
Microsoft Research Technical Report MSR-TR-2005-145, October 2005

A Spreadsheet Approach to Programming and
Managing Sensor Networks

Alec Woo, Siddharth Seth, and Feng Zhao

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

{awoo, t-sseth, zhao}@microsoft.com

Abstract
We present a spreadsheet approach to simplifying the
process of managing sensor networks and addressing
the “in-situ” nature of sensor-net programming. An
Excel spreadsheet prototype has been built to
demonstrate the idea. This spreadsheet environment
provides users who are already familiar with
spreadsheet a very convenient and powerful tool for
data programming and analysis. We discuss the
architecture of this prototype and present our
experience in implementing the tool and using it to
build two different classes of sensor-net applications.

1. Introduction
Today, one of the hurdles in deploying a sensor
network is the difficulty of programming and running
the entire system. It involves programming and
managing the sensors, programming the gateways,
interpreting and processing the data streams, and
setting up the servers for data archival. The truth is
that even experts in the field find this entire process
difficult and troublesome.

The underlying challenges arise from the inherent
distributed nature of sensor networks that cross
multiple tiers of computing: sensors, gateways, and
servers. In addition, the unpredictability of the
physical phenomenon being monitored often requires
much iteration of data analysis and algorithmic or
processing changes. This “in-situ” property is unique
to sensor network since deployment specific
constraints can impact the entire programming design
and process; the deterministic behavior generally
assumed in traditional programming is rare here.

Recent research efforts in simplifying sensor
programming have led to a few interesting macro-
programming frameworks [MMGM04, RNAMW05].
The general approach of these works focuses on

designing a high-level language that can abstract
away programming individual sensor nodes and low-
level system details. These abstractions build up the
important foundation and representation for defining
programming specifications that aim to span multiple
nodes. The high-level description of logic is very
useful for programming and managing sensor
systems composed of many nodes. However, sensor-
net programming involves hurdles beyond building
richer abstractions. The “in-situ” nature of sensor
network requires a joint real-time data analysis,
programming, and processing environment. System
management support that allows user to reconfigure
and program the entire sensor system is also
important. Therefore, a sensor network programming
environment requires three concurrent components:
data analysis, data programming and processing, and
run-time system management and reconfiguration
support.

The contribution of this work is to allow users to
achieve these three requirements using the familiar
and widely used spreadsheet environment. This
environment builds upon the abstractions and run-
time support developed by the macro-programming
effort and the sensor-net tools provided by [TinyOS].
The ultimate goal is to provide a simple user
experience for sensor-net programming. Although
processing is currently performed centrally at the
spreadsheet in our prototype, it can be distributed in
the future for scalability reasons but requires an
underlying run-time support.

In this paper, we implemented the prototype with
Excel over a service-oriented abstraction architecture
provided by [JLFZ05]. Such a service-oriented
abstraction is not an essential requirement for the
success of the prototype. We used it because of our
familiarity with it, and its flexibility and ease of
integration with Excel.

 1

Microsoft Research Technical Report MSR-TR-2005-145, October 2005

The roadmap of the paper is as follows. Section 2
discusses how spreadsheet fits within the multi-tier
architecture typically found in sensor network
deployments. Section 3 walks through a high-level
description of the implementation of our prototype
and how it addresses our programming and
management goals. Section 4 presents two
application scenarios showing how our prototype
helps building sensor-net applications. Section 5
evaluates this spreadsheet approach to programming
and building sensor-net applications from our
experience. We discuss related work in Section 6,
and we conclude and address future work in Section
7.

2. The Role of Spreadsheet
Figure 1 shows the architectural overview of a typical
sensor network deployment.

Figure 1: A multi-tier sensor-net architecture

The lowest-tier of computing at the bottom of Figure
1 consists of sensors deployed over a field. The
sensors self-organize into a single or multiple-hop
network streaming data towards the gateways, the
next tier of computing. The gateway nodes may
either be wireless or wired, but typically will have
higher link bandwidth and reliability. They can be
programmed to further process the data streams and
or even operate as delegates for querying the sensor
tier. The gateway, as its name suggests, also acts as
an entry point to the Internet for the sensor nodes.
The data streams from the gateways can be
aggregated and archived for further processing by
more powerful servers or databases at the next tier.
This last tier of computing at the top of Figure 1
supports an Internet-scale sensor system. Managing

and programming each of the tier, especially the
sensor-tier, is difficult, not to mention integrating
them together to form a complete system. Therefore,
the design space crossing these different tiers is large
and many of the issues are out of the scope of this
paper. In this section, we focus on identifying the
roles of spreadsheet relative to Figure 1.

