
Research Article
Shannon’s Energy Based Algorithm in ECG Signal Processing

Hamed Beyramienanlou and Nasser Lotfivand

Department of Electronic Engineering, Islamic Azad University, Tabriz Branch, Tabriz, Iran

Correspondence should be addressed to Nasser Lotfivand; Lotfivand@Iaut.ac.ir

Received 20 July 2016; Revised 25 November 2016; Accepted 5 December 2016; Published 18 January 2017

Academic Editor: Luis J. Mena

Copyright © 2017 Hamed Beyramienanlou and Nasser Lotfivand. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Physikalisch-Technische Bundesanstalt (PTB) database is electrocardiograms (ECGs) set from healthy volunteers and patients with
different heart diseases. PTB is provided for research and teaching purposes by National Metrology Institute of Germany. The
analysis method of complex QRS in ECG signals for diagnosis of heart disease is extremely important. In this article, a method on
Shannon energy (SE) in order to detect QRS complex in 12 leads of ECG signal is provided. At first, this algorithm computes the
Shannon energy (SE) and then makes an envelope of Shannon energy (SE) by using the defined threshold. Then, the signal peaks
are determined. The efficiency of the algorithm is tested on 70 cases. Of all 12 standard leads, ECG signals include 840 leads of the
PTB Diagnostic ECG Database (PTBDB). The algorithm shows that the Shannon energy (SE) sensitivity is equal to 99.924%, the
detection error rate (DER) is equal to 0.155%, Positive Predictivity (+P) is equal to 99.922%, and Classification Accuracy (Acc) is
equal to 99.846%.

1. Introduction

In recent years, cardiovascular disorders have been one of
the major diseases threatening human life. Therefore, the
detection of heart signal waves such as QRS complex is highly
significant [1]. Electrocardiogram is used to detect most of
heart disorders and shows the electrical activities of heart
as a signal [2]. ECG signals contain a lot of information
concerning heart diseases. The detection of special points
and different parameters such as QRS complex are one of
the basic topics and are of high importance, because they
lead to the diagnosis of heart diseases. The QRS are used to
diagnose many cardiac diseases and noncardiac pathologies
such as autonomic malfunction vascular, respiratory (RR)
assessment in cardiomyopathy and the normal ventricular
myocardium, estimate the heart rate and heart rate variability
analysis, and detect ST segment [3–5]. Heart problems usu-
ally involve leaking valves and blocked coronary arteries.This
research is motivated by reasons expressed. Heart rate cycle
consists of a P-wave, a QRS complex, T-wave, and sometimes
U-wave [5]. Figure 1 shows schematic representation of
normal ECG.

Detecting any of heart signal waves may be difficult
due to variable physiology, arrhythmia, disease, and noise.
Therefore, in methods such as artificial neural networks and
supportive vector machines, detection by the wave R is not
always successful and true detection cannot be reached in
different signals [6, 7].

The shape of the waves T, P, and QRS is well known;
however, the time and frequency of these waves depend
on the physiological and physical conditions. In addition,
the signal may face polluted recordings with noises such as
transmission lines [3].

In recent decades, various methods have been presented
to improve the detection of heart signal waves, including Pan-
Tompkins algorithm [7], Wavelet Transform, by usage of a
constant scale in signal analysis, not considering the charac-
teristics of the signal [8, 9], and artificial neural networks,
containing of a series of interconnected simple processing
units that each connection has a weight. Input layer, one or
multiple hidden layers, and output layer constitute a neural
network [10, 11]. Adaptive filter [12], called Hilbert-Huang
Transform (HHT), is a new technique for extracting features
that are nonlinear and nonstationary signals. This technique
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Figure 1: Schematic diagram of normal ECG.

has a leakage in practical tasks [13]. Filter bank [14], a Hidden
Markov Model (HMM), describes the process where direct
observation is not possible, when sequence of symbols can
observe HMM. It is used in many fields such as classification
of heartbeat and apnea bradycardia detection in preterm
infants [15]. Hermite Transform (HT) was recently used
instead of Fourier Transform. HT shows better performance,
when optimization is done properly [16]. Threshold method
[17], Shannon energy envelope (SEE), is the average spectrum
of energy and is better able to detect peaks in case of various
QRS polarities and sudden changes in QRS amplitude. SEE
detects R-peak with a better estimate [18]. S-Transform and
Shannon energy (SSE) create a frequency-dependent regula-
tion which is directly related with the Fourier spectrum. S-
Transform includes short time Fourier Transform (STFT) and
theWavelet Transform (WT). SSE gives a smooth cover for P-
waves and T-waves and completely decreases their influence
[19]. Methods such as pattern matching are based on their
comparing and contrasting.The calculations are complex and
need manual classification [6].

