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Abstract

Background: To optimize the planning of blood donations but also to continue motivating the volunteers it is
important to streamline the practical organization of the timing of donations. While donors are asked to return for
donation after a suitable period, still a relevant proportion of blood donors is deferred from donation each year due to
a too low hemoglobin level. Rejection of donation may demotivate the candidate donor and implies an inefficient
planning of the donation process. Hence, it is important to predict the future hemoglobin level to improve the
planning of donors’ visits to the blood bank.

Methods: The development of the hemoglobin prediction rule is based on longitudinal (panel) data from blood
donations collected by Sanquin (the only blood product collecting and supplying organization in the Netherlands). We
explored and contrasted two popular statistical models, i.e. the transition (autoregressive) model and the mixed effects
model as plausible models to account for the dependence among subsequent hemoglobin levels within a donor.

Results: The predictors of the future hemoglobin level are age, season, hemoglobin levels at the previous visits, and
a binary variable indicating whether a donation was made at the previous visit. Based on cross-validation, the areas
under the receiver operating characteristic curve (AUCs) for male donors are 0.83 and 0.81 for the transition model
and the mixed effects model, respectively; for female donors we obtained AUC values of 0.73 and 0.72 for the
transition model and the mixed effects model, respectively.

Conclusion: We showed that the transition models and the mixed effects models provide a much better prediction
compared to a multiple linear regression model. In general, the transition model provides a somewhat better
prediction than the mixed effects model, especially at high visit numbers. In addition, the transition model offers a
better trade-off between sensitivity and specificity when varying the cut-off values for eligibility in predicted values.
Hence transition models make the prediction of hemoglobin level more precise and may lead to less deferral from
donation in the future.

Keywords: Blood donations, Hemoglobin level, Longitudinal data, Panel data, Transition models, Mixed effects
models, Prediction, Kalman filter

Background
Blood transfusion is an essential part of modern health-
care which helps save millions of lives each year. Since
blood is a unique resource for which an artificial substi-
tute has yet to be found, blood donations are in great
need. However, occasionally donation cannot be accepted.
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There may be several reasons for the ineligibility of a
blood donor for donation, a common reason being low
hemoglobin level of the donor [1,2]. A hemoglobin (Hb)
level of 8.4 mmol/l (135 g/l) and 7.8 mmol/l (125 g/l) for
men and women, respectively, is widely accepted as the
lower cut-off value of eligibility for donation [2-5]. While
donors are asked to return for donation after a suitable
period, a relevant proportion of blood donors are tem-
porarily deferred from donation each year due to low
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Hb levels [2]. Rejection of donation may demotivate the
candidate donor and implies inefficient planning of the
donation process [6,7]. Hence, it is important to predict
the future Hb level to improve the planning of donors’ vis-
its to the blood bank. Prediction models for low Hb level
deferral have been developed previously [5,8].
The main goal of this paper is to illustrate the use of two

well-known longitudinal models in predicting the future
Hb level after a visit to the blood bank. An adequate
prediction will help the blood bank to apply appropri-
ate interventions (e.g. postponing the next invitation) for
blood donation when the Hb value falls below the cut-
off value. Prediction is based on models developed using
historical data of Hb levels obtained from Sanquin Blood
Supply in the Netherlands. More specifically, in this paper
we examine the predictive performance of the transition
(autoregressive panel data) model and the mixed effects
model.

Methods
Data
The data have been obtained from Sanquin Blood Supply,
which is the only blood product collecting and supplying
organization in the Netherlands. In this paper, we ana-
lyze newly registered whole blood donors whose first visit
to the collection centers occurred in the period between
January 1, 2007 and December 31, 2009 and have donated
at least twice during this period. Whole blood is a term
used in transfusion medicine for a standard blood dona-
tion as opposed to plasma and platelet donation. The data
were collected from 16,158 newly registered whole blood
donors (54.6% women). The reason for selecting this set
of blood donors is that they constitute a relatively homo-
geneous group that did not donate prior to establishing
the Sanquin database. We excluded donors who had miss-
ing values for the Hb level, and the data of the remaining
15, 625 donors were used in the analyses.
In Sanquin Blood Supply, a candidate has to register

