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Abstract
Background: It is usually preferable to model and estimate prevalence ratios instead of odds
ratios in cross-sectional studies when diseases or injuries are not rare. Problems with existing
methods of modeling prevalence ratios include lack of convergence, overestimated standard
errors, and extrapolation of simple univariate formulas to multivariable models. We compare two
of the newer methods using simulated data and real data from SAS online examples.

Methods: The Robust Poisson method, which uses the Poisson distribution and a sandwich
variance estimator, is compared to the log-binomial method, which uses the binomial distribution
to obtain maximum likelihood estimates, using computer simulations and real data.

Results: For very high prevalences and moderate sample size, the Robust Poisson method yields
less biased estimates of the prevalence ratios than the log-binomial method. However, for
moderate prevalences and moderate sample size, the log-binomial method yields slightly less biased
estimates than the Robust Poisson method. In nearly all cases, the log-binomial method yielded
slightly higher power and smaller standard errors than the Robust Poisson method.

Conclusion: Although the Robust Poisson often gives reasonable estimates of the prevalence ratio
and is very easy to use, the log-binomial method results in less bias in most common situations, and
because it fits the correct model and obtains maximum likelihood estimates, it generally results in
slightly higher power, smaller standard errors, and, unlike the Robust Poisson, it always yields
estimated prevalences between zero and one.

Background
The most common method of modeling binomial health
data in cross-sectional studies today is logistic analysis. It
was first used to replace probit analysis for bioassay data
sixty years ago by Joseph Berkson [1]. Weighted least
squares, minimum logit, and maximum likelihood meth-
ods were developed and used by various investigators to
estimate the parameters [1-10]. Maximum likelihood was
theoretically the best estimation method, and as compu-

ter programs were written to obtain its iterative solutions,
maximum likelihood became the method of choice.

Logistic analysis works very well if one wants to model the
ratio of odds instead of the ratio of probabilities. It also
yields a good approximate analysis if one is interested in
the ratio of probabilities of a rare disease. However, if the
disease is not rare, and one is interested in the ratio of
probabilities, then the logistic approximation will be poor
because the odds ratio will be a poor estimator of the
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probability ratio. For example, if 80 out of 100 exposed
subjects have a particular disease and 50 out of 100 non-
exposed subjects have the disease, the odds ratio (OR) is
4, but the exposed subjects are only 1.6 times as likely to
have the disease as the non-exposed subjects. Thus, any
author or reader, who considers exposure to be related to
a four-fold increase in the chances of getting the disease,
would be substantially overestimating the effect of the
exposure. The number 1.6 (for this example) can be called
the probability ratio, the proportion ratio, or in studies of
existing disease, the prevalence ratio (PR). The latter will
be used in this paper.

In this example, the larger of the two prevalences is 0.80.
If the prevalence ratio is 1.6, then in order for the odds
ratio to be within 10% of the prevalence ratio (i.e. for the
odds ratio to be no more than 1.76), the larger of the two
prevalences can be no more than 0.2105. This number
decreases as the prevalence ratio increases. Thus it is diffi-
cult to define "rare" in general. However, for prevalence
ratios up to 10, if both prevalences are no larger than 0.10,
then the odds ratio will be within 10% of the prevalence
ratio. For prevalences larger than 0.10, it is safer to esti-
mate the prevalence ratio directly.

Logistic analysis has been a popular analysis tool for
cross-sectional studies because 1) standard statistical soft-
ware packages perform logistic analysis; 2) if the disease
or outcome is rare, then odds ratios are approximately
equal to prevalence ratios; and 3) if the disease is not rare,
then there have not been any good alternatives. The latter
has changed, however, because most standard statistical
software packages now perform generalized linear mode-
ling, which includes, among other things, linear, logistic,
Poisson, and log-binomial modeling.

Skov et al. recommended using the log-binomial model,
which directly models the prevalence ratio [11]. If for each
combination of independent variables, the dependent
variable has a binomial distribution with the logarithm of
its probability being linearly related to the independent
variables, then the log-binomial is the correct model, and
maximum likelihood estimates of the parameters and
prevalence ratio can be directly obtained. However, for
many situations with quantitative covariates, the maxi-
mum likelihood estimate (MLE) is on the boundary of the
parameter space. For many software packages, the model
fails to converge because the instantaneous slope of the
likelihood may not be zero on this boundary. Thus stand-
ard software packages which maximize the likelihood by
finding the point at which the derivative is equal to zero
may not work properly.