In this paper, an algorithm based on Shannon energy
has been proposed to improve the QRS complex detection
and simplify the detection process. First, a band-pass filter is
used for eliminating noise. Second, Shannon energy of ECG
signal is calculated. Third, include moving averages and a
differential for the envelope of step 2. Finally, with defining
a threshold, peaks are detected. The proposed algorithm is
tested on 115-second (to end) ECG signal of PTB Diagnostic
ECG Database (PTBDB) [20, 21] and detection accuracy of
99.846% is obtained.The proposed technique results in good
performance without being mathematically complex.

2. Method

The block diagram of detecting QRS complex algorithm is
shown in Figure 2. It includes four stages. Stage 1 includes
band-pass digital filter and amplitude normalization. Stage

2 includes calculating Shannon energy of stage 1. In stage
3, with moving average and differencing, make a pack of
Shannon energy, and in stage 4, with defining a threshold,
QRS complex is detected.

2.1. Preparations Signal. Digital-analog conversion process
is causing all kinds of noise interference and sometimes
strongly affects the information. These interactions include
frequency interference, muscle contraction, and wandering
signals from the baseline or Gaussian white noise [5].

The ECG signal recorded from human beings is a poor
signal and is often contaminated by noise. Frequency interfer-
ence includes a narrow band from 48 to 60Hz and harmonic
interference, and the noise frommuscle contraction occurs in
38 to 45Hz. To eliminate this noise, notch filter is good [22].
Deep breathing, loosely connected electrodes, and sudden
changes in voltage lead the baseline signal to be wondered
(baseline drift) [5]. Random variable vector (mean) and chro-
matogram baseline estimation and denoising using sparsity
(BEADS) algorithm [23] are good methods to eliminate
baseline drift. The band-pass filter decreases efficacy of
muscle contraction, frequency interference, baseline drift,
and P-wave and T-wave interference [7, 24]. To repress these
noises, Butterworth band-pass digital filter with stop-point
set at 5 to 16Hz is used. Butterworth has no ripple in band-
pass. [25]. After band-pass filter, the signal is normalizedwith
(1) in stage 1 [26].

𝑎 [𝑛] =
𝑓 [𝑛]

max𝑁
𝑖=1

𝑓 [𝑛]
, (1)

where 𝑎[𝑛] is a normalized amplitude; 𝑓[𝑛] is an after
processes band-pass filter (BPF). 𝑁 denotes the number of
samples.

2.2. Shannon Energy and Detection of QRS Complex. The
proposed method is based on the use of signal energy. The
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Figure 2: Block diagram to detect QRS complex.

signal square is very close to the signal energy. For discrete
time signal energy is defined as follows:

𝐸
𝑥
=
∞

∑
−∞

𝑥 (𝑛) 𝑥∗ (𝑛) =
∞

∑
−∞

|𝑥 (𝑛)|2 . (2)

Here, 𝐸
𝑥
expresses the signal energy, 𝑥(𝑛) defined ECG

data, and 𝑛 is samples.∑ represents sum from (−∞ ∞) [27].
To explain, we have the following:

𝐸
𝑥
= (𝑥2
0
+ 𝑥2
1
+ 𝑥2
2
+ 𝑥2
3
+ ⋅ ⋅ ⋅) . (3)

Shannon energy calculates the average spectrum of the
signal energy. In other words, discount the high components
into the low components. So, input amplitude is not impor-
tant. Shannon energy andHilbert Transform (SEHT) provide
a good accessory for detecting R-peak but this technique
has a problem. SEHT needs high memory and has delays
[28]. It is designed for solving our actual requirements. To
find smooth Shannon energy, zero-phase filter and Shannon
energy approximate are playing a basic role [24, 28].