prior to donation; after registration he/she will receive an
information package and an invitation to attend a blood
donor health check. If the test results are satisfactory, the
candidate will be invited to donate blood. Therefore, the
first visit to the Sanquin Blood Supply is not a donation
but a health check that includes a measurement of the
Hb level. After a successful whole blood donation, a male
(female) donor is allowed to return for the next donation
after a period of at least 8 weeks with a maximum of 5
(3) donations per year. In each visit, prior to donation, the
candidates are screened for health risks that might make
the donation unsafe for either the donor or the recipient.
These tests include taking fingerstick capillary samples
for measuring Hb level and filling out a health appraisal
form. Based on the results of these tests, the candidate
may not be eligible for donation due to a too low Hb

level or other reasons that he/she mentioned in the health
appraisal form. Finally, eligible candidates will donate 500
milliliters (ml) blood. We defined donation status in each
visit as a binary variable in our data set (donation =1, no
donation =0). In Figure 1, profiles of the Hb level are dis-
played for male and female donors separately. The dashed
horizontal lines show the corresponding Hb level cut-off
points of eligibility for donation.
Several factors are known to be associated with the Hb

level and hence may be used as predictors for Hb level,
i.e. gender [9], age [9], and body mass index (BMI) [10,11].
In this study, we take into account the effect of gender
and age in our models, but we decided to ignore the effect
of BMI due to the fact that the BMI was not recorded
for approximately 40% of donors. Also, based on a pilot
study we found that the impact of BMI on Hb level is
secondary. The season in which the visit takes place also
affects the Hb level, namely in a warm season Hb level is
lower on average [12,13]. Here season is used as a binary
covariate, i.e. cold season (=0) includes fall and winter
and warm season (=1) includes spring and summer. Male
and female donors have different Hb profiles, therefore we
analyzed the data for men and women separately. Inter-
visit intervals differ between donors, in our data set the
median inter-visit interval for male donors is 72 (inter-
quartile range: 29 − 92) days and for female donors it
is 93 (inter-quartile range: 25 − 131) days. In principle,
varying intervals between visits require continuous-time
models, but these models are beyond the scope of this
paper. Therefore we decided to ignore this feature of the
data, and we used the sequential number of the visit rather
than the actual time of the visit. We also take into account
the status of the previous visit (donation or deferral) as a
binary covariate in the prediction model. Since no dona-
tions have been made prior to the first visit, the value
of donation at previous visit (DPV) for the first visit is
defined to be ‘no donation’.
This research has been performed with the approval of

the ethical advisory council of the Sanquin Blood Supply
Foundation. Moreover, all donors have given their con-
sent by stating that part or all of their donations can be
used for research aiming at improving the blood supply
chain. Our ethical advisory council includes members of
both Sanquin and non-Sanquin affiliations. This commit-
tee includes members with the background training and
experience required for such ethical committees.

Statistical analysis
Since successive Hb levels on the same subject are corre-
lated, we need to employ statistical models that can take
this correlation into account. For this purpose, we applied
two well-known models, namely the transition model and
the mixed effects model. However, we commence with
a multiple linear regression model as a benchmark to
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Figure 1 Hemoglobin levels profile. Profile of hemoglobin levels for successive visits to the blood bank of a random sample of male and female
donors. The profiles of 5 randomly selected donors are highlighted. The dashed horizontal lines show the Hb cut-off values of eligibility for donation.

show the capability of transition and mixed effects mod-
els. These statistical analyses were performed in R version
2.15.2 [14] using the stats package for the multiple linear
regression models, the nlme package for the mixed effects
models, the KalmanLike and the mle functions in the
stats4 package for the transition models, and the mixAK
and pROC packages to draw profile and ROC curve plots.
We used a significance level of α = 0.05 and no correction
for multiple testing was implemented.

Multiple linear regressionmodel
A naive approach to analyze the successive Hb levels is
a multiple linear regression model, in which the current
response of a particular subject is regressed only on time-
varying covariates, i.e. age, season, and DPV. A multiple
linear regression model can be expressed as:

yit = α + β1Ageit + β2Seasonit + β3DPVit + εit , (1)

where yit is the tth observation of the ith individual, α is
an unknown constant (intercept), and the β ’s are unknown
regression coefficients. It is assumed that the residuals εit
are normally distributed and mutually independent with
mean zero and constant variance, i.e., εit

iid∼ N(0, σ 2
ε ).

Due to the fact that this model cannot take into account
the intra-subject correlations and the previous Hb levels,

it is only presented as a benchmark model to show the
capability of transition and mixed effects models.