Deddens et al. extended Skov's maximum likelihood solu-
tion to situations in which the MLE is on the boundary of

the parameter space [12]. The method, called the COPY
method, gives very good approximate MLEs. It involves
using the MLEs when the log-binomial model converges,
and, when it does not converge, using MLEs from a new
data set that contains c-1 copies of the original data and 1
copy of the original data with the dependent variable val-
ues interchanged (1's changed to 0's and 0's changed to
1's). For any finite c, the solution is no longer on the
boundary, and thus the solution is an MLE for this data
set. As c gets large, the MLE estimates for this modified
data set approach the MLEs for the original data set. The
number c should probably be at least 100. In this paper, c
= 1,000 was always used.

Lee and others recommended using the Cox proportional
hazard model to estimate the prevalence ratio [13,14].
This method yields partial likelihood estimates of linear
model coefficients except for the intercept which is not
estimated. Skov et al., Deddens et al., and Barros and
Hirakata showed that the Cox method yields estimated
standard deviations which are too large, which leads to
low power for Wald tests [11,12,15].

It is well known that when the prevalence is low and the
sample size is large, probabilities from the Poisson distri-
bution can often be used to approximate probabilities
from the binomial distribution. Similarly, one can think
of an existing sample of binomial data (0 or 1) as being
approximately Poisson, where the probability of a value
of 2 or greater is low enough that no values greater than 1
occurred in the obtained sample. By assuming that the
logarithm of the Poisson parameter (mean) is linearly
related to a set of independent variables, the exponentia-
tion of any coefficient of the model will yield an estimate
of a ratio of Poisson parameters. Because the observed
data consist of only zeros and ones, this ratio can be used
as an approximation to the prevalence ratio. Assuming
equal follow-up times for all subjects and handling ties
properly, the partial likelihood estimates and estimated
standard errors of the non-intercept parameters from Cox
proportional hazard regression are exactly the same as the
estimates from Poisson regression [16]. Thus, Poisson
regression suffers from the same problem (large standard
errors) as the Cox model. For the most part, Poisson
regression will be discussed in this paper rather than Cox
proportional hazard regression because the intercept is
estimated.

Barros and Hirakata have suggested methods involving
robust variance estimation which appear to solve the large
variance problem for Poisson regression [15]. They com-
pared methods of adjusting the scale parameter in Poisson
regression, but concluded that the best adjustment was to
use a sandwich estimator of the variance. This "Robust
Poisson" method represents a vast improvement over the
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regular Poisson method. In an independent investigation,
Zou later suggested using this sandwich estimator and
showed how to use PROC GENMOD in SAS to obtain it
[17].

Another method to estimate the prevalence ratio is the
direct conversion of an odds ratio to a prevalence ratio,
which McNutt et al. showed is fairly biased when adjusted
for other covariates [18,19]. Thompson et al. also dis-
cussed direct estimation of the PR from the OR, as well as
weighted averages of these estimated PR's over strata and
the stratified Mantel-Haenszel estimate [20]. Of the meth-
ods available at that time, they recommended using either
the proportional hazards (i.e. Poisson) or the log-bino-
mial method.

Schouten et al. suggested modifying the data in such a way
that the odds ratio from logistic analysis for the modified
data is an estimate of the prevalence ratio for the original
data [21]. This estimator combined with a robust variance
estimator yields a method which is similar to the Robust
Poisson method, in that it uses a robust variance estima-
tor, and to the COPY method, in that it uses data manip-
ulation to obtain the result. Skov et al. showed that this
estimator generally gave good results, but that sometimes
the estimated probabilities could be greater than one [11].
Thus Skov recommended the log-binomial method.

There is much misinformation in the literature concern-
ing which methods can yield probability estimates out-
side the range of zero to one. By definition, maximum
likelihood estimates for binomial models cannot yield
estimates of probabilities outside this range (because the
probability estimates are MLEs also). Thus Skov's method
for fitting the log-binomial model cannot yield such esti-
mates. Similarly, the COPY method cannot yield such
estimates, because it uses Skov's method on a data set
modified so that the MLE is inside the parameter space. It
is known, and will be shown again in this paper, that the
Poisson and Robust Poisson can yield such invalid prob-
ability estimates [22,23].