Shannon energy (SE) calculates the energy of the local
spectrum for each sample. Below is a calculation of Shannon
energy:

SE = − |𝑎 [𝑛]| log (|𝑎 [𝑛]|) ,

𝑠 [𝑛] = −𝑎2 [𝑛] log (𝑎2 [𝑛]) ,
(4)

where 𝑎[𝑛] is after process normalization.
Energy that better approaches detection ranges in pres-

ence of noise or domains with more width results in fewer
errors. Capacity to emphasize medium is the advantage of
using Shannon energy rather than classic energy [18, 19]. The
selected signal is normalized with (5) in stage 3 for decreasing
the signal base and placing the signal below the baseline.

𝑠 [𝑛] = 𝑠 [𝑛] − 𝜇
𝜎 , (5)

where 𝜇 is the random variable vector and 𝜎 defined standard
deviation of the signal.

In stage 3, after computing Shannon energy, small spikes
around the main peak of the energy are generated. These
spikes make main peaks detection difficult. To eliminate
this spike, Shannon energy is converted into energy package
(Shannon energy envelope (SEE)). To overcome this problem,
the Hilbert Transform is used. SEHT method is a simple and
high accessory but the SEHT needs high memory and has
delays, so it is unfit for real time detection [24, 28]. To smooth
out the spikes, rectangular (ℎ) with 𝐿 length is used. Filtering
operation is shown as follows:

𝑚[𝑛] = filter (ℎ, 𝑗, 𝑆) ,

𝑚 [𝑛] = filter (ℎ, 𝑗, 𝑆) ,
(6)

where 𝑚[𝑛] defines moving average, 𝑗 is a constant, and
𝑆 defines Shannon energy from previous steps. For spikes
reducing and enveloping, the nonzero peaks obtained from
differential get linked. In other words, diagnosed peaks are
linked together.

Difference is defined below:

𝑑 [𝑛] = 𝑓 [𝑛] − 𝑓 [𝑛 − 1] , 𝑛 = 2, 3, . . . . (7)

The sign is defined as follows:

sgn (𝑥)
{{{{
{{{{
{

−1 if 𝑥 < 0
0 if 𝑥 = 0
1 if 𝑥 > 0,

(8)

where 𝑥 is a real number.
In stage 4, positive peaks are QRS complex location. To

detect QRS complex, a threshold (see (9)) is defined. In
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Figure 3: Simulation result. Time and number of peaks detection in each lead are shown. ((a) record s0292lrem; (b) record s0291lrem).
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Figure 4: Process of preparations of ECG signal (record s0291lrem, lead v3).

fact, samples with greater amplitude than the threshold are
selected as output.

threshold = 𝜅𝜇 (1 − 𝜎2) if 𝜎 < 𝜇,

threshold = 𝜅𝜎 (1 − 𝜇2) if 𝜎 > 𝜇,
(9)

where 𝜅 is a constant.

3. Result

The experimental results are obtained after simulation on 70
healthy patients’ signals for all 12 leads and using PTB Diag-
nostic ECGDatabase (PTBDB).The Physikalisch-Technische
Bundesanstalt (PTB) is the National Metrology Institute of
Germany. PTB database is provided for PhysioNet and has
different morphologies. The ECGs in this database obtain 15
input channels including the conventional 12 leads (i, ii, iii,
avr, avl, avf, v1, v2, v3, v4, v5, and v6) together with the 3

Frank lead ECGs (vx, vy, and vz). Input voltage is ±16mV,
input resistance is 100Ω, ADC resolution is equal to 16 bits
with 0.5𝜇/LSB, and sampling frequency is equal to 1 KHz
[20, 21].The proposed algorithmwas performed on a 2.4GHz
Intel core i3 CPU using GNU Octave version 4.0.2 [29]. A
selected signal from patient 117 has a variety of physiology
and baseline drift. Leads (i, ii, avl, avf, v3, v4, v5, and v6) of
record s0291lrem and leads (i, ii, iii, avf, v1, v2, v4, v5, and v6)
of record s0292lrem have high amplitude. Leads (i, avl, v2, v3,
and v4) of record s0291lrem and leads (avr, avl, and avf) of
record s0292lrem have a sharp and tall T-wave.