Transitionmodel
A transition model, also known as an autoregressive panel
data model in the econometrics literature, is a dynamic
regression model, in which the current response of a par-
ticular subject (donor) is regressed on previous responses
of that subject as well as on other covariates [15]. A
transition model of order q can be expressed as:

yit = α + β1Ageit + β2Seasonit + β3DPVit

+
q∑

r=1
γr(yit−r − (β1Ageit−r

+ β2Seasonit−r + β3DPVit−r))

+ εit ,

(2)

where yit is the tth observation of the ith individual, α is
an unknown constant, and the β ’s are unknown regression
coefficients, yit−r and (Ageit−r , Seasonit−r ,DPVit−r) are
rth lagged response and covariates, respectively and γr is
the corresponding coefficient of the rth lag. Classically it is
assumed that the residuals εit are normally distributed and
mutually independent with mean zero and constant vari-
ance, i.e., εit

iid∼ N(0, σ 2
ε ). In a transition model with order
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q, the predicted values depend on q lagged previous obser-
vations; however, to calculate the predicted value using
equation 2, there are not enough previous observations for
the first few visits of a donor. We employed the method
of maximum likelihood via a linear quadratic estimation
(Kalman filter) algorithm to estimate the parameters in the
transition model. This algorithm enables us to calculate
the exact likelihood function, which includes the distribu-
tion of the first few observations of each donor [16-18]. As
a result, the maximum likelihood estimation also includes
the information of donors who have made fewer visits
than the order of the transition model.

Linearmixed effectsmodel
The linear mixed effects (LME) model which contains
a mixture of fixed effects and random effects provides
another way to deal with longitudinal responses within a
subject. The correlation among responses pertaining to
one subject is now induced by introducing random effects,
which can be regarded as subject-specific terms [19,20].
A special case of the mixed effects model is the random
intercept model which can be expressed as:

yit = α+b0i+β1Ageit+β2Seasonit+β3DPVit+εit , (3)

where α is an unknown constant, the β ’s are regression
coefficients (fixed effects) and the bi0 is the random inter-
cept. The random intercept bi0 can be viewed here as
the deviation of the ith subject-specific mean of Hb levels
from the population mean of Hb levels. It is assumed that
b0i and εit are normally distributed andmutually indepen-
dent with mean zero and different constant variances, i.e.,
b0i ∼ N(0, σ 2

b0), and εit ∼ N(0, σ 2
ε ) [21]. Furthermore, in

the random intercept model the correlation between two
observations of a subject is constant and is equal to the
intra-class correlation given by ρ = σ 2

b0
σ 2
b0+σ 2

ε

[19,20].
Although the simplicity of the mixed model with only

random intercept is appealing, it poses the restriction
that the correlation between the repeated measurements
remains constant over time. An extension that allows for
a more flexible specification of the covariance structure
is a mixed model with random intercept and slope; this
model introduces an additional random effects term (e.g.
age), and assumes that the rate of change in the covariates
(age) differs between subjects. The mixed effects model
with random intercept and slope can be expressed as:

yit = α+b0i+(b1i+β1)Ageit+β2Seasonit+β3DPVit+εit ,
(4)

where α is an unknown constant, the β ’s contains
population-specific parameters. bi = (bi0, bi1) contains
subject-specific parameters (intercept and the effects of
age) describing how the evolution of the ith individual
deviates from the average evolution in the population, and

where the residual component εi = (εi1, . . . , εini)′ is a
vector containing the common error components, with
εi ∼ N(0,	i). In this paper, we assumed that 	i = σ 2Ini ,
so that, conditional on the values of the random effects,
a person’s measurements of the Hb level are independent.
However, additional correlation among the errors can be
accommodated by allowing for a more general covariance
structure (e.g., autoregressive) in the model. It is assumed
bi has a bivariate normal distribution with mean zero and
a diagonal covariance matrix, so that εi and bi are mutu-
ally independent. To estimate the parameters in the mixed
effects models we employed the method of restricted
maximum likelihood (REML). We applied an empirical
Bayes method (EB) to predict a person’s random intercept
and slope based on his/her all previous observations [20].
We used a likelihood ratio test to choose between the

mixed model with random intercept and the mixed model
with random intercept and slope. In this case, the likeli-
hood ratio test statistic for testing a random slope in the
model is a mixture of chi-squared distributions with 1 and
2 degrees of freedom [19].
Note that the linear mixed effects model is based on

quite different assumptions than the transition model. In
principle, if one model is correct, the other model must be
wrong. However, in practice we never know the truth and
in fact it is possible that both models are wrong. Despite
this, we can still check which of the two models performs
better in predicting the Hb level.