Both the log-binomial method and the Poisson method
are generalized linear models with a log link function,
which is assumed to be the correct form. For each combi-
nation of independent variables, the distribution of the
dependent variable is assumed to be binomial. The Pois-
son model erroneously treats this distribution as Poisson,
and the log-binomial correctly treats it as binomial. In this
paper, we compare these two methods: (1) the maximum
likelihood estimates and likelihood ratio tests for the log-
binomial model, using the COPY method to solve any
convergence problems, with (2) the Poisson based estima-
tors and Wald tests, using a sandwich estimator to solve
the large variance problem. Although it is clear that the

log-binomial and COPY methods should yield better esti-
mates than the Poisson methods, we will use some lim-
ited simulations to illustrate the amount of this
superiority and also indicate some situations in which the
Poisson methods might be preferred. In addition, we will
illustrate the use of both methods on real data sets.

Methods
Comparisons between the Robust Poisson and log-bino-
mial methods were made using simulated and real data
sets. The simulations were a repeat of some of those per-
formed by Deddens et al. Specifically, they were per-
formed for the situation of one continuous covariate, X,
with X uniformly distributed from 0 to 10 [12]. At each
value of X, a value of Y was randomly generated from a
binomial distribution with a sample size of 1 and a prev-
alence of exp(β0 + β1X). The prevalence at X = 5 varied
among 0.3, 0.5, and 0.7. Three values were chosen for β1,
namely zero, medium, and large, where medium and
large depended on the prevalence. The intercept, β0, was
then determined from the prevalence at X = 5 and the
slope, β1. Thus, there were nine basic simulations, and the
sample size was set at n = 100 for each simulation. This
sample size was chosen because it was felt to be large
enough for large sample properties to hold, but not so
large that both methods would have power too high for
comparison. The data (same X's, different Y's) were repli-
cated 1,000 times for each simulation. Although logistic
analysis is reasonable when the prevalence is 0.1, and a
prevalence of 0.9 is unusual, simulations with n = 100
were also performed for these prevalences. Simulations
were repeated for these two prevalences with a zero and a
large slope for n = 1,000. For all simulations, in addition
to estimates from the log-binomial and Robust Poisson
methods, exact maximum likelihood estimates were
obtained (even when convergence was not obtained on
the original data) [12]. This was accomplished using the
macro supplied by Deddens et al. [12]. Briefly the macro
finds the point on the boundary, and it restricts the search
for the MLE to parameters which force the likelihood
through this point. All hypothesis tests were considered
significant if the p-value was less than or equal to 0.05.
Likelihood ratio tests were performed for the log-bino-
mial method. When the data were copied 1,000 times, it
was necessary to multiply the standard errors by the
square root of 1,000 and to divide the log likelihoods by
1,000 for the likelihood ratio tests [12]. Wald tests were
used for the Poisson method.

The real data sets come from on-line SAS examples [24].
Example 1, from the SAS PROC LOGISTIC documenta-
tion, is a study of the effects of rate and volume of air on
a transient reflex vaso-constriction of the digit skin. A
binomial variable for vaso-constriction (constricted = 1,
not constricted = 0) was modeled on the logarithm of air
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rate and the logarithm of air volume using 39 trials.
Although this was used by SAS to illustrate logistic analy-
sis, the prevalence of vaso-constriction was .51, so odds
ratios would not be good estimates of prevalence ratios.

Example 2, also from the SAS PROC LOGISTIC documen-
tation, is a study of the analgesic effects of treatments on
60 elderly patients with neuralgia, in which a binomial
variable for pain (no pain = 1, pain = 0) is modeled on
treatment (3 levels), gender (2 levels), and age (years)
[24]. Although this was used by SAS to illustrate logistic
analysis, the prevalence of no pain was .58, so odds ratios
would not be good estimates of prevalence ratios.

Example 3 comes from a book by Paul Allison, but it is
also available online [25,26]. These data come from a
study relating death penalty (death = 1, life in prison = 0)
to defendant race (2 levels), victim race (2 levels), crime
seriousness (quantitative scale), and culpability (quanti-
tative scale). Although this was used by Allison to illus-
trate logistic analysis, the prevalence of death was .34, so
odds ratios would not be good estimates of prevalence
ratios.