Figure 3 shows the result of simulation to detect each lead
of patient 117 in Octave. Figures 4 and 5 show the process of
ECG signal provision and peak detection.The QRS detection
of the 12 channels of healthy ECG signal in patient 117 of
the PTB database is reported in Table 1 and the Appendix.
Detection of the 12 leads is shown in Figure 6. Figure 7 shows
3 leads of 3 cases.
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Table 1: The QRS detection of ECG signal of the PTB database.

Case TP FN FP DER% Se% +P Acc
s0010 rem 624 0 0 0.000 100.000 100.000 100.000
s0014lrem 1987 0 0 0.000 100.000 100.000 100.000
s0015lrem 1815 0 2 0.110 100.000 99.890 99.890
s0017lrem 1673 0 5 0.299 100.000 99.702 99.702
s0020arem 1906 4 21 1.312 99.791 98.910 98.705
s0020brem 1867 5 20 1.339 99.733 98.940 98.679
s0021arem 2207 1 0 0.045 99.955 100.000 99.955
s0021brem 2196 0 0 0.000 100.000 100.000 100.000
s0025lrem 2382 6 0 0.252 99.749 100.000 99.749
s0029lrem 1638 0 0 0.000 100.000 100.000 100.000
s0031lrem 2111 1 0 0.047 99.953 100.000 99.953
s0035 rem 552 0 0 0.000 100.000 100.000 100.000
s0036lrem 2066 0 2 0.097 100.000 99.903 99.903
s0037lrem 1479 0 3 0.203 100.000 99.798 99.798
s0038lrem 1572 0 0 0.000 100.000 100.000 100.000
s0039lrem 2088 0 0 0.000 100.000 100.000 100.000
s0042lrem 1815 0 0 0.000 100.000 100.000 100.000
s0043lrem 1212 0 0 0.000 100.000 100.000 100.000
s0044lrem 1812 0 0 0.000 100.000 100.000 100.000
s0045lrem 1968 0 0 0.000 100.000 100.000 100.000
s0046lrem 1944 0 0 0.000 100.000 100.000 100.000
s0047lrem 2651 1 0 0.038 99.962 100.000 99.962
s0049lrem 2040 0 0 0.000 100.000 100.000 100.000
s0050lrem 1461 3 0 0.205 99.795 100.000 99.795
s0051lrem 1912 0 2 0.105 100.000 99.896 99.896
s0052lrem 1356 0 0 0.000 100.000 100.000 100.000
s0053lrem 2148 0 0 0.000 100.000 100.000 100.000
s0054lrem 1979 31 2 1.668 98.458 99.899 98.360
s0055lrem 1381 0 1 0.072 100.000 99.928 99.928
s0056lrem 1732 0 0 0.000 100.000 100.000 100.000
s0057lrem 1896 0 0 0.000 100.000 100.000 100.000
s0058lrem 2017 0 1 0.050 100.000 99.950 99.950
s0059lrem 1800 0 0 0.000 100.000 100.000 100.000
s0060lrem 140 0 0 0.000 100.000 100.000 100.000
s0062lrem 1488 0 0 0.000 100.000 100.000 100.000
s0063lrem 1845 3 0 0.163 99.838 100.000 99.838
s0064lrem 1797 3 0 0.167 99.833 100.000 99.833
s0065lrem 1704 0 0 0.000 100.000 100.000 100.000
s0066lrem 1513 0 1 0.066 100.000 99.934 99.934
s0067lrem 424 0 4 0.943 100.000 99.065 99.065
s0068lrem 1377 5 15 1.452 99.638 98.922 98.568
s0069lrem 1188 0 0 0.000 100.000 100.000 100.000
s0070lrem 1983 0 1 0.050 100.000 99.950 99.950
s0071lrem 1848 0 0 0.000 100.000 100.000 100.000
s0072lrem 2040 0 0 0.000 100.000 100.000 100.000
s0073lrem 2125 5 0 0.235 99.765 100.000 99.765
s0074lrem 1140 0 0 0.000 100.000 100.000 100.000
s0075lrem 1453 0 1 0.069 100.000 99.931 99.931
s0076lrem 1308 0 0 0.000 100.000 100.000 100.000
s0077lrem 1692 0 0 0.000 100.000 100.000 100.000
s0078lrem 1225 0 1 0.082 100.000 99.918 99.918
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Table 1: Continued.