Spreadsheet can play the roles of simplifying data
analysis, data programming and processing, and run-
time system management and reconfiguration for the
users. Since it is already a familiar programming
interface for scientific and business purpose, applying
the same spreadsheet programming model for
processing incoming data streams in real time would
be very useful for everyday computer users who do
not know or want to learn sensor network
programming. The same built-in statistical functions
and data visualization tools in a spreadsheet can be
reused for analyzing data streams in the sensor-net
context.

Another advantage of using the spreadsheet model is
to reuse the tabular interface for binding spatial
deployment information with incoming data streams.
This is particularly useful for system management
and reconfiguration. For example, one can overlay
the deployment map and bind the spreadsheet cells to
the sensor node positions on the map. This allows
users to both manage the node and its data stream
like manipulating individual cell on a spreadsheet.
For example, changing the values in the cell of a
node can automatically configure or even reprogram
the node.

This integration of spatial deployment information
with data analysis, data programming and system
management directly addresses the “in-situ” nature of
sensor networks. Spreadsheet naturally positions
itself between the user and the gateway and sensor
tier as shown in Figure 1. Furthermore, the ease of
integration of spreadsheet with web servers or
database at the highest-tier makes spreadsheet a very
convenient integration tool. To preserve the
distributed nature of the system as shown in Figure 1,
data processing at the spreadsheet can fall back to
other nodes, the gateways, or even the sensor-net
tiers. However, this goes beyond the current scope of
this paper.

 2

Microsoft Research Technical Report MSR-TR-2005-145, October 2005

3. System Implementation
The implementation of the spreadsheet prototype has
two parts. The first involves augmenting Excel for
sensor network management. The second involves
making Excel as a server to receive incoming data
streams. We discuss the details of these two parts in
this section.

3.1 Network Management
We augment Excel with its built-in VBA scripting
capability to provide a user interface that eases the
process of programming (or downloading code to)
the sensor tier. The first step involves discovery of
deployed sensor nodes. If nodes are connected as a
USB test-bed, discovery simply means calling the
relevant TinyOS tools, such as “motelist”, to query
for the sensor nodes. If nodes are configured on an
Ethernet network, discovery often means using a
lookup table which can be a list in Excel. If nodes
are deployed outdoors, we can rely on tools, such as
Nucleus [GTDC05], for node discovery and display it
in Excel.

Once node discovery is done, each sensor is
represented as a cell. Users select the cells to
represent motes for programming. All TinyOS
applications in the apps directory are shown as a list
in Excel for users to select. Figure 2 shows the
screen shot of such an interface.

 Figure 2: Management interface

User also has a choice of programming methods:
over USB, Ethernet, or wireless with Deluge
[JHDC04]. Deluge has a limitation that all images of
the node must run the same program image. As a
result, it is not possible to partition the network with
different programs using Deluge.

More sophisticated system management can also be
done in Excel with Nucleus since Nucleus exposes
the necessary attributes for users to query and
modify. These attributes can be shown in Excel in
XML format for users to manipulate as shown in the
next section. However, integration with Nucleus is
not implemented yet.

3.2 Sensor Data Stream Processing
We use the latest version of Visual Studio 2005 Beta
2 with .NET 2.0 to augment Excel to act as an agent
to query the gateway tier for incoming sensor data
streams. This new version of Visual Studio
integrates well with Excel development. The
gateway tier runs the service-oriented architecture
provided by SONGS. We use Tmote as the sensor
tier platform and run the latest TinyOS 1.x
distribution.

SONGS provides a service abstraction over the
gateway and sensor tiers. An extended XML
language called MSTML is used by SONGS for
defining service composition over the gateway and
the sensor tier. In our current implementation, Excel
uses a given user-defined MSTML file to task the
two tiers. In the future, the construction of the
service composition can also be done within Excel.

SONGS uses XML as the basic gluing logic and
structure definition for service composition and data
stream objects. That is, SONGS gateways have
services to automatically convert data streams from
the lower-tier, platform-dependent sensor data format
into platform-independent XML streams. On
reception, Excel converts these incoming XML
streams into standard spreadsheet lists. The layout
and categorization of the list can either be user-
defined or inferred automatically from the XML
structure. The later approach is attractive but
requires user guidance to filter out unneeded
information within the XML structure. A wizard
should play such a role to assist users in the future.

