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The investigation of thermoelastic wave propagation in elastic media is bound to have much influence in the fields of material
science, geophysics, seismology, and so on. The heat conduction equations and bound equations of motions differ by the difficulty
level and presence ofmany physical andmechanical parameters in them.Therefore thermoelasticity is being extensively studied and
developed. In this paper by using analytical matrizant method set of equation of motions in elastic media are reduced to equivalent
set of first-order differential equations. Moreover, for given set of equations, the structure of fundamental solutions for the general
case has been derived and also dispersion relations are obtained.

1. Introduction

The theory of thermoelasticity deals with the study of mutual
interactions of thermal andmechanical fields in elastic bodies
[1, 2]. It has vast applications in the various branches of
Physics as well as in engineering, like materials engineering,
mechanical engineering, nuclear engineering, and so forth.
Theory of thermoelasticity