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Abstract
Iterative schemas are ubiquitous in the area of abstract nonlinear analysis and still
remain as a main tool for approximation of fixed points of generalizations of
nonexpansive maps. The analysis of general iterative schemas, in a more general
setup, is a problem of interest in theoretical numerical analysis. Therefore, we propose
and analyze a general iterative schema for two finite families of asymptotically
quasi-nonexpansive maps in hyperbolic spaces. Results concerning �-convergence
as well as strong convergence of the proposed iteration are proved. It is instructive to
compare the proposed general iteration schema and the consequent convergence
results with that of several recent results in CAT(0) spaces and uniformly convex
Banach spaces.
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1 Introduction and preliminaries
Iterative schemas play a key role in approximating fixed points for nonlinear mappings.
Structural properties of the space under consideration are very important in establishing
the fixed point property of the space, for example, strict convexity, uniform convexity and
uniform smoothness etc.Hyperbolic spaces are general in nature and have rich geometri-
cal structures for different results with applications in topology, graph theory, multivalued
analysis andmetric fixed point theory. The study of hyperbolic spaces has been largelymo-
tivated and dominated by questions about hyperbolic groups, one of the main objects of
study in geometric group theory. Throughout the paper, we work in the setting of hyper-
bolic spaces, introduced by Kohlenbach [], which are prominent among non-positively
curved spaces and play a significant role in many branches of mathematics.
Nonexpansive mappings are Lipschitzian mappings with the Lipschitz constant equal

to . Moreover, the class of nonexpansive mappings is closely related to the class of strict
pseudo-contractions as nonexpansive mappings are -strictly pseudo-contractive. The
class of nonexpansivemappings enjoys the fixed point property and the approximate fixed
point property in various settings of spaces. The importance of this class lies in its power-
ful applications in initial value problems of differential equations, game-theoretic model,
image recovery and minimax problems.
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The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[] as an important generalization of the class of nonexpansive mappings. Therefore, it is
natural to extend such powerful results to the class of asymptotically nonexpansive map-
pings as a means of testing the limit of the theory of nonexpansive mappings. Most of the
results in fixed point theory guarantee that a fixed point exists, but they do not help in
finding the fixed point. As a consequence, iterative construction of fixed points emerged
as the most powerful tool for solving such nonlinear problems. It is worth mentioning
that iteration schemas are the only main tool for approximation of fixed points of vari-
ous generalizations of nonexpansive mappings. Several authors have studied approxima-
tion of fixed points of several generalizations of nonexpansive mappings using Mann and
Ishikawa iterations (see, e.g., [–]).
Moreover, finding commonfixed points of a finite family ofmappings acting on aHilbert

space is a problem that often arises in applied mathematics, for instance, in convex mini-
mization problems and systems of simultaneous equations. One of the most elegant ways
to prove that a partial differential equation or integral equation has a solution is to pose
it as a fixed point problem. Hence, the analysis of a general iteration schema, in a more
general setup, is a problem of interest in theoretical numerical analysis. Therefore, consid-
erable research efforts have been devoted to developing iterations for the approximation
of common fixed points of several classes of nonlinear mappings with a nonempty set of
common fixed points.
In , Schu [] established weak and strong convergence results for asymptotically

nonexpansive mappings using a modified Mann iteration. A unified treatment regarding
weak convergence theorems for asymptotically nonexpansive mappings was analyzed by
Chang et al. [] and consequently improved and generalized the results of Schu [] and
many more. See, for example, Bose [], Tan and Xu [] and many others.
In , Osilike and Aniagbosor [] obtained weak and strong convergence results for

asymptotically nonexpansivemappings using amodified Ishikawa iteration. Since the case
for two mappings has a direct link to minimization problems [], so this fact motivated
Khan and Takahashi [] to approximate common fixed points of two asymptotically non-
expansive mappings. For this purpose, they used a modified Ishikawa iteration. See also
[] and [].
In , Khan et al. [] introduced a general iteration schema for a finite family of

asymptotically quasi-nonexpansive mappings in Banach spaces. Khan et al. [] also pro-
posed and analyzed a general iteration schema for strong convergence results in CAT()
spaces. Inspired by the work of Khan et al. [], Kettapun et al. [] introduced a new
iterative schema for finding a common fixed point of a finite family of asymptotically
quasi-nonexpansivemappings in Banach spaces. Quite recently, Sahin and Basarir [] ap-
proximated common fixed points of a finite family of asymptotically quasi-nonexpansive
mappings by a modified general iteration schema in CAT() spaces. Recently, Yildirim
and Özdemir [] approximated a common fixed point of a finite family of asymptotically
quasi-nonexpansive mappings using a new general iteration in a Banach space setting as
follows.
Let {Tm}rm= be a family of asymptotically quasi-nonexpansive self-mappings on K . Sup-

pose that {αmn} is a real sequence in [ε,  – ε] for some ε ∈ (, ). Define a sequence {xn}
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by

xn+ = ( – αn)yn+r– + αnTn
 yn+r–,

yn+r– = ( – αn)yn+r– + αnTn
 yn+r–,

yn+r– = ( – αn)yn+r– + αnTn
 yn+r–,

...

yn+ = ( – α(r–)n)yn + α(r–)nTn
r–yn,

yn = ( – αrn)xn + αrnTn
r xn.

(.)

Let (X,d) be a metric space and K be a nonempty subset of X. Let T be a self-mapping
on K . Denote by F(T) = {x ∈ K : T(x) = x} the set of fixed points of T . A self-mapping T
on K is said to be

(i) nonexpansive if d(Tx,Ty) ≤ d(x, y) for x, y ∈ K ;
(ii) quasi-nonexpansive if d(Tx,p) ≤ d(x,p) for x ∈ K and for p ∈ F(T) �= ∅;
(iii) asymptotically nonexpansive if there exists a sequence kn ⊂ [,∞) and

limn→∞ kn =  and d(Tnx,Tny) ≤ ( + kn)d(x, y) for x, y ∈ K , n≥ ;
(iv) asymptotically quasi-nonexpansive if there exists a sequence kn ⊂ [,∞) and

limn→∞ kn =  and d(Tnx,p) ≤ ( + kn)d(x,p) for x ∈ K , p ∈ F(T), n≥ ;
(v) uniformly L-Lipschitzian if there exists a constant L >  such that

d(Tnx,Tny) ≤ Ld(x, y) for x, y ∈ K and n≥ .
It follows from the above definitions that a nonexpansivemapping is quasi-nonexpansive

and that an asymptotically nonexpansive mapping is asymptotically quasi-nonexpansive.
Moreover, an asymptotically nonexpansive mapping is uniformly L-Lipschitzian. How-
ever, the converse of these statements is not true, in general.
A hyperbolic space [] is ametric space (X,d) together with amappingW : X× [, ]→