 3

Microsoft Research Technical Report MSR-TR-2005-145, October 2005

Our current implementation uses a manual mapping
of the XML structure to the list layout in Excel. Once
data streams are mapped onto the Excel lists,
processing on the data is the same as usual
spreadsheet programming. Section 4 shows how we
built two application scenarios within this
framework.

3.3 Database Server
While spreadsheet provides a data programming and
visualization environment to the users, the archival of
the data requires a database, especially when data
streams are continuous for a long period of time.

Our prototype can store each data stream and its
corresponding processed values into the database. To
ease the integration effort between Excel and the
database, we use the latest beta version of SQL
Server 2005 because it natively supports XML data
types. With this XML capability, XML streams can
be stored directly in the database without knowing
the packet structure a priori. XML query processing
is thus possible over both the raw data streams and
the processed data streams from the spreadsheet. We
use XML as the key of simplifying the integration
process for the different tiers as we believe that future
databases and data streams will widely support or
exploit XML.

With a database, the spreadsheet becomes a cache for
the most recent data streams. This cache size is
especially limited if processing is done centrally. In
our current implementation, Excel lists of the data
and processing streams have a limited size defined by
the user. That is, each list signifies a fixed time
window of the most recent data, with the current
sample being at the bottom of the list. The stale
samples, already stored in the database, will be
automatically purged by Excel as the lists are
bounded by their maximum length. The choice of
this size is a balance on the amount of history that
needs to maintain for processing versus scalable
performance as the amount of streaming increases.

4. Application Scenarios
We apply our prototype to two different classes of
sensor-net applications. One involves event detection
for the presence of a vehicle in a parking lot and the
other is a typical environmental data collection
application within an office building.

4.1 Vehicle Event Detection
The first application involves detecting vehicles and
counting them within a parking lot infrastructure.
We use the same deployment setup as discussed in
[JLFZ05]. Infrared break-beam sensors and their
reflectors are deployed in the parking lot. Whenever
the line of sight between a sensor and its reflector is
physically blocked by an obstacle, such as a vehicle,
the sensor will report a low-level binary detection
event to the gateway. A vehicle passing over these
sensors will generate a stream of events, which are
time-stamped by the gateway and sent to Excel.
Figure 3 shows the screenshot of the data streams in
Excel.

Figure 3: Vehicle detection processing

The list on the left shows the raw incoming data
streams of the break-beam sensors from the
gateways. These sensor data streams are represented
as XML objects as shown below:

<?xml version="1.0" encoding="utf-8" ?>
<microserver name="ebox">
 <event name = "On Event"
 locationX = "0"
 locationY = "0"
 locationZ = "0"
 risingedgetimestamp = "10000"
 fallingedgetimestamp ="10300"/>
</microserver>

In this case, an “On Event” means that the break-
beam sensor has an event detected. The location of
the sensor and the corresponding timestamps of the
rising and falling edge of the event are included in
the XML object. These XML objects form the raw
data streams and they are mapped to the list on the
left as suggested by the list column headers in Figure
3.

 4

Microsoft Research Technical Report MSR-TR-2005-145, October 2005

In our deployment, sensors are strategically placed
along the roadside such that a typical vehicle would
block at least two of the sensors during crossing.
One simple mechanism in detecting a vehicle is to
count if two or more sensor events within a given
physical location overlap in time. The list on the
right with a thick border in Figure 3 shows how users
can specify such processing using conventional
spreadsheet array formula.

For each raw data detection event, we calculate the
number of events that overlap with it in time using
the following Excel array formula:
{=SUM((falling_time<=$F6) *(falling_time>$E6))}.
In this case, the current row is 6. Therefore, F6
represents the falling-edge timestamp and E6
represents the rising-edge timestamp of the current
event. “falling_time” is the name of column F
defined by the user a priori. It signifies the falling-
edge timestamp of all the events in the worksheet.
The action of the formula is to sum up the number of
events in the list that has the falling-edge timestamps
within the rising-edge and falling-edge of the current
event at row 6. This is an array formula, as denoted
by {}, because it has to process the entire
“falling_time” (Fth) column. Expanding the formula
to include location information in Figure 3 can filter
out events that are not spatially correlated. As the
raw data list grows, the processing list grows as well
with the relative cell addressing, such as F6 and E6,
in the formula adapting automatically.