All analyses were performed using SAS [24,27]. The
Robust Poisson method was performed with PROC GEN-
MOD using the REPEATED option [17]. The log-binomial
method was performed with the macro from Deddens et
al., which in turn used PROC GENMOD (with 1,000 cop-
ies when the model failed to converge) [12].

Results
The estimates obtained using the log-binomial and
Robust Poisson methods for the simulated data are shown
in Table 1. The size (the probability of concluding that the
true slope is not zero when in fact it is zero) and power
(the probability of concluding that the true slope is not
zero when in fact it is not zero) estimates for the tests in
the simulations are shown in Table 2. In the simulations,
the log-binomial method, using the COPY method
approximations as needed, gave results which were very
close to the exact maximum likelihood estimates, size,
and power. Thus the exact results are not included in
Table 1 and Table 2. The parameter of most interest is the
slope, which is the logarithm of the prevalence ratio. The
log-binomial and Robust Poisson estimates are close to
the true parameters (Table 1). For prevalences of 0.3 and
0.5, the log-binomial method appears to be less biased for
estimating the slope, while for a prevalence of 0.7, the two
methods were about equally biased. However, these dif-
ferences aren't apparent until the third, or more often, the
fourth decimal place, so both methods work well. When
the prevalence was 0.1, the log-binomial method had less
biased estimates (not shown) and when the prevalence
was 0.9, the Robust Poisson method generally had less
biased estimates (not shown). The log-binomial method
usually yielded slightly smaller estimated standard errors.

The estimated sizes for both methods were approximately
correct (Table 2). The estimated powers were generally
higher for the log-binomial method, but only slightly so.
The pattern for the estimated powers was the same when

Table 1: Average log-binomial method and Robust Poisson method estimates*

Zero Slope Medium Slope High Slope

Prevalence at
X = 5

Intercept (SE)† Slope (SE) Intercept (SE) Slope (SE) Intercept (SE) Slope (SE)

0.3 True Parameters -1.2040 0.00 -1.7040 0.10 -2.2040 0.20
(Conv. = 100%)‡ (Conv. = 99.9%) (Conv. = 90.9%)

Log-Binomial -1.2292 (0.3250) 0.0001 (0.0559) -1.7387 (0.3692) 0.1016 (0.0542) -2.2512 (0.3900) 0.2046 (0.0488)
Robust Poisson -1.2291 (0.3247) 0.0001 (0.0558) -1.7426 (0.3692) 0.1023 (0.0544) -2.2634 (0.4027) 0.2064 (0.0520)

0.5 True Parameters -0.6931 0.00 -0.9431 0.05 -1.1931 0.10
(Conv. = 100%) (Conv. = 99.8%) (Conv. = 93.5%)

Log-Binomial -0.7086 (0.2109) 0.0014 (0.0361) -0.9512 (0.2297) 0.0501 (0.0352) -1.2039 (0.2413) 0.1006 (0.0327)
Robust Poisson -0.7088 (0.2112) 0.0015 (0.0362) -0.9517 (0.2311) 0.0502 (0.0356) -1.2058 (0.2477) 0.1009 (0.0345)

0.7 True Parameters -0.3567  0.00 -0.5067 0.03 -0.6567 0.06
(Conv. = 99.0%) (Conv. = 96.1%) (Conv. = 70.3%)

Log-Binomial -.3686 (0.1374) 0.0010 (0.0236) -0.5115 (0.1485) 0.0297 (0.0226) -0.6579 (0.1509) 0.0598 (0.0194)
Robust Poisson -.3680 (0.1383) 0.0009 (0.0237) -0.5139 (0.1513) 0.0301 (0.0234) -0.6669 (0.1621) 0.0614 (0.0225)

* Based on 1,000 simulations of the log-binomial model with a sample size of 100 and a single independent variable, X, with uniform distribution [0, 
10]. The log-binomial method used the COPY method approximation when needed.
† Standard Error.
‡ Percentage of times the log-binomial model converged on the original data.
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the prevalence was 0.1 or 0.9 (not shown). However,
when the prevalence was 0.1, the estimated sizes were
0.061 for the log-binomial method and 0.069 for the
Robust Poisson method, which were slightly too high.