X satisfying

() d
(
u,W (x, y,α)

) ≤ αd(u,x) + ( – α)d(u, y),

() d
(
W (x, y,α),W (x, y,β)

)
= |α – β|d(x, y),

() W (x, y,α) =W
(
y,x, ( – α)

)
,

() d
(
W (x, z,α),W (y,w,α)

) ≤ ( – α)d(x, y) + αd(z,w)

for all x, y, z,w ∈ X and α,β ∈ [, ].
The class of hyperbolic spaces in the sense of Kohlenbach [] contains all normed linear

spaces and convex subsets thereof but also Hadamard manifolds and CAT() spaces. An
important example of a hyperbolic space is the open unit ball B in a complex domain C

w.r.t. the Poincare metric (also called ‘Poincare distance’)

dB(x, y) := arg tanh

∣∣∣∣ x – y
 – xy

∣∣∣∣ = arg tanh
(
 – σ (x, y)

) 
 ,

where

σ (x, y) :=
( – |x|)( – |y|)

| – xy| for all x, y ∈ B.
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Note that the above example can be extended fromC to general complex Hilbert spaces
(H , 〈·〉) as follows.
Let BH be an open unit ball in H . Then

kBH (x, y) := arg tanh
(
 – σ (x, y)

) 
 ,

where

σ (x, y) =
( – ‖x‖)( – ‖x‖)

| – 〈x, y〉| for all x, y ∈ BH ,

defines a metric on BH (also known as the Kobayashi distance). The open unit ball BH to-
gether with this metric is coined as a Hilbert ball. Since (BH ,kBH ) is a unique geodesic
space, so one can define W in a similar way for the corresponding hyperbolic space
(BH ,kBH ,W ).
Ametric space (X,d) satisfying only () is a convexmetric space introduced byTakahashi

[]. A subset K of a hyperbolic space X is convex if W (x, y,α) ∈ K for all x, y ∈ K and
α ∈ [, ]. For more on hyperbolic spaces and a comparison between different notions of
hyperbolic space present in the literature, we refer to [, p.].
A hyperbolic space (X,d,W ) is uniformly convex [] if for all u,x, y ∈ X, r >  and

ε ∈ (, ], there exists δ ∈ (, ] such that d(W (x, y,  ),u) ≤ ( – δ)r whenever d(x,u) ≤ r,
d(y,u) ≤ r, d(x, y) ≥ εr.
A mapping η : (,∞) × (, ] → (, ] providing such δ = η(r, ε) for given r >  and ε ∈

(, ] is called modulus of uniform convexity. We call η monotone if it decreases with r
(for a fixed ε). CAT() spaces are uniformly convex hyperbolic spaces with modulus of
uniform convexity η(r, ε) = ε

 []. Therefore, the class of uniformly convex hyperbolic
spaces includes both uniformly convex normed spaces andCAT() spaces as special cases.
Inspired andmotivated by Khan and Takahashi [], Sahin and Basarir [], Shahzad and

Udomene [], Yildirim and Özdemir [] and Khan et al. [], we introduce a general
iteration schema in hyperbolic spaces and approximate common fixed points of two finite
families of asymptotically quasi-nonexpansive mappings as follows.
Let {Tm}rm= and {Sm}rm= be two finite families of asymptotically quasi-nonexpansive

self-mappings on K . Suppose that {αmn} and {βmn} are two double real sequences in [a,b]
for some a,b ∈ (, ). Define a sequence {xn} by

xn+ =W
(
Tn
 yn+r–,W

(
yn+r–,Sn yn+r–, θn

)
,αn

)
,

yn+r– =W
(
Tn
 yn+r–,W

(
yn+r–,Snyn+r–, θn

)
,αn

)
,

yn+r– =W
(
Tn
 yn+r–,W

(
yn+r–,Snyn+r–, θn

)
,αn

)
,

...

yn+ =W
(
Tn
r–yn,W

(
yn,Snr–yn, θ(r–)n

)
,α(r–)n

)
,

yn =W
(
Tn
r xn,W

(
xn,Snr xn, θrn

)
,αrn

)
, r ≥ ,n≥ ,

(.)

where θmn := βmn
–αmn

for eachm = , , , . . . , r.
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In , Lim [] introduced the notion of asymptotic center and, consequently, coined
the concept of �-convergence in a general setting of a metric space. In , Kirk and Pa-
nyanak [] proposed an analogous version of convergence in geodesic spaces, namely
�-convergence, which was originally introduced by Lim []. They showed that �-
convergence coincides with the usual weak convergence in Banach spaces and both con-
cepts share many useful properties.
Let {xn} be a bounded sequence in a hyperbolic space X. For x ∈ X, define a continuous

functional r(·, {xn}) : X → [,∞) by

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ X

}
.

The asymptotic center of a bounded sequence {xn} with respect to a subset K of X is
defined as follows:

AK
({xn}) = {

x ∈ X : r
(
x, {xn}

) ≤ r
(
y, {xn}

)
for any y ∈ K

}
.

This is the set of minimizers of the functional r(·, {xn}). If the asymptotic center is taken
with respect to X, then it is simply denoted by A({xn}). It is known that uniformly convex
Banach spaces and even CAT() spaces enjoy the property that ‘bounded sequences have
unique asymptotic centers with respect to closed convex subsets.’ The following lemma
is due to Leustean [] and ensures that this property also holds in a complete uniformly
convex hyperbolic space.

Lemma. [] Let (X,d,W ) be a complete uniformly convex hyperbolic space withmono-
tone modulus of uniform convexity. Then every bounded sequence {xn} in X has a unique
asymptotic center with respect to any nonempty closed convex subset K of X.