The next column defines a threshold for vehicle
detection; if the number of overlapping detections
equals or exceeds a threshold of 2, a vehicle is
detected. This logic is translated to the following
Excel expression in cell J6 in Figure 3:
=IF(num_overlaps>=2, 1,0). This is not an array
formula since we are not processing the entire
“num_overlaps” (Ith) column. “num_overlaps”
refers to the cell in column (I) on the same row
numbered 6.

These two simple examples demonstrate how users
can use the built-in Excel functions and expressions
to derive more high-level statistics, such as vehicle
speed and traffic flow information within the parking
lot. The naming convention in Excel can be
confusing when writing formulas since it depends on
the context of the formula and we hope future Excel
can improve on its naming scheme.

Notice that incoming raw data streams do not follow
a temporal order in Figure 3. However, the amount
of buffer (list size), which determines how far back
the spreadsheet can go in time, is adequate to absorb
these issues for our simple application. However,
users need to explicitly process the unordered streams
if tight temporal processing is required.

4.2 Environmental Data Collection
Our second application involves collecting
environmental statistics within a typical office
building. The deployment consists of 9 sensor nodes
that are capable of sensing ambient light, photo-
synthetic light, temperature, and humidity. These
sensor nodes are deployed across seven offices and a
hardware laboratory. We use Excel to maintain the
spatial information of the deployment as shown in
Figure 4.

Figure 4: Deployment specific information

Deployment specific information of each node can be
described using XML and stored as cell values in the
spreadsheet. The information may include node ID,
types of sensors on the node, and location of the
node. Depending on how the sensor program is
created, such information can directly be mapped to
Nucleus in TinyOS or abstracted by a SONGS
service for management and reconfiguration
purposes. For example, the following shows the
XML descriptions for one of our deployed node.

<MotePos>
 <HOST>LKG0FE7AD</HOST>
 <IP>172.31.45.162</IP>
 <SFPort>9001</SFPort>
 <ProgPort>10001</ProgPort>

 5

Microsoft Research Technical Report MSR-TR-2005-145, October 2005

 <MoteSerial>M49Y51BT</MoteSerial>
 <Owner>Person G </Owner>
 <room>112/3347</room>
 <MoteID>47</MoteID>
 <Humidity>1</Humidity>
 <Temperature>1</Temperature>
 <TSR>1</TSR>
</MotePos>

The XML elements, including HOST, IP, SFPort,
ProgPort, and MoteSerial, describe the test-bed
information about the mote. The rest of the elements
specifically describe the deployment information and
the services provided by the node. The deployment
information is expected to be defined by the users
while the node services are expected to be exposed
by the run-time support such as Nucleus. For
example, a user can simply turn on/off the humidity
data stream from the sensor by changing the binary
value of the XML Humidity node. Such action will
automatically update the node’s internal state to
reflect the changes. This feature will be supported by
our prototype once we integrate it with Nucleus.

To visualize and process the sensor data streams with
Excel, users can select a subset or all of the sensors
discovered and shown on the spreadsheet. The users
can simply select the cells corresponding to the nodes
to subscribe for their data streams. The selected data
streams will be shown automatically on a different
worksheet. The following shows a sample XML
object from a sensor data stream.

<?xml version="1.0" encoding="utf-16"?>
<OscopeMsgxmlns:xsd="http://www.w3.org/
2001/XMLSchema"xmlns:xsi="http://www.w3
.org/2001/XMLSchema-instance">
 <sourceMoteID>1</sourceMoteID>
 <lastSampleNumber>6140
 </lastSampleNumber>
 <channel>0</channel>
 <data1>986</data1>
 <data2>985</data2>
 <data3>984</data3>
 <data4>985</data4>
 <data5>985</data5>
 <data6>984</data6>
 <data7>985</data7>
 <data8>985</data8>
 <data9>985</data9>
 <data10>984</data10>
</OscopeMsg>

This XML object represents a packet from the
TinyOS Oscilloscope application. The SONGS
architecture has a generic data collection service that

automatically transforms the application payload of
TinyOS packets into XML objects. Excel can
automatically infer the schema of these objects and
display them on the spreadsheet. However, this is
often not desired because users may want to have the
control to layout and select important fields from the
XML data streams. Our current prototype manually
filters for the interesting part of the data streams and
lays them out on the spreadsheet from left to right,
with user-defined processing lists interleaving
between them. Figure 5 shows an example of the
filtered real-time data streams from three sensor
nodes in Figure 4, with the most recent samples
always located at the bottom of each list. In this case,
each processing list simply converts the unit of raw
temperature data from the list on its left into Celsius.
In the future, we plan to use a wizard to guide users
to control such a process.