Prediction performance
To avoid a too optimistic assessment of the model pre-
dictions by using the data twice, i.e. for model building
and parameter estimation as well as model evaluation, we
have randomly divided the data set (n = 15, 625 donors)
into two parts: a training data set consisting of all observa-
tions of 7,709 donors and a validation data set consisting
of all observations of the remaining 7,916 donors [22]. The
models are estimated using the training data set, and the
model predictions are evaluated using the validation data
set. We used a dynamic prediction approach in the sense
that to predict Hb level at a visit we used the observations
of all previous visits, therefore for each visit we updated
our prior information. Since no prior information is avail-
able for the first visit, the predicted values are based only
on the gender and age of the donor and the season in
which the visit takes place.
The ultimate purpose of our longitudinal model is to

predict future Hb values, given previously measured Hb
values of a blood donor. Two criteria for choosing a
model are Akaike’s information criterion (AIC) [23] and
the related Bayesian information criterion (BIC) [24]. We
report the values of AIC and BIC for the training data
set. In addition, we have chosen to estimate the pre-
dictive accuracy using some simple and intuitively clear
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measures, i.e. mean squared prediction error (MSPE) as a
function of the visit number. At the tth visit, the MSPE is
computed as:

MSPEt =
Nt∑

i=1

(ŷit − yit)2

Nt
, (5)

where ŷit and yit are the predicted and observed val-
ues, respectively and Nt is the total number of subjects
at occasion t. MSPEt is a well-known measure to eval-
uate prediction. The MSPE values are calculated for the
validation data set only.
We also computed the sensitivity and specificity of the

predicted values for assessing the eligibility for donation
in the validation data set. Specifically, we computed the
proportion of individuals that are correctly predicted to be
eligible for donation based on the clinical cut-off value (i.e.
an Hb level of at least 8.4 mmol/l and 7.8 mmol/l for men
and women, respectively). However, one may also opti-
mize the cut-off value for the predicted values to obtain
a receiver-operating characteristic (ROC) curve. In this
ROC curve, the state variable is a dichotomous variable
indicating whether the Hb level is below the clinical cut-
off value of 8.4 mmol/l for men or 7.8 mmol/l for women;
the test variable is the predicted value ŷit . Varying the cut-
off value for the predicted value will change the sensitivity
to detect that a donor will be eligible; however the assess-
ment of donors’ eligibility is based on the clinical cut-off
value, which is not changed in the ROC analysis. We cal-
culated the area under the curve (AUC) to compare the
models. The difference in the AUCs between the mod-
els was tested using a bootstrap technique [25,26] that
takes into account the correlation between the areas that
is induced by the paired nature of the data.

Results
Table 1 presents descriptive statistics of the training and
validation data sets. Different models are applied on the
Sanquin data. We start with a multiple linear regression
model (Model LR) that includes age, season, and donation
at previous visit (DPV) as covariates. This model ignores
the correlation among the subsequent hemoglobin values

and hence is not a candidate choice, however, it serves
as a benchmark to evaluate the more realistic models.
In addition to the multiple linear regression model, a
mixed effects model (Model LME) and transition (autore-
gressive) models of different orders are fitted to the
training data set. The transition models are denoted as
Models AR(1) to AR(5), where the number indicates the
order of the transition model. The data for male donors
supported only a mixed model with random intercept
(p-value= 0.19), but the data for female donors sup-
ported a mixed model with random intercept and slope
(p-value < 0.001).
Tables 2 and 3 display the results of the fitted models on

the training data set for male and female donors, respec-
tively. These tables indicate that all transition effects
(regression coefficients of past Hb values) are significant,
although the effect of previous Hb level decreases with
the lag. The effect of age is negative for male donors and
positive for female donors, these results are consistent
with previous studies (e.g. see [5,8]). During warm seasons
Hb level is lower on average than during cold seasons;
this result is also supported by previous studies (e.g. see
[12,13]). Furthermore, our models show that having had a
donation in the previous visit has a negative effect on the
current Hb level.
The AIC and BIC values for different models based on

the training data set and the MSPE values based on the
validation data set are shown in Table 4 for men and
women. The results in Table 4 show that, for both gen-
ders, AIC and BIC prefer a 5th order transition model
over transition models that use fewer lagged observa-
tions. However, if we include all models, the smallest AIC
and BIC value for the data of female donors are obtained
with the mixed model with random intercept and random
slope.
The assessment of predictive accuracy based on MSPE

confirms that all transition models and the mixed effects
(LME) model provide much better predictions than the
multiple linear regression model. In addition, the results
indicate that the transitionmodel usually provides a better
prediction than the mixed effects model, especially at high
visit numbers, see Figure 2.