Recall that a sequence {xn} in X is said to �-converge to x ∈ X if x is the unique asymp-
totic center of {un} for every subsequence {un} of {xn}. In this case, we write �-limn xn = x
and call x a �-limit of {xn}. A mapping T : K → K is semi-compact if every bounded se-
quence {xn} ⊂ K , satisfying d(xn,Txn) → , has a convergent subsequence.
Let f be a nondecreasing self-mapping on [,∞) with f () =  and f (t) >  for all t ∈

(,∞). Then the two finite families {Tm}rm= and {Sm}rm=, with F =
⋂N

i=(F(Ti)∩ F(Si)) �= ∅,
are said to satisfy condition (A) on K if

d(x,Tx)≥ f
(
d(x,F)

)
or d(x,Sx)≥ f

(
d(x,F)

)
for x ∈ K

holds for at least one T ∈ {Tm}rm= or one S ∈ {Sm}rm=, where d(x,F) = inf{d(x, y) : y ∈ F}.
In the sequel, we shall need the following results.

Lemma. [] Let (X,d,W ) be a uniformly convex hyperbolic space withmonotonemod-
ulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a,b] for some a,b ∈ (, ). If

http://www.fixedpointtheoryandapplications.com/content/2013/1/238
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{xn} and {yn} are sequences in X such that lim supn−→∞ d(xn,x) ≤ c, lim supn−→∞ d(yn,x)≤ c
and limn−→∞ d(W (xn, yn,αn),x) = c for some c≥ , then limn→∞ d(xn, yn) = .

Lemma . [] Let K be a nonempty closed convex subset of a uniformly convex hyper-
bolic space, and let {xn} be a bounded sequence in K such that A({xn}) = {y} and r({xn}) = ρ .
If {ym} is another sequence in K such that limm→∞ r(ym, {xn}) = ρ , then limm→∞ ym = y.

Lemma . [] Let {an} and {bn} be sequences of nonnegative real numbers such that

an+ ≤ an + bn

for all n ≥  and
∑∞

n= bn < ∞, then limn→∞ an exists. Moreover, if there exists a subse-
quence {anj} of {an} such that anj →  as j → ∞, then an →  as n → ∞.

2 Some preparatory lemmas
From now onward, we denote F =

⋂N
i=(F(Ti) ∩ F(Si)) �= ∅ for two finite families {Tm}rm=

and {Sm}rm= of asymptotically quasi-nonexpansive self-mappings on K with sequences
{u()mn}∞m= and {u()mn}∞m= respectively. If we put umn =max{u()mn,u()mn}, then {umn}∞m= is a se-
quence in [, ) and limn→∞ umn = .
We start with the following lemma.

Lemma . Let K be a nonempty, closed and convex subset of a hyperbolic space X, and
let {Tm}rm= and {Sm}rm= be two finite families of asymptotically quasi-nonexpansive self-
mappings on K with a sequence {umn}∞m= satisfying

∑∞
n= umn < ∞,m = , , . . . , r. Then, for

the sequence {xn} in (.), limn→∞ d(xn,p) exists for all p ∈ F .

Proof Let sn =max≤m≤r umn for n ≥ . For any p ∈ F , it follows from (.) that

d(yn,p) = d
(
W

(
Tn
r xn,W

(
xn,Snr xn, θrn

)
,αrn

)
,p

)
≤ αrnd

(
Tn
r xn,p

)
+ ( – αrn)d

(
W

(
xn,Snr xn, θrn

)
,p

)
≤ αrnd

(
Tn
r xn,p

)
+ βrnd(xn,p) + ( – αrn – βrn)d

(
Snr xn,p

)
≤ αrn( + urn)d(xn,p) + βrnd(xn,p) + ( – αrn – βrn)( + urn)d(xn,p)

≤ ( + urn)d(xn,p)

and

d(yn+,p) = d
(
W

(
Tn
r–yn,W

(
yn,Snr–xn, θ(r–)n

)
,α(r–)n

)
,p

)
≤ α(r–)nd

(
Tn
r–yn,p

)
+ ( – α(r–)n)d

(
W

(
yn,Snr–yn, θ(r–)n

)
,p

)
≤ α(r–)nd

(
Tn
r–yn,p

)
+ β(r–)nd(yn,p) + ( – α(r–)n – β(r–)n)d

(
Snr–yn,p

)
≤ ( + u(r–)n)d(yn,p).

Similarly, we have

d(yn+r–,p) ≤ ( + un)d(yn+r–,p).

http://www.fixedpointtheoryandapplications.com/content/2013/1/238
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Therefore

d(xn+,p) ≤ ( + un)( + un) · · · ( + urn)d(xn,p)

= d(xn,p)( + un + un + · · · + urn + unun + unun + · · · + unurn

+ ununun + ununun + · · · + ununun · · ·urn)

≤ d(xn,p)
[
 +

(
r


)
sn +

(
r


)
sn +

(
r


)
sn + · · · +

(
r
r

)
srn

]

≤ ( + arsn)d(xn,p)

≤ earsnd(xn,p)

...

≤ ear
∑n

k= sk d(x,p)

≤ ear
∑∞

k= sk d(x,p) < ∞,

where ar =
(r

)
+

(r

)
+

(r

)
+ · · · + (r

r
)
.

Hence {xn} is bounded. Moreover, it follows from the above that

d(xn+,p) ≤ d(xn,p) + arsnM.

Taking infimum on p ∈ F on both sides in the above inequality, we have

d(xn+,F) ≤ d(xn,F) + arsnM.

Applying Lemma . to the above inequality, we have limn→∞ d(xn,p) exists for each p ∈ F .
Consequently, limn→∞ d(xn,F) exists. �

Lemma . Let K be a nonempty, closed and convex subset of a uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity η, and let {Tm}rm= and {Sm}rm=

be two finite families of uniformly L-Lipschitzian asymptotically quasi-nonexpansive self-
mappings of K with a sequence {umn}∞n= satisfying

∑∞
n= umn < ∞, m = , , . . . , r. Then, for

the sequence {xn} in (.), we have

lim
n→∞d(xn,Tmxn) = lim

n→∞d(xn,Smxn) =  for each m = , , . . . , r.

Proof It follows from Lemma . that limn→∞ d(xn,p) exists for each p ∈ F . Assume that
limn→∞ d(xn,p) = c > . Otherwise the proof is trivial.
Since umn →  as n→ ∞, therefore taking lim sup on both sides of the first two inequal-

ities in the proof of Lemma ., we have lim supn→∞ d(yn,p) ≤ c and lim supn→∞ d(yn+,
p) ≤ c. Similarly, we get that lim supn→∞ d(yn+r–,p) ≤ c, and so in total

lim sup
n→∞

d(yn+k–,p) ≤ c for each k = , , . . . , r – . (.)