Figure 5: Data streams from the selected sensor
nodes

Users can utilize Excel’s built-in plotting ability to
graph real-time statistics of the data streams similar
to the Oscilloscope tool from the TinyOS
distribution. In addition, users can reuse the
deployment specific information layout in Figure 5 to
visualize the spatial distribution of the data. For
example, Figure 6 shows a very simple spatial
contour graph of the temperature variations among
the different locations. The color spectrum range is
adjusted dynamically, depending on real-time data as
shown in cells L3 and L4. Clicking on the node will

 6

Microsoft Research Technical Report MSR-TR-2005-145, October 2005

display a callout box showing the average
temperature of that location.

Figure 6: Real-time spatial visualization of data
distribution

5. Discussion
Our prototype allows us to gain a lot of first-hand
experience in evaluating this spreadsheet approach to
sensor networks. We discuss our programming and
implementation experience in this section.

5.1 Programming Experience
For developers who are used to imperative languages
for programming, spreadsheet programming may feel
restrictive in the beginning. It is easy to arrive with
an early judgment that “it can’t be done in a
spreadsheet”. This is because spreadsheet may
provide less flexibility with its simple expression
language and its requirement of the data to be layout
in a tabular format. For sophisticated data
processing, which we haven’t evaluated with our two
application scenarios, spreadsheet programming may
be cumbersome. For example, list-to-list processing
primitives, which are very common for data streams,
are not supported by Excel. Data naming is also weak
as the reference of the list’s name depends on the
context of the formula. While VBA can be used to
provide a rich functional language programming
platform, it breaks the spreadsheet programming
model. Non-VBA functional programming on Excel
is possible as demonstrated by the work in
[SJMBAB03], but it is still an early research
prototype. All in all, at the current stage, we have not
explored using spreadsheet for programming
complex processes.

However, the very point of a spreadsheet is to
provide a simple programming platform for non-
computer scientists, who will be the main users of
sensor networks. Although our application scenarios
are simple, the demonstrated processing is
fundamental and common to many potential sensor-
net applications. Furthermore, the formula
expression language in Excel is fairly general and
supports a rich set of statistical functions for
scientific studies. Finally, the programming logic
and the associated buffer usage are quite explicit on a
spreadsheet. This can be advantageous since such
information is useful in delegating the processing to
the same or lower tiers.

5.2 Implementation Experience
We found that the built-in VBA capability provides a
simple way for users to customize user interfaces and
automate data processing for each application, which
is important since sensor network is often
application-specific.

Our design choice of relying on XML for integrating
the different pieces of the system together is
convenient as it allows us to decouple the
implementation platform details among the individual
pieces and thus, simplify the process of integration.

We found that updating the Excel’s display with the
data streams has a high latency overhead. To
improve efficiency, we chose to update the
spreadsheet with batches of data stream samples
rather than per each packet arrival. This approach
helps to increase Excel’s data service rate to catch up
with the incoming rate of the data streams. The size
of the batch is defined by the user and it depends on
the scale of the network and the expected latency in
observing and processing the samples.

The amount of statistical history needs to be
maintained by Excel is governed by the number of
nodes, the sampling rate, and the required time-
window to perform the statistical analysis. Excel has
a limitation as to how much data it can maintain
before reaching the point of thrashing. This needs to
be experimentally measured in the future.

 7

Microsoft Research Technical Report MSR-TR-2005-145, October 2005

6. Related Work
The idea of using the tabular or spreadsheet interface
for managing and processing data is not new; it is
used in everyday business, scientific, and industrial
settings. It is this reason why we advocate the
spreadsheet approach to managing and programming
sensor networks. Our contribution is in developing a
prototype that demonstrates the potential of this
approach for “in-situ” sensor data management.
Several other research works have taken a similar
path to simplify sensor data processing and
visualization.

TinyDB [TinyDB] provides the tabular interface for
users to visualize collected sensor data. It presents a
SQL query interface for data processing and provides
a primitive tool for data visualization. Its main goal
is to perform in-network processing in the sensor tier
in response to a given SQL query.

Moteview from Crossbow [Xbow] is a sensor
network management and data collection tool. It
supports visualization of the physical deployment and
maps it with the corresponding sensory data. The
tool is oriented towards visualization of sensor data
and network statistics such as network topology. It
does not present a programming interface for users to
process the incoming data streams.