Table 1 Descriptive statistics of the training and validation data sets

Data set Gender #Donor #Deferral #Cold Season Age: Mean (SD) Visit: Med (IQR)

Training data set Male 3610 769 (4.58%) 10213 (50.05%) 34.57 (12.9) 5 (3)

Female 4306 1596 (9.62%) 10387 (49.71%) 32.66 (12.8) 5 (1)

Total 7916 2365 (7.08)% 20600 (49.88%) 33.53 (12.9) 5 (2)

Validation data set Male 3449 688 (4.27%) 9781 (49.95%) 34.28 (12.6) 5 (3)

Female 4260 1729 (10.41%) 10341 (49.54%) 32.77 (12.8) 5 (2)

Total 7709 2417 (7.38%) 20122 (49.74%) 33.45 (12.7) 5 (2)

Note: SD= Standard deviation, IQR= Interquartile range.
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Table 2 Parameter estimates (standard errors) of themodels estimated using the training data set for male donors

Parameter Model LR AR(1) AR(2) AR(3) AR(4) AR(5) Model LME

intercept 9.6448 9.6309 9.6441 9.6560 9.6617 9.6633 9.6719

(0.0142) (0.0206) (0.0231) (0.0243) (0.0246) (0.0247) (0.0243)

Age -0.0045 -0.0043 -0.0044 -0.0045 -0.0047 -0.0047 -0.0049

(0.0003) (0.0005) (0.0006) (0.0006) (0.0006) (0.0007) (0.0006)

Season(Warm) -0.0627 -0.0615 -0.0681 -0.0699 -0.0693 -0.0694 -0.0698

(0.0089) (0.0074) (0.0066) (0.0066) (0.0067) (0.0067) (0.0067)

DPV -0.0610 -0.0469 -0.0350 -0.0385 -0.0440 -0.0474 -0.0636

(Donation) (0.0092) (0.0089) (0.0079) (0.0074) (0.0072) (0.0072) (0.0068)

γ1 — 0.5158 0.3685 0.3053 0.2746 0.2630 —

— (0.0061) (0.0068) (0.0076) (0.0082) (0.0087) —

γ2 — — 0.2888 0.2080 0.1766 0.1621 —

— — (0.0078) (0.0087) (0.0084) (0.0091) —

γ3 — — — 0.2207 0.1730 0.1581 —

— — — (0.0095) (0.0104) (0.0109) —

γ4 — — — — 0.1488 0.1257 —

— — — — (0.0123) (0.0129) —

γ5 — — — — — 0.0829 —

— — — — — (0.0167) —

Based on the fitted models, we calculated the predicted
Hb levels for donors from the validation data set and pre-
dicted the eligibility (Hb > 8.4 for men and Hb > 7.8
for women) of a donor at a particular visit. Figure 3 dis-
plays the ROC curves for the 5th order transition model

and the mixed effects model for male donors; since the
results for female donors are similar, the ROC curves for
female donors are not shown. All observations in the val-
idation data set (n = 7,916 donors) were used to compute
these ROC curves. The AUCs for the transitionmodel and

Table 3 Parameter estimates (standard errors) of themodels estimated using the training data set for female donors

Parameter Model LR AR(1) AR(2) AR(3) AR(4) AR(5) Model LME

intercept 8.2737 8.2394 8.2555 8.2678 8.2698 8.2702 8.2832

(0.0123) (0.0164) (0.0180) (0.0186) (0.0187) (0.0187) (0.0181)

Age 0.0042 0.0044 0.0042 0.0040 0.0040 0.0040 0.0037

(0.0003) (0.0004) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

Season(Warm) -0.0347 -0.0405 -0.0415 -0.0413 -0.0415 -0.0415 -0.0411

(0.0078) (0.0062) (0.0060) (0.0062) (0.0061) (0.0061) (0.0062)

DPV -0.1106 -0.1411 -0.1273 -0.1307 -0.1335 -0.1346 -0.1387

(Donation) (0.0079) (0.0075) (0.0067) (0.0064) (0.0063) (0.0063) (0.0060)