Since sn =max≤m≤r umn for n≥ , therefore

d(xn+,p) ≤ ( + sn)r–d(yn,p).

http://www.fixedpointtheoryandapplications.com/content/2013/1/238
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This implies

c≤ lim inf
n→∞ d(yn+k–,p) for each k = , , . . . , r – . (.)

Combining (.) and (.), we have

lim
n→∞d(yn+k–,p) = c for each k = , , . . . , r – . (.)

For k =  in (.), we have

lim
n→∞d

(
W

(
Tn
r xn,W

(
xn,Snr xn, θrn

)
,αrn

)
,p

)
= c. (.)

Moreover,

d
(
W

(
xn,Snr xn, θrn

)
,p

) ≤ θrnd(xn,p) + ( – θrn)d
(
Snr xn,p

)
≤ θrnd(xn,p) + ( – θrn)( + urn)d(xn,p)

≤ ( + urn)d(xn,p)

implies that

lim sup
n→∞

d
(
W

(
xn,Snr xn, θrn

)
,p

) ≤ c. (.)

Obviously,

lim sup
n→∞

d
(
Tn
r xn,p

) ≤ c. (.)

With the help of (.)-(.) and Lemma ., we have

lim
n→∞d

(
Tn
r xn,W

(
xn,Snr xn, θrn

))
= . (.)

Again, for k = , , . . . , r – , (.) is expressed as

lim
n→∞d

(
W

(
Tn
r–(k–)yn+k–,W

(
yn+k–,Snr–(k–)yn+k–, θ(r–k+)n

)
,α(r–k+)n

)
,p

)
= c. (.)

With the help of (.) and the inequality

d
(
W

(
yn+k–,Snr–(k–)yn+k–, θ(r–k+)n

)
,p

)
≤ θ(r–k+)nd(yn+k–,p) + ( – θ(r–k+)n)d

(
Snr–(k–)yn+k–,p

)
≤ θ(r–k+)nd(yn+k–,p) + ( – θ(r–k+)n)( + u(r–k+)n)d(yn+k–,p)

≤ ( + u(r–k+)n)d(yn+k–,p),

we get that

lim sup
n→∞

d
(
W

(
yn+k–,Snr–(k–)yn+k–, θ(r–k+)n

)
,p

) ≤ c. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/238
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Further,

lim sup
n→∞

d
(
Tn
r–(k–)yn+k–,p

) ≤ c for k = , , . . . , r – . (.)

By (.)-(.) and Lemma ., we have

lim
n→∞d

(
Tn
r–(k–)yn+k–,W

(
yn+k–,Snr–(k–)yn+k–, θ(r–k+)n

))
=  (.)

for k = , , . . . , r – . For k = r, we have

lim
n→∞d(xn+,p) = lim

n→∞d
(
W

(
Tn
 yn+r–,W

(
yn+r–,Sn yn+r–, θn

)
,αn

)
,p

)
= c. (.)

Utilizing (.), the following estimate

d
(
W

(
yn+r–,Sn yn+r–, θn

)
,p

) ≤ θnd(yn+r–,p) + ( – θn)d
(
Sn yn+r–,p

)
≤ θnd(yn+r–,p) + ( – θn)( + un)d(yn+r–,p)

≤ ( + un)d(yn+r–,p)

implies

lim sup
n→∞

d
(
W

(
yn+r–,Sn yn+r–, θn

)
,p

) ≤ c. (.)

Also,

lim sup
n→∞

d
(
Tn
 yn+r–,p

) ≤ c. (.)

Hence (.)-(.) and Lemma . imply that

lim
n→∞d

(
Tn
 yn+r–,W

(
yn+r–,Sn yn+r–, θn

))
= . (.)

Observe that

d
(
xn+,Tn

 yn+r–
)
= d

(
W

(
Tn
 yn+r–,W

(
yn+r–,Sn yn+r–, θn

)
,αn

)
,Tn

 yn+r–
)

≤ ( – αn)d
(
W

(
yn+r–,Sn yn+r–, θn

)
,Tn

 yn+r–
)

+ αnd
(
Tn
 yn+r–,T

n
 yn+r–

)
.

On utilizing (.), this implies

lim
n→∞d

(
xn+,Tn

 yn+r–
)
= . (.)

Since a≤ αmn,βmn ≤ b, therefore (reasoning as above)

d(xn+,p) = d
(
W

(
Tn
 yn+r–,W

(
yn+r–,Sn yn+r–, θn

)
,αn

)
,p

)
≤ αnd

(
Tn
 yn+r–,p

)
+ ( – αn)d

(
W

(
yn+r–,Sn yn+r–, θn

)
,p

)
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≤ αnd(xn+,p) + αnd
(
xn+,Tn

 yn+r–
)

+ ( – αn)d
(
W

(
yn+r–,Sn yn+r–, θn

)
,p

)

=
αn

 – αn
d
(
xn+,Tn

 yn+r–
)
+ d

(
W

(
yn+r–,Sn yn+r–, θn

)
,p

)

≤ b
 – b

d
(
xn+,Tn

 yn+r–
)
+ d

(
W

(
yn+r–,Sn yn+r–, θn

)
,p

)
.

Taking lim inf on both sides of the above estimate and using (.), we have

c≤ lim inf
n→∞ d

(
W

(
yn+r–,Sn yn+r–, θn

)
,p

)
. (.)

Combining (.) and (.), we have

lim
n→∞d

(
W

(
yn+r–,Sn yn+r–, θn

)
,p

)
= c. (.)

By Lemma . and (.), we get

lim
n→∞d

(
yn+r–,Sn yn+r–

)
= . (.)

In a similar way, for k = , , . . . , r – , we compute

d
(
yn+k–,Tn

r–(k–)yn+k–
)

= d
(
W

(
Tn
r–(k–)yn+k–,W

(
yn+k–,Snr–(k–)yn+k–, θ(r–k+)n

)
,α(r–k+)n

)
,Tn

r–(k–)yn+k–
)

≤ ( – α(r–k+)n)d
(
W

(
yn+k–,Snr–(k–)yr+k–, θ(r–k+)n

)
,Tn

r–(k–)yn+k–
)

+ α(r–k+)nd
(
Tn
r–(k–)yn+k–,T

n
r–(k–)yn+k–

)
.

Utilizing (.), we have

lim
n→∞d

(
yn+k–,Tn

r–(k–)yn+k–
)
= , for k = , , . . . , r – . (.)