When n = 1,000 (not shown), the estimates for the log-
binomial and Robust Poisson methods were essentially
the same. When the slope was large, the Robust Poisson
had a slightly larger estimated standard error for the slope.
All of the sizes were close to 0.05, and all of the powers
were 1.0000. The log-binomial model almost always con-
verged on the original data when the slope was zero. As
the prevalence and slope increased, the percentage of
times that the model converged declined.

The above analyses have involved a single quantitative
variable, which allowed comparison to exact MLEs using
the Deddens et al. macro, as well as giving an indication
of when each method will be less biased than the other
[12]. However, both methods will work for multiple inde-
pendent variable models where the independent variables
can be either categorical or quantitative. Our first example
to illustrate this contains two quantitative independent
variables (Table 3) [24]. The dependent variable is the
vaso-constriction or non-constriction in digit skin. The

independent variables are logarithms of rate and volume
of inspired air. In this analysis, 20 of 39 observations (51
percent) were vaso-constricted. The p-values for the two
methods are similar, and as expected, the standard errors
of the log-binomial are smaller than those of the Robust
Poisson. In addition, the estimates for the Robust Poisson
are somewhat higher than those for the log-binomial,
especially for the logarithm of volume. The estimated
prevalence ratios for this variable were 2.16 for the log-
binomial and 4.31 for the Robust Poisson. With the
Robust Poisson, 3 of 39 estimated probabilities were
greater than one, and the largest was 1.82.

Our second example contains a three categorical variable,
a two level categorical variable, and a quantitative variable
(Table 4) [24]. The dependent variable is no pain. The
independent variables are treatment (A, B, P), gender, and
age. In this analysis, 35 of 60 patients (58%) had no pain.
The p-values are somewhat different between the two
methods, but the same conclusions would be drawn using
either method. The estimate of the slope for age is nearly
twice as steep for the Robust Poisson as for the log-bino-
mial. The effect of gender is also doubled for the Robust
Poisson, compared to the log-binomial. The effect of anal-
gesic is similar for both methods. With the Robust Pois-

Table 3: Comparison of log-binomial and Robust Poisson methods for analysis of vaso-constriction associated with inspired air*

Independent Variable Log Prevalence Ratio Estimate† (SE) P-Value

Log-Binomial Robust Poisson Log-Binomial Robust Poisson

Log(Rate) 1.3132 (0.3362) 1.5578 (0.4270) 0.0006 0.0003
Log(Volume) 0.7715 (0.1960) 1.4614 (0.3510) 0.0002 0.0000

* Wald tests were used for the Robust Poisson method, and likelihood ratio tests were used for the log-binomial method. The latter were obtained 
by fitting a model without the effect being tested. The log-binomial method failed to converge when both independent variables were in the model 
and when only log(Volume) was in the model. In these cases, the COPY method approximation was used.
† The intercept estimate was -1.5147 for the log-binomial method and -1.8311 for the Robust Poisson method. Of the 39 probability estimates, 3 
were greater than unity for the Robust Poisson method, and the largest was 1.82.

Table 2: Estimated size and estimated power for log-binomial and Robust Poisson methods*

Prevalence at X = 5 Method Zero Slope Medium Slope High Slope

Size† Power† Power†

0.3 Log-Binomial 0.054 0.477 0.989
Robust Poisson 0.051 0.461 0.984

0.5 Log-Binomial 0.049 0.279 0.856
Robust Poisson 0.050 0.275 0.842

0.7 Log-Binomial 0.045 0.256 0.825
Robust Poisson 0.045 0.258 0.815

* Same simulations as in Table 1. Estimated size and power are the proportions of the 1,000 simulations which have a p-value less than or equal to 
0.05. The log-binomial method used the COPY method approximation when needed. Wald tests were used for the Robust Poisson method, and 
likelihood ratio tests were used for the log-binomial method.
† Size is the probability of concluding that the true slope is not zero when in fact it is zero, and power is the probability of concluding that the true 
slope is not zero when in fact it is not zero.
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son, 9 of 60 estimated probabilities were greater than one,
and the largest was 1.30.