Case TP FN FP DER% Se% +P Acc
s0079lrem 1620 0 0 0.000 100.000 100.000 100.000
s0080lrem 1556 0 0 0.000 100.000 100.000 100.000
s0082lrem 1602 0 0 0.000 100.000 100.000 100.000
s0083lrem 1465 1 0 0.068 99.932 100.000 99.932
s0084lrem 1464 0 0 0.000 100.000 100.000 100.000
s0085lrem 1276 0 4 0.313 100.000 99.688 99.688
s0097lrem 2133 0 1 0.047 100.000 99.953 99.953
s0101lrem 1500 0 0 0.000 100.000 100.000 100.000
s0103lrem 1273 0 2 0.157 100.000 99.843 99.843
s0149lrem 1572 0 0 0.000 100.000 100.000 100.000
s0152lrem 1532 4 0 0.261 99.740 100.000 99.740
s0087lrem 1654 12 0 0.726 99.280 100.000 99.280
s0088lrem 1728 0 0 0.000 100.000 100.000 100.000
s0091lrem 1380 1 1 0.145 99.928 99.928 99.855
s0095lrem 1797 3 0 0.167 99.833 100.000 99.833
s0096lrem 2603 1 0 0.038 99.962 100.000 99.962
s0150lrem 1583 1 0 0.063 99.937 100.000 99.937
s0090lrem 1358 0 2 0.147 100.000 99.853 99.853
s0093lrem 1249 0 1 0.080 100.000 99.920 99.920
s0291lrem 1548 0 0 0.000 100.000 100.000 100.000
s0292lrem 1584 0 0 0.000 100.000 100.000 100.000
Total 119054 91 93 0.155 99.924 99.922 99.846

0

43000420004100040000390003800037000
Sample

A
m

pl
itu

de
f
[n

]

−1

(a)

3
1

43000420004100040000390003800037000
Sample

A
m

pl
itu

de
s[
n
]

−1

(b)

1

43000420004100040000390003800037000
Sample

A
m

pl
itu

de
e[
n
]

−1

(c)

A
m

pl
itu

de 0.2

43000420004100040000390003800037000
Sample

−0.2
−0.6
−1

(d)

Figure 5: Process of preparation of ECG signal (record s0292lrem, lead avr).

In order to define performance and efficiency of the algo-
rithm, the ClassificationAccuracy (Acc), Positive Predictivity
(+P), sensitivity (Se), and detection error rate were calculated
by using the following equations:

Acc = TP
TP + FN + FP

× 100,

+P = TP
TP + FP

× 100,

Se = TP
TP + FN

× 100,

DER = FP + FN
TP

× 100.

(10)

Here, TP defines a true detected peak by the algorithm;
FN (false negative) is the number of not detected R peaks,
and FP (false positive) is the number of noise spikes detected
as R peaks [3, 30].

Figures 4(a) and 5(a) show the output after the band-
pass filter 𝑓[𝑛] and normalized amplitude 𝑎[𝑛]. Figures
4(b) and 5(b) show Shannon energy 𝑠[𝑛] and normalized
amplitude, and Figures 4(c) and 5(c) show after envelope
𝑒[𝑛] signal. QRS complex of ECG signal is shown in
Figures 4(d) and 5(d). Red line defines a detected peak. 𝑦-
axis represents the amplitude, and 𝑥-axis represents the
sample.

In this study, the proposed technique is tested on 840
leads of PTB Diagnostic ECGDatabase (PTBDB), and values
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achieved showed that sensitivity (Se) equals 99.924%, detec-
tion error rate (DER) equals 0.155%, Positive Predictivity (+P)
equals 99.922%, and Classification Accuracy was 99.846%.

4. Conclusion

In the present study, the most common methods to remove
noise in the ECG signal are evaluated. A Shannon energy-
based approach to determine the QRS complex of the
12-lead ECG signal is provided. ECG signal is selected with
a variety of physiology from the PTBDatabase and examined
by Octave software. Accuracy and sensitivity achieved from
Table 1 showed that the presented algorithm is fast and simple,
without complex equations. This algorithm does not need a
high memory and high hardware. Diagnosis time for each
lead is approximately 2.5 seconds based onOctave.The results
showed that algorithm detection has very little lag, less than
0.013 seconds, without error. This lag is generated from stage
3.

Appendix

See Table 2.
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