For k = r, we calculate

d
(
yn,Tn

r xn
)
= d

(
W

(
Tn
r xn,W

(
xn,Snr xn, θrn

)
,αrn

)
,Tn

r xn
)

≤ αrnd
(
Tn
r xn,T

n
r xn

)
+ ( – αrn)d

(
W

(
xn,Snr xn, θrn

)
,Tn

r xn
)
.

Now, utilizing (.), we have

lim
n→∞d

(
yn,Tn

r xn
)
= . (.)

Reasoning as above, we get that

d(yn,p) ≤ b
 – b

d
(
Tn
r xn, yn

)
+ d

(
W

(
xn,Snr xn, θrn

)
,p

)
.

Applying lim inf on both sides of the above estimate and utilizing (.) and (.), we have

c≤ lim inf
n→∞ d

(
W

(
xn,Snr xn, θrn

)
,p

)
. (.)
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Inequalities (.) and (.) collectively imply that

lim
n→∞d

(
W

(
xn,Snr xn, θrn

)
,p

)
= c. (.)

Consequently, Lemma . and (.) imply that

lim
n→∞d

(
xn,Snr xn

)
= . (.)

Note that

d
(
xn,Tn

r xn
) ≤ d(xn, yn) + d

(
yn,Tn

r xn
)

= d
(
xn,W

(
Tn
r xn,W

(
xn,Snr xn, θrn

)
,αrn

))
+ d

(
yn,Tn

r xn
)

≤ αrnd
(
xn,Tn

r xn
)
+ ( – αrn)d

(
W

(
xn,Snr xn, θrn

)
,xn

)
+ d

(
yn,Tn

r xn
)

≤ ( – θrn)d
(
xn,Snr xn

)
+


 – αrn

d
(
yn,Tn

r xn
)

≤
(
 – a
 – b

)
d
(
xn,Snr xn

)
+


 – b

d
(
yn,Tn

r xn
)
.

Utilizing (.) and (.), we have

lim
n→∞d

(
xn,Tn

r xn
)
= . (.)

Moreover,

d(xn, yn) = d
(
xn,W

(
Tn
r xn,W

(
xn,Snr xn, θrn

)
,αrn

))
≤ αrnd

(
xn,Tn

r xn
)
+ ( – αrn)d

(
xn,W

(
xn,Snr xn, θrn

))
≤ αrnd

(
xn,Tn

r xn
)
+ ( – αrn – βrn)d

(
xn,Snr xn

)
≤ bd

(
xn,Tn

r xn
)
+ ( – a)d

(
xn,Snr xn

)
.

By (.) and (.), we have

lim
n→∞d(xn, yn) = . (.)

Again, reasoning as above, we have

d(yn+k–,p) ≤ d
(
W

(
yn+k–,Snr–(k–)yn+k–, θ(r–k+)n

)
,p

)

+
b

 – b
d
(
Tn
r–(k–)yn+k–, yn+k–

)
.

Now, utilizing (.) and (.), we get

c≤ lim inf
n→∞ d

(
W

(
yn+k–,Snr–(k–)yn+k–, θ(r–k+)n

)
,p

)
. (.)

Thus (.) and (.) imply in total

lim
n→∞d

(
W

(
yn+k–,Snr–(k–)yn+k–, θ(r–k+)n

)
,p

)
= c,
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and by Lemma ., we conclude that

lim
n→∞d

(
yn+k–,Snr–(k–)yn+k–

)
=  for k = , , . . . , r – . (.)

Also,

d
(
yn+k–,Tn

r–(k–)yn+k–
)

≤ d(yn+k–, yn+k–) + d
(
yn+k–,Tn

r–(k–)yn+k–
)

= d
(
yn+k–,W

(
Tn
r–(k–)yn+k–,W

(
yn+k–,Snr–(k–)yn+k–, θ(r–k+)n

)
,α(r–k+)n

))
+ d

(
yn+k–,Tn

r–(k–)yn+k–
)

≤ d
(
yn+k–,Tn

r–(k–)yn+k–
)
+ α(r–k+)nd

(
yn+k–,Tn

r–(k–)yn+k–
)

+ ( – α(r–k+)n)d
(
yn+k–,W

(
yn+k–,Snr–(k–)yn+k–, θ(r–k+)n

))
≤ d

(
yn+k–,Tn

r–(k–)yn+k–
)
+ α(r–k+)nd

(
yn+k–,Tn

r–(k–)yn+k–
)

+ ( – α(r–k+)n – β(r–k+)n)d
(
yn+k–,Snr–(k–)yn+k–

)

≤ 
 – b

d
(
yn+k–,Tn

r–(k–)yn+k–
)
+
 – a
 – b

d
(
yn+k–,Snr–(k–)yn+k–

)
.

Now, utilizing (.) and (.), we have

lim
n→∞d

(
yn+k–,Tn

r–(k–)yn+k–
)
= , for k = , , . . . , r – . (.)

For k = , , . . . , r – , we have

d(yn+k–, yn+k–) ≤ d
(
yn+k–,Tn

r–(k–)yn+k–
)
+ d

(
Tn
r–(k–)yn+k–, yn+k–

)
.

Hence, (.) and (.) imply that

lim
n→∞d(yn+k–, yn+k–) = . (.)

Additionally,

d(xn, yn+k–) ≤ d(xn, yn) + d(yn, yn+) + · · · + d(yn+r–, yn+r–).

By (.) and (.), we have

lim
n→∞d(xn, yn+k–) = , for k = , , , . . . , r – . (.)

Let L = max≤j≤r Lj, where Lj is a Lipschitz constant for Tj. Since each Tj is uniformly
L-Lipschitzian, therefore we have

d
(
xn,Tn

mxn
) ≤ d(xn, yn+r–m–) + d

(
yn+r–m–,Tn

mxn
)

≤ d(xn, yn+r–m–) + d
(
yn+r–m–,Tn

myn+r–m–
)
+ d

(
Tn
myn+r–m–,Tn

mxn
)

≤ ( + L)d(xn, yn+r–m–) + d
(
yn+r–m–,Tn

myn+r–m–
)

for  ≤m ≤ r – .
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Now, it follows from (.) and (.) that

lim
n→∞d

(
xn,Tn

mxn
)
= . (.)