Similar to ours, the work in [HBMM05] is exploring
the use of a spreadsheet interface to help scientists to
visualize data and perform some limited processing.
The main idea is to provide a pivot-table interface so
that users can visualize the data relationships from
different perspectives. Instead of using Excel, they
build a complete spreadsheet tool from scratch. The
work also proposes to let users write simple
expressions to define event triggers that will
eventually be compiled down to the sensor-tier acting
as low-level filters.

The Nucleus management console project from
Berkeley [MM05] provides a spreadsheet web
interface for showing system information of each
sensor node provided it has the TinyOS Nucleus run-
time installed. The system information can represent
networking statistics or even the internal states of
each node. The console provides a tabular interface
for users to view and alter such information, thus,

performing system-wide management and
reconfiguration support.

7. Future Work and Conclusion
We have successfully built a spreadsheet prototype in
Excel to address three important issues of sensor-net
“in-situ” programming, which include real-time data
programming, data analysis, and system management
and reconfiguration. We built two different classes
of applications to demonstrate the feasibility of the
spreadsheet approach and presented our experience.

A systematic performance and robustness study
should be done to stress test our prototype in order to
understand scalability issues. We plan to do such
evaluation using our test-bed and grow the scale
incrementally. This allows us to explore the
crossover point in offered load between centralized
and distributed stream processing with Excel. Beside
performance and stability, we should conduct
usability study of our prototype to guide us on the
interface design. We also plan to build other
applications to drive the further development of the
tool.

We only explored some of the data analysis,
programming and system management issues with
our current prototype. A few interesting and
important directions remain to be explored. They
include user-interface design on manipulating many
data streams, new ways of data and network
visualization, identification of useful statistical
functions, and process delegation and service
composition for the gateways and sensor-tier. We
plan to do these by releasing our prototype as a tool
to the research community in steps and get feedback
along the way.

References
[GTDC05] Gilman Tolle, David Culler. Design of an
Application-Cooperative Management System for
Wireless Sensor Networks. Second European
Workshop on Wireless Sensor Networks (EWSN),
Istanbul, Turkey, January 31 - February 2, 2005.

[HBMM05] James Horey, Patrick Bridges, Arthur
Maccabe, and Angela Mielke. Work-in-Progress: The
Design of a Spreadsheet Interface, IPSN (2005)

 8

Microsoft Research Technical Report MSR-TR-2005-145, October 2005

[JHDC04] Jonathan W. Hui and David Culler. The
Dynamic Behavior of a Data Dissemination Protocol
for Network Programming at Scale. The 2nd ACM
Conference on Embedded Networked Sensor Systems
(SenSys'04), 2004

[JLFZ05] Jie Liu and Feng Zhao, Towards Semantic
Services for Sensor-Rich Information Systems. The
2nd IEEE/CreateNet International Workshop on
Broadband Advanced Sensor Networks (Basenets
2005), Boston, MA, October 2005..

[MM05] Matt Massie, TinyOS Nucleus Management
Console. Berkeley CENTS Retreat, May 27th,
2005.http://www.cs.berkeley.edu/~massie/talks/nucle
us/NucleusInternals.ppt

[MWGM04] Matt Welsh and Geoff Mainland.
Programming Sensor Networks Using Abstract
Regions. In Proceedings of the First USENIX/ACM
Symposium on Networked Systems Design and
Implementation (NSDI ’04), March 2004.

[RNAMW05] Ryan Newton, Arvind, and Matt
Welsh. Building up to Macroprogramming: An
Intermediate Language for Sensor Networks. In
Proceedings of the Fourth International Conference
on Information Processing in Sensor Networks
(IPSN’05), April 2005.

[SJMBAB03] Simon Peyton Jones, Margaret Burnett,
Alan Blackwell. A user-centred approach to
functions in Excel. Proc International Conference on
Functional Programming, Uppsala, Sept 2003
(ICFP'03), pp 165-176, 12 pages.

[TinyOS] http://www.tinyos.net

[TinyDB] http://telegraph.cs.berkeley.edu/tinydb

[Xbow] http://www.xbow.com

 9

http://www.tinyos.net/
http://telegraph.cs.berkeley.edu/tinydb
http://www.xbow.com/

	Abstract
	Introduction
	The Role of Spreadsheet
	System Implementation
	Network Management
	Sensor Data Stream Processing
	Database Server

	Application Scenarios
	Vehicle Event Detection
	Environmental Data Collection

	Discussion
	Programming Experience
	Implementation Experience

	Related Work
	Future Work and Conclusion
	References