Our third example contains 5 one degree of freedom inde-
pendent variables (Table 5) [25,26]. The dependent varia-
ble is being given the death penalty. The independent
variables are black defendant (yes, no), white victim (yes,
no), seriousness of the crime, culpability, and culpability
squared. In this analysis, 50 of 147 criminals (34%) were
given the death penalty. This example will illustrate
another issue with using the log-binomial model to esti-
mate prevalence ratios instead of odds ratios. The quanti-
tative variable culpability is linear in the log-odds but not
in the log-probability. Thus one can use culpability in
logistic regression, but in the log-binomial model we need
to introduce a quadratic term. In general, if a variable is
linear in logistic regression then it is not linear in the log-
binomial model, and visa versa. Thus one should always
test for linearity. In this example, the quadratic term in
culpability is significant (assuming P(Type I error) = 0.05)
in the log-binomial model (p = 0.0007) and for the
Robust Poisson method (p = 0.0005), but it is not signifi-
cant in logistic regression (p = 0.1246 with the likelihood
ratio test). Of course this could also happen the other way
(significant in logistic, but not in log-binomial). The esti-

mates for the Robust Poisson are always larger in absolute
value than for the log-binomial, and in some cases they
are much larger. The same is true for the standard errors.
With the Robust Poisson, 5 of 147 estimated probabilities
were greater than one, and the largest was 1.28. Since the
exponential model and the logistic model are fundamen-
tally different, the notions of linearity, confounding, and
interaction are not equivalent between logistic regression
and log-binomial regression. For this reason, it is impos-
sible to develop methods that convert adjusted odds
ratios into adjusted prevalence ratios.

Discussion
Maximum likelihood methods are very often the method
of choice for estimating parameters because they are con-
sistent, tend to have small variances, and are asymptoti-
cally unbiased and efficient. The log-binomial method
evaluated in this paper obtains these MLEs, although
when they are on the boundary of the parameter space,
the estimates will be approximate. However if the number
of copies is chosen large enough, the estimates will be the
same as the true MLE rounded to several decimal places.
Thus the log-binomial method should be expected to pro-
duce superior results when compared to the Robust Pois-

Table 5: Comparison of log-binomial and Robust Poisson methods for analysis of death penalty associated with covariates*

Independent Variable Log Prevalence Ratio Estimate† (SE) P-Value

Log-Binomial Robust Poisson Log-Binomial Robust Poisson

Black Defendant 0.3152(0.1367) 0.5935 (0.1992) 0.0224 0.0029
White Victim 0.1219 (0.1078) 0.3173 (0.2061) 0.2288 0.1238

Serious -0.0010 (0.0174) 0.0023 (0.0352) 0.9305 0.9475
Culpability 1.8062 (0.2750) 1.9223 (0.4453) 0.0000 0.0000

Culpability Squared -0.2006 (0.0308) -0.2158 (0.0624) 0.0007 0.0005

* Wald tests were used for the Robust Poisson method, and likelihood ratio tests were used for the log-binomial method. The latter were obtained 
by fitting a model without the effect being tested. The log-binomial method failed to converge for all models containing Black Defendant. In these 
cases, the COPY method approximation was used.
† The intercept estimate was -4.4445 for the log-binomial method and -4.9193 for the Robust Poisson method. Of the 147 probability estimates, 5 
were greater than unity for the Robust Poisson method, and the largest was 1.28.

Table 4: Comparison of log-binomial and Robust Poisson methods for analysis of no pain associated with covariates*

Independent Variable Level Log Prevalence Ratio Estimate† (SE) P-Value

Log-Binomial Robust Poisson Log-Binomial Robust Poisson

Analgesic A
B

1.0228 (0.3951)
1.0979 (0.3898)

1.0628 (0.3902)
1.1515 (0.3882)

0.0002 0.0123

Gender Female 0.2259 (0.0726) 0.4584 (0.1808) 0.0416 0.0112
Age -0.0376 (0.0119) -0.0635 (0.0183) 0.0075 0.0005

* Wald tests were used for the Robust Poisson method, and likelihood ratio tests were used for the log-binomial method. The latter were obtained 
by fitting a model without the effect being tested. The log-binomial method failed to converge for the 2 models containing both analgesic and age, 
and the COPY method approximation was used.
† The intercept estimate was 1.1200 for the log-binomial method and 2.7438 for the Robust Poisson method. Of the 60 probability estimates, 9 
were greater than unity for the Robust Poisson method, and the largest was 1.30.
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son if c is chosen large enough. The results in this paper
show that c = 1000 is large enough to accomplish this.