γ1 — 0.4669 0.3457 0.3012 0.2878 0.2830 —

— (0.0062) (0.0067) (0.0074) (0.0080) (0.0084) —

γ2 — — 0.2573 0.1963 0.1793 0.1693 —

— — (0.0080) (0.0088) (0.0089) (0.0099) —

γ3 — — — 0.1742 0.1486 0.1360 —

— — — (0.0100) (0.0112) (0.0121) —

γ4 — — — — 0.0831 0.0623 —

— — — — (0.0157) (0.0182) —

γ5 — — — — — 0.0681 —

— — — — — (0.0264) —
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Table 4 AIC, BIC, andMSEP values for different models for both genders based on the training data set

Male donors Female donors

Model AIC BIC MSPE AIC BIC MSPE

Linear Regression 37087.8 37127.2 4.14 35968.9 36008.6 2.29

Mixed Effects 30524.3 30571.6 2.90 30058.0 30113.6 1.75

AR(1) 32051.0 32098.3 3.07 31559.1 31606.7 1.81

AR(2) 30936.4 30991.6 2.85 30664.7 30720.3 1.73

AR(3) 30471.9 30535.0 2.78 30375.1 30438.7 1.71

AR(4) 30342.5 30413.4 2.78 30341.7 30413.2 1.72

AR(5) 30321.4 30400.2 2.79 30325.1 30404.5 1.72

Note: Lower values of AIC, BIC, and MSEP indicate better model fit.

mixed effects model are 0.83 and 0.81 for men, respec-
tively; for women we obtained AUC values of 0.73 and
0.72, respectively. The difference in AUCs between the
two models is statistically significant (p-value < 0.001),
namely the transition model has a larger AUC than the
mixed effects model and thus offers a better trade-off
between sensitivity and specificity.

Discussion
In this article, we presented transition models with dif-
ferent numbers of autoregressive terms and mixed effects
models (a mixed effects model with random intercept
for male donors and a mixed effects model with random

intercept and random slope based on age for female
donors), as plausible models to account for the depen-
dence among subsequent Hb levels within a donor and
as models to predict the future hemoglobin level. Based
on the results for the validation data set, we showed that
the transition model and the mixed effects model have
almost the same predictive accuracy at the first few visits
of a donor; however, for longer time series the transi-
tion model offers somewhat better predictions. To give an
idea of the predictive performance, we have computed the
ROC curve. Our results confirm that the transition model
shows a small but significant improvement in the AUC
compared to the mixed effects model.
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standard errors of the AUCs are shown in parentheses. Different cut-off points for the predicted value are displayed on the curves.

Both the transition and the mixed effects models use
the data of a person’s previous observations for mak-
ing predictions. In the transition model only the last q
observations are used for prediction the current response.
However, in the mixed effects model, the empirical Bayes
method for estimating a persons random effects uses all
previous observations. Therefore, the mixed effects model
requires more historical information than the transition
model. Since the transition model is convenient in prac-
tice and needs less historical information compared to the
mixed effects model, blood banks may use this model to
predict the future hemoglobin level of a candidate and to
determine which candidates should not be invited for the
next donation.
Our approach of using transition or autoregressive

models is quite novel in biomedical research, however in
other fields such as econometrics, autoregressive model-
ing is a very well-known technique for tackling correlated
financial phenomena and time series problems [27].
We do not claim that our final model is optimal; further

research is needed to arrive at a better prediction model.
First, the data set used in this paper is unbalanced in the
sense that the time intervals between visits vary consider-
ably, though this was not taken into account here. Second,
there aremore factors that are possibly associated with Hb
level than those which we have investigated in this study,
such as physical activity [28], race [29], nutrition [30] and

smoking status [11,31]. Finally, the ultimate purpose of the
prediction exercise is not the prediction of the future Hb
value, but rather to determine the best time for the donor
to return for donation. Hence, prediction models for Hb
levels after blood donation should focus on the optimal
timing of future donations, instead of on predicting future
Hb levels. We are currently investigating such models.

Conclusion
In this study we compared transition models and mixed
effects models for predicting the Hb level in whole blood
donors. The results showed that the transition model
provides a somewhat better prediction than the mixed
effects model, especially at high visit numbers. We believe
that our paper shows the capabilities of using longitudi-
nal models for prediction and that our findings may help
reduce the number of deferred candidate in the blood
banks.
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