Moreover,

d(xn+,Tmxn+) ≤ d
(
xn+,Tn+

m xn+
)
+ d

(
Tn+
m xn+,Tn+

m yn+r–m
)

+ d
(
Tn+
m yn+r–m,Tmxn+

)
≤ d

(
xn+,Tn+

m xn+
)
+ Ld(xn+, yn+r–m) + Ld

(
Tn
myn+r–m,xn+

)
≤ d

(
xn+,Tn+

m xn+
)
+ Ld(xn+, yn+r–m) + Ld

(
Tn
myn+r–m, yn+r–m

)
.

Hence (.), (.) and (.) imply that d(xn+,Tmxn+) →  as n→ ∞ and hence

lim
n→∞d(xn,Tmxn) = . (.)

Similarly, we have

lim
n→∞d(xn,Smxn) = . (.)

This completes the proof. �

Remark . (i) It is worth mentioning that the asymptotic regularity (.)-(.) of the
iteration schema (.) can easily be extended to a more general class of weakly asymp-
totically quasi-nonexpansive (short: w.aq.n.) mappings. That is, T : K → K is a w.aq.n.
mapping if for all x ∈ K , there exists p ∈ K such that d(Tnx,p) ≤ ( + kn)d(x,p), where
kn is a sequence in [,∞) with limn→∞ kn = . Obviously, all self-mappings having a zero
vector and satisfying ‖T(x)‖ ≤ ‖x‖ are w.aq.n. mappings. On the other hand, if we define
T : [, ] → [, ] by T(x) = x, then F(T) = {, }. However, quasi-nonexpansivity fails for
, and hence quasi-nonexpansive mappings are properly included in the class of w.aq.n.
mappings. The aforementioned class of w.aq.n. mappings was introduced by Kohlenbach
and Lambov [] as it has nice logical behavior w.r.t. metatheorems [].
(ii) The above derived results (.)-(.) can also be achieved if the hypothesis re-

garding the existence of a common fixed point is weakened by the existence of common
approximate fixed points in some neighborhood of the starting point x ∈ K .
(iii) The seminal work of Kohlenbach and Leustean [] gives a comprehensive logical

treatment of asymptotically nonexpansive mappings in the more general setup of uni-
formly convex hyperbolic spaces and generalizes the corresponding results announced in
[]. They extract explicit rates � of metastability (in the sense of Tao) for the asymptotic
regularity for the Krasnoselskii-Mann iteration schema. For more on rates of asymptotic
regularity in the context of CAT() spaces, we refer to [, ]. Following the procedure in
[] and [, Theorem .], one should be able to get such rates � also for (.)-(.)
which will - as the rates in [, ] - only depend on a (monotone) modulus of uniform
convexity for X, an upper bound b ≥ d(x,p), the Lipschitz constant L, an upper bound
U ≥ ∑∞

n= umn andN ∈N such that 
N ≤ αmn,βmn ≤ – 

N . Thus � will be largely indepen-
dent of X, T or x. We intend to carry out the extraction of such � in another paper.
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3 Convergence of approximants to fixed points
In this section, we approximate common fixed points of two finite families of asymp-
totically nonexpansive mappings in a hyperbolic space. More briefly, we establish �-
convergence and strong convergence of the iteration schema (.).

Theorem . Let K be a nonempty closed convex subset of a complete uniformly con-
vex hyperbolic space X with monotone modulus of uniform convexity η, and let {Tm}rm=

and {Sm}rm= be two finite families of uniformly L-Lipschitzian asymptotically quasi-
nonexpansive self-mappings on K . Then the sequence {xn} defined in (.) �-converges
to a common fixed point of p ∈ F .

Proof Since the sequence {xn} is bounded (by Lemma .), therefore Lemma . asserts
that {xn} has a unique asymptotic center. That is, A({xn}) = {x} (say). Let {vn} be any sub-
sequence of {xn} such that A({vn}) = {v}. Then, by Lemma ., we have

lim
n→∞d(vn,Tlvn) =  = lim

n→∞d(vn,Slvn) for each l ∈ I. (.)

We claim that u is the common fixed point of {Tm}rm= and {Sm}rm=.
For eachm ∈ {, , , . . . , r}, we define a sequence {zn} in K by zi = Ti

mv.
So, we calculate

d(zi, vn) ≤ d
(
Ti
mv,T

i
mvn

)
+ d

(
Ti
mvn,T

i–
m vn

)
+ · · · + d(Tmvn, vn)

≤ ( + umn)d(v, vn) +
r–∑
i=

d
(
Ti
mvn,T

i+
m vn

)
.

Since each Tm is uniformly L-Lipschitzian with the Lipschitz constant L, where L =
max≤m≤r Lm. Therefore, the above estimate yields

d(zi, vn) ≤ ( + umn)d(v, vn) + rLd(Tmvn, vn).

Taking limsup on both sides of the above estimate and using (.), we have

r
(
zi, {vn}

)
= lim sup

n→∞
d(zi, vn)

≤ lim sup
n→∞

d(v, vn) = r
(
v, {vn}

)
.

This implies that |r(zi, {un}) – r(u, {un})| →  as i → ∞. It follows from Lemma .
that limi→∞ Ti

mv = v. Utilizing the uniform continuity of Tm, we have that Tm(v) =
Tm(limi→∞ Ti

mv) = limi→∞ Ti+
m v = v. From the arbitrariness of m, we conclude that v is

the common fixed point of {Tm}rm=. Similarly, we can show that v is the common fixed
point of {Sm}rm=. Therefore v ∈ F .
Next, we claim that the common fixed point ‘v’ is the unique asymptotic center for each

subsequence {vn} of {xn}.
Assume contrarily, that is, x �= v.
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Since limn→∞ d(xn, v) exists (by Lemma .), therefore by the uniqueness of asymptotic
centers, we have

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn,x)

≤ lim sup
n→∞

d(xn,x)

< lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v),

a contradiction. Hence x = v. Since {vn} is an arbitrary subsequence of {xn}, therefore
A({vn}) = {v} for all subsequences {vn} of {xn}. This proves that {xn} �-converges to a com-
mon fixed point of {Tm}rm= and {Sm}rm=. �

Remark . It follows from the uniqueness of the asymptotic center and a common fixed
point of the two families of mappings that Theorem . can also be generalized to the class
of mappings as mentioned in Remark .(i).

Theorem . Let K , X, {Tm}rm=, {Sm}rm= and {xn} be as in Theorem .. Then {xn} con-
verges strongly to some p ∈ F if and only if lim infn→∞ d(xn,F) = .

Proof If {xn} converges to p ∈ F , then limn→∞ d(xn,p) = . Since  ≤ d(xn,F) ≤ d(xn,p),
we have lim infn→∞ d(xn,F) = .
Conversely, suppose that lim infn→∞ d(xn,F) = . It follows from Lemma . that

limn→∞ d(xn,F) exists. Now lim infn→∞ d(xn,F) =  reveals that limn→∞ d(xn,F) = .
Next, we show that {xn} is a Cauchy sequence. Let ε > . Since limn→∞ d(xn,F) = , so

for any given ε > , there exists a positive integer n such that

d(xn ,F) <
ε


and

∞∑
n=n

arsn <
ε

M
. (.)

The first inequality in (.) implies that there exists p ∈ F such that d(xn ,p) <
ε
 . Hence,

for any n≥ n andm ≥ , we have

d(xn+m,xn ) ≤ d(xn+m,p) + d(xn ,p)

≤ d(xn ,p) +M
n+m–∑
n=n

arsn

< 
ε


+M

(
ε

M

)
= ε.

This proves that {xn} is a Cauchy sequence inX and so it must converge. Let limn→∞ xn = q
(say).We claim that q ∈ F . Indeed, d(xn,F)≤ d(xn,p) for any p ∈ F . Assume that for each
ε > , there exists pn(ε) ∈ F such that

d
(
xn,pn(ε)

) ≤ d(xn,F) +
ε


.
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This implies that limn→∞ d(xn,pn(ε)) ≤ ε
 . Further, d(pn(ε),q) ≤ d(xn,pn(ε)) + d(xn,q), it

follows that

lim sup
n→∞

d
(
pn(ε),q

) ≤ ε

 + L
, where L is the Lipschitz constant.

Note that

d(q,Tmq) ≤ d
(
q,pn(ε)

)
+ d

(
pn(ε),Tmq

)
= d

(
q,pn(ε)

)
+ d

(
Tmpn(ε),Tmq

)
≤ ( + L)d

(
q,pn(ε)

)
.

Then we have d(q,Tmq) ≤ ( + L) lim supn→∞ d(q,pn(ε)) ≤ ε. Since ε is arbitrary, we have
d(Tmq,q) = . Similarly, we can show that d(Smq,q) = . Hence q ∈ F . �

We now establish strong convergence of the iteration schema (.) based on Lemma ..

Theorem . Let K , X, {Tm}rm=, {Sm}rm= and {xn} be as in Theorem .. Suppose that a
pair ofmappings T and S in {Tm}rm= and {Sm}rm=, respectively, satisfies condition (A).Then
the sequence {xn} defined in (.) converges strongly to some p ∈ F .

Proof It follows from Lemma . that limn→∞ d(xn,F) exists. Moreover, Lemma . im-
plies that limn→∞ d(xn,Tlxn) = d(xn,Slxn) =  for each l ∈ I . So, condition (A) guaran-
tees that limn→∞ f (d(xn,F)) = . Since f is nondecreasing with f () = , it follows that
limn→∞ d(xn,F) = . Then Theorem . implies that {xn} converges strongly to a point p
in F . �

Theorem . Let K , X, {Tm}rm=, {Sm}rm= and {xn} be as in Theorem .. Suppose that
either Tm ∈ {Tm}rm= or Sm ∈ {Sm}rm= is semi-compact. Then the sequence {xn} defined in
(.) converges strongly to p ∈ F .

Proof Suppose that Tm is semi-compact for some positive integers ≤m ≤ r. We have

d
(
Ti
mxn,xn

) ≤ d
(
Ti
mxn,T

i
mxn

)
+ d

(
Ti
mxn,T

i–
m xn

)
+ · · · + d(Tmxn,xn)

≤ rLd(Tmxn,xn).

Then by Lemma ., we have limn→∞ d(Ti
mxn,xn) = . Since {xn} is bounded and Tm is

semi-compact, there exists a subsequence {xnj} of {xn} such that xnj → q as j → ∞. By
continuity of Tm and Lemma ., we obtain

d(q,Tmq) = lim
j→∞d(xnj ,Tmxnj ) =  for eachm = , , , . . . , r.

This implies that q is the common fixed point of {Tm}rm=. Similarly, we can show that q
is the common fixed point of {Sm}rm=. Therefore q ∈ F . The rest of the proof is similar to
Theorem . and is, therefore, omitted. �
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Remark . Compactness of the underlying sequence space is useful for establishing
strong convergence of an approximant of a fixed point. Sequential compactness (every se-
quence has a convergent subsequence), among other notions of compactness, is a widely
used tool in this regard. Moreover, if K (or just T(K )) is compact, then the approximate
sequence {xn} strongly converges to a fixed point. Using a logical analysis of the classical
compactness argument, it is shown in [, Theorem .] how to convert an approximate
fixed point bound � for Krasnoselskii-Mann iteration schema {xn} of asymptotically non-
expansive mappings (and hence a fortiori any rate of metastability for the asymptotic reg-
ularity of {xn}) into a rate � of metastability for the strong convergence of {xn} in the case
of compact K . This rate � depends - in addition to the data on which � depends (see Re-
mark .(iii)) - only on a modulus of total boundedness for K . We intend to carry out the
extraction of a suitable� for our more general iteration schema with two finite families of
mappings in another paper. Combined with the � discussed in Remark .(iii), this then
yields a highly uniform rate of metastability of Theorem ..

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi
Arabia. 2Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.

Acknowledgements
The authors are very grateful to the editor and anonymous referees for their helpful comments. We are indebted to Prof.
Dr. Ulrich Kohlenbach for various constructive comments to improve the content of the manuscript. The author
H. Fukhar-ud-din is grateful to King Fahd University of Petroleum & Minerals for supporting the research project IN
121023. The author M.A.A. Khan gratefully acknowledges the support of Higher Education Commission of Pakistan.

Received: 13 February 2013 Accepted: 21 August 2013 Published: 04 Oct 2013

References
1. Kohlenbach, U: Some logical metatheorems with applications in functional analysis. Trans. Am. Math. Soc. 357,

89-128 (2005)
2. Goebel, K, Kirk, WA: A fixed point theorem for asymptotically non-expansive mappings. Proc. Am. Math. Soc. 35,

171-174 (1972)
3. Khan, MAA: Convergence analysis of a multi-step iteration for a finite family of asymptotically quasi-nonexpansive

mappings. J. Inequal. Appl. 2013, 423 (2013)
4. Fukhar-ud-din, H, Khan, AR, Khan, MAA: A new implicit algorithm of asymptotically quasi-nonexpansive mappings in

uniformly convex Banach spaces. IAENG Int. J. Appl. Math. 42(3), 171-175 (2012)
5. Fukhar-ud-din, H, Khan, AR: Approximating common fixed points of asymptotically nonexpansive maps in uniformly

convex Banach spaces. Comput. Math. Appl. 53, 1349-1360 (2007)
6. Kettapun, A, Kananthai, A, Suantai, S: A new approximation method for common fixed points of a finite family of

asymptotically quasi-nonexpansive mappings in Banach spaces. Comput. Math. Appl. 60, 1430-1439 (2010)
7. Khan, SH, Takahashi, W: Approximating common fixed points of two asymptotically nonexpansive mappings. Sci.

Math. Jpn. 53, 143-148 (2001)
8. Kuhfittig, PKF: Common fixed points of nonexpansive mappings by iteration. Pac. J. Math. 97(1), 137-139 (1981)
9. Qin, X, Kang, SM, Agarwal, RP: On the convergence of an implicit iterative process for generalized asymptotically

quasi-nonexpansive mappings. Fixed Point Theory Appl. 2010, 714860 (2010)
10. Sahin, A, Basarır, M: On the strong convergence of a modified S-iteration process for asymptotically

quasi-nonexpansive mappings in a CAT(0) space. Fixed Point Theory Appl. 2013, 10 (2013).
doi:10.1186/1687-1812-2013-12

11. Schu, J: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math.
Soc. 43, 153-159 (1991)

12. Schu, J: Iterative construction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 158,
407-413 (1991)

13. Shahzad, N, Udomene, A: Approximating common fixed points of two asymptotically quasi-nonexpansive mappings
in Banach spaces. Fixed Point Theory Appl. 2006, 18909 (2006)

14. Tan, KK, Xu, HK: Fixed point iteration process for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 122(3),
733-739 (1994)

http://www.fixedpointtheoryandapplications.com/content/2013/1/238
http://dx.doi.org/10.1186/1687-1812-2013-12


Fukhar-ud-din and Khan Fixed Point Theory and Applications 2013, 2013:238 Page 18 of 18
http://www.fixedpointtheoryandapplications.com/content/2013/1/238

15. Yildirim, I, Özdemir, M: Approximating common fixed points of asymptotically quasi-nonexpansive mappings by a
new iterative process. Arab. J. Sci. Eng. 36, 393-403 (2011)

16. Chang, SS, Cho, YJ, Zhou, H: Demi-closed principle and weak convergence problems for asymptotically
nonexpansive mappings. J. Korean Math. Soc. 38, 1245-1260 (2001)

17. Bose, SC: Weak convergence to the fixed point of an asymptotically nonexpansive map. Proc. Am. Math. Soc. 68,
305-308 (1978)

18. Osilike, MO, Aniagbosor, SC: Weak and strong convergence theorems for fixed points of asymptotically
non-expansive mappings. Math. Comput. Model. 32, 1181-1191 (2000)

19. Takahashi, W: Iterative methods for approximation of fixed points and their applications. J. Oper. Res. Soc. Jpn. 43(1),
87-108 (2000)

20. Khan, AR, Domlo, AA, Fukhar-ud-din, H: Common fixed point Noor iteration for a finite family of asymptotically
quasi-nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 341, 1-11 (2008)

21. Khan, AR, Khamsi, MA, Fukhar-ud-din, H: Strong convergence of a general iteration scheme in CAT(0)-spaces.
Nonlinear Anal. 74, 783-791 (2011)

22. Takahashi, W: A convexity in metric spaces and nonexpansive mappings. Kodai Math. Semin. Rep. 22, 142-149 (1970)
23. Shimizu, T, Takahashi, W: Fixed points of multivalued mappings in certain convex metric spaces. Topol. Methods

Nonlinear Anal. 8, 197-203 (1996)
24. Leustean, L: Nonexpansive iterations in uniformly convexW-hyperbolic spaces. In: Leizarowitz, A, Mordukhovich, BS,

Shafrir, I, Zaslavski, A (eds.) Nonlinear Analysis and Optimization I: Nonlinear Analysis. Contemp Math., vol. 513,
pp. 193-209. Am. Math. Soc., Providence (2010)

25. Lim, TC: Remarks on some fixed point theorems. Proc. Am. Math. Soc. 60, 179-182 (1976)
26. Kirk, W, Panyanak, B: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689-3696 (2008)
27. Khan, AR, Fukhar-ud-din, H, Khan, MAA: An implicit algorithm for two finite families of nonexpansive maps in

hyperbolic spaces. Fixed Point Theory Appl. 2012, 54 (2012). doi:10.1186/1687-1812-2012-54
28. Kohlenbach, U, Lambov, B: Bounds on iterations of asymptotically quasi-nonexpansive mappings. In: Falset, JG,

Llorens Fuster, E, Sims, B (eds.) International Conference on Fixed Point Theory and Applications (Valencia, 2003),
pp. 143-172. Yokohama Publ., Yokohama (2004) Zbl 1089.47053 MR 2144170

29. Gerhardy, P, Kohlenbach, U: General logical metatheorems for functional analysis. Trans. Am. Math. Soc. 360,
2615-2660 (2008)

30. Kohlenbach, U, Leustean, L: Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces. J. Eur.
Math. Soc. 12, 71-92 (2010)

31. Leustean, L: A quadratic rate of asymptotic regularity for CAT(0)-spaces. J. Math. Anal. Appl. 325, 386-399 (2007)
32. Schade, K, Kohlenbach, U: Effective metastability for modified Halpern iterations in CAT(0) spaces. Fixed Point Theory

Appl. 2012, 19 (2012). doi:10.1186/1687-1812-2012-19
33. Kohlenbach, U: Some computational aspects of metric fixed point theory. Nonlinear Anal. 61, 823-837 (2005)

10.1186/1687-1812-2013-238
Cite this article as: Fukhar-ud-din and Khan: Convergence analysis of a general iteration schema of nonlinear
mappings in hyperbolic spaces. Fixed Point Theory and Applications 2013, 2013:238

http://www.fixedpointtheoryandapplications.com/content/2013/1/238
http://dx.doi.org/10.1186/1687-1812-2012-54
http://dx.doi.org/10.1186/1687-1812-2012-19

	Convergence analysis of a general iteration schema of nonlinear mappings in hyperbolic spaces
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Some preparatory lemmas
	Convergence of approximants to ﬁxed points
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


