u(x) =B “[v](x) + C

satisfies to all conditions of the problem (2.1), (2.2). Let us check these conditions. Fulfill-

ment of the condition

Au(x) = g(x)

can be checked similarly as in the case of the proof of the first part of the theorem. Further,
using the equality (3.5) and connection between operators B* and BY, we get

B¢ [u](x) = B [B[v] + C](x)

- BY[B[V]](®) + BX[C]

o[ ot B~[v](0)
=B [B [v]](x) + F(liia) =v(x).

Hence,

B u)(0)],q = BE ] (%), = V(®)],q = ().

If ¢ =1, then
0
D' =D% = —
ar
and
b
B =r—.
ar

In this case,

22 a2 (.9
125 5] 0 = (3 +2 oo,

Then by virtue of Lemma 4.1, the solvability condition of the problem (2.1), (2.2) can be

rewritten in the form of

/mf(x) ds, = ‘/Qg(x) dx.
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It is the solvability condition for the Neumann problem. Further, since v(x) € C***(Q), the
function u(x) = B~*[v](x) also belongs to the class C**(Q2). The theorem is proved.

6 Example
Example LetO<a<1,B8=1and

g = x*, k=0,1,....

Then

-2 r 9
“2palf) 2 _ || / _p)ya f k2 g
|| [Ix*g](x) A (r-m) ot dr

a-2 r
_ %/ (r— 7)1 g
- 0
@K+ a [T pyag2kn
- B D g A (1— &) E% g

_(2k+2)[x*T(1-a)P(2k+2)  T'(2k+3)
T I'l-«) T@k+3-a) T@k+3-0)

|x|2k.

Since

1 1
2k+n-1( 2-n _ 1) dr = / 2k+1 _  2k+n-1 d
/(; r (r ) r A (}’ r ) r

_ 1 1 _ n-—2
C2k+2 2k+nm  (2k+2)(2k +n)’

we have

WP =1 a2 s ST,
[ orsbrdns- [ [ 2B [yIg %) dr d
Q n-2 lE]=1J0 n-2

L TEk+2) o,
TT(k+3-a) 2k+n)

Then the solvability condition for the problem (2.1), (2.2) has in this case the form

. T(@2k+2) W,
/mf(y)dSy T TQk+3-a) k+n)

For example, if f(x) = 1, this condition is not fulfilled. If

2k +2) 1
2k +3-a) 2k +n)’

flx) =

then the solvability condition of the problem is carried out. In this case, solving the Dirich-
let problem (2.4) with the functions

I'(2k
g1(x)Ele’zB"’l[lezg](x)zF (2k +3) [,

2k+3-a)

_ T(2k+2) 1
S&) = Ik+3-a)2k+n)’
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we obtain (see [14])

['(2k +3) || 2K +2 Ik +2) |x|k+2

Y0 Rk 3-0) @K+ 2@k e ) Tk +3-a) 2k en

Using the formula (2.5), we obtain the solution of the problem (2.1), (2.2)

u(x) = B [v](x)

T2k +2 2k+2 1 1
— ( + ) |x| / (1 _ S)a—182k+2—o¢ ds
Frk+3-a)2k+nT(a) Jy

Fk+2) |x**? 1 F@l'2k+3-a) || 2K+2

- T2k +3—a) 2k +n T'(a) '(2k + 3) T2k +2)(2k +n)’

Thus, the solution of the problem (2.1), (2.2) has the form

|x|2k+2

u(x): m +C.
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