The simulations included in the present paper involve
only a quantitative independent variable. For qualitative
variables, Skov et al. provided simulations and recom-
mended the log-binomial method [11]. Skov et al. had no
convergence problems with their qualitative data.
Although convergence problems can occur with qualita-
tive data, they are much more common with quantitative
data, which makes it the more difficult and interesting
case. The 3 real data examples in this study all contain at
least 1 quantitative independent variable.

Our results from simulated data showed that both the
Robust Poisson and the log-binomial method yielded
estimates of the slope, and hence the prevalence ratio,
which had little bias. For the common situations where
the probability of success is between .3 and .7, the log-
binomial method generally yielded less biased estimates
and smaller standard errors than the Robust Poisson
method. (For the somewhat unusual situation where the
probability of success is .9, the Robust Poisson method
was generally less biased.) Both the Robust Poisson
method using the Wald test and the log-binomial method
using the likelihood ratio test almost always had accepta-
ble size, but the log-binomial method generally had
higher power.

These simulations represent the typical performance of
the two methods. In other simulations that we have done,
we separated the 1000 replications into those for which
the log-binomial model converged on the original data set
and those for which it did not. Generally, when the log-
binomial model converged, the estimates of the logs of
the prevalence ratios were the same or close for the log-
binomial and Robust Poisson methods to 3 decimal
places. When the log-binomial model did not converge,
however, the two methods were generally different to 3
decimal places. These simulations had a sample size of
100. For smaller sample sizes, the differences are larger.
One such situation, which has already been published, is
the following [12,23]. Suppose X takes on integer values
between one and ten, inclusive, and that Y = 1 when X =
5, 7, 8, 9, or 10, and that Y = 0 otherwise. The exact MLE
of the slope for the log binomial model is 0.2094. The log-
binomial COPY method estimate is 0.2091, while the
Robust Poisson estimate is 0.3251. In addition, the esti-
mated P(Y = 1|X = 10) is 1.00 for the exact log-binomial
MLE, 0.99 for the COPY method approximated MLE, and
1.44 for the Robust Poisson method. The latter is possible
only because the wrong likelihood is being used.

For the real data, we do not know the correct parameters
being estimated. However, the estimates are quite differ-

ent for at least one variable in each of the 3 examples, and
these differences will become larger when one takes the
anti-log of the estimates to get estimated prevalence
ratios. The Robust Poisson method again yields probabil-
ity estimates which are greater than one. Because of these
differences, the decision on which method to use should
not be taken lightly. When it comes time to defend ones
results, using the log-binomial model allows one to say
that maximum likelihood estimation and likelihood ratio
tests were used. Using the Robust Poisson, however, one
must admit that the model is incorrect, and for some
points, the predicted numerator of the prevalence ratio is
not only incorrect, but invalid. One must also believe that
the estimated denominator is incorrect so that the preva-
lence ratio can be correct.

Logistic analysis should not necessarily be ruled out even
if one is interested in the prevalence ratio. Statistical tests
may not be valid if too many terms are included in the
model. The real examples given in this paper contain the
maximum number of terms based on the commonly rec-
ommended rule of 10% of the number of events [28,29].
In the death penalty example, a quadratic term for culpa-
bility was required for the log-binomial model, but not
for the logistic model. Thus both models yield estimated
prevalence ratios which vary depending on the value of
culpability. Thus one could reasonably argue that the
more parsimonious logistic model might as well be used,
if culpability is the variable of interest. In this example,
most likely the variables of interest are defendant race and
victim race, while culpability is a covariate for which the
analysis should be adjusted. Thus the log-binomial model
should probably be preferred for this example.

Spiegelman and Hertzmark recommend using the log-
binomial when it converges but replacing it with the
Robust Poisson when the log-binomial does not converge
[30]. They illustrated the Robust Poisson part of the
method on a set of real data for which the model con-
verged. Deddens and Petersen responded that using the
log-binomial when it converges but replacing it with the
log-binomial on a data set modified by the COPY method
when the original log-binomial did not converge (i.e. the
log-binomial method used in this paper) was better in
general, and showed that the COPY part of the method
gave superior results to the Poisson part of their method
on their data set [22].

We have shown by simulation that in most commonly
occurring univariate cases, the maximum likelihood and
approximate maximum likelihood estimates from the
log-binomial method generally have an equal or smaller
bias than do estimates from the Robust Poisson method.
For the log-binomial model, we have only presented
results for the likelihood ratio test. In general, the likeli-
Page 7 of 9
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hood ratio test performs better than the Wald test, so
using the correct model with the likelihood ratio test
should be the best procedure. There is no reason to believe
that the likelihood ratio test would be better for the
Robust Poisson method because the method uses an
incorrect likelihood. In fact, we have not found real or
simulated data for which the Wald test performed poorly
for the Robust Poisson method, but we have found (but
not presented) such data for the log-binomial method.

When obtaining confidence intervals on the prevalence
ratio, the Robust Poisson method will yield Wald based
confidence intervals which will include 1.00 if and only if
the two sided statistical test of H0:β1 = 0 is not rejected. At
this time, if the model doesn't converge on the original
data, and one uses physical copies, then SAS cannot be
used to obtain likelihood ratio confidence intervals with
the log-binomial method. However, Lumley et al. point
out that physical copies are not necessary because one can
do a weighted analysis [31]. Indeed, if one weights all
observations in the original data set by (number of copies
– 1)/(number of copies) and all observations in a modi-
fied data set by (1)/(number of copies), where the modi-
fied data set is simply the original data set with Y replaced
by 1 – Y, then a weighted analysis of the combined data
set yields results equivalent to those obtained with physi-
cal copies. With this weighted method, likelihood ratio
confidence intervals for the log-binomial parameters can
be obtained with SAS.

The Robust Poisson method solves the standard error
problem of its non-robust predecessor [13,14]. In the rare
case where the prevalence of interest is about 0.9, it may
give less biased estimates than maximum likelihood
methods. It is also easy to use for hypothesis testing and
confidence intervals because it employs the Wald test.
However, even if the form of the model is correct (log-
binomial model), the estimated model may not be valid,
which is easily seen when estimated probabilities for the
points in the data set are greater than one. As shown by
Skov et al., the log-binomial model produces estimates of
probabilities which are between zero and one for any
point in the convex hull of the covariates, which includes
the observed data points [11]. Clearly the same is true for
the COPY method modification because it uses the log-
binomial method on the same covariates while changing
from the exact solution, which is on the boundary of the
parameter space, to one which is slightly to the inside of
the boundary. We have used 1000 copies when the log-
binomial model failed to converge. With more physical
copies, simulations take a long time. Even when analyzing
real data sets, using 10,000 physical copies may not be
feasible if the original data set is very large. However,
using Lumley et al.'s weighted modification, the number
of copies is basically irrelevant because the data set size is

only doubled for any weights [31]. As shown by Petersen
and Deddens, 10,000 copies can yield estimates which are
almost identical to the exact maximum likelihood esti-
mates [22]. The Robust Poisson model can yield poor esti-
mates in a few cases, and it generally has larger standard
errors for the slope than the log-binomial method.
Because likelihood ratio testing is possible for the log-
binomial method (an advantage), multiple runs are
required to get the p-values (a disadvantage). There are 2
things to note in this regard: 1) for large sample size, the
Wald test worked well for the log-binomial method, and
2) if one doesn't need a p-value, one may be able to use
the likelihood ratio confidence limits to determine statis-
tical significance, which only requires one run. For pro-
gramming languages other than SAS, the COPY method
may still have convergence problems. Additional research
with other software would be valuable.

Conclusion
As shown with the real data used in this study, the results
can be quite different depending on which method is
used. Thus the decision on which method to use is very
important. The simulations show that in the most com-
mon situations with a simple model, the maximum like-
lihood estimates of the log-binomial model are slightly
superior to the Poisson based estimates. When the preva-
lence is very high, the Robust Poisson will have less bias
than the log-binomial based methods, but it will yield
many probability estimates greater than one. We believe
that the advantages of the log-binomial method with the
likelihood ratio test substantially outweigh those of the
Robust Poisson when the true model is log-binomial.
Future research could examine the effect of omission of
terms and departures from the log-binomial model for
both methods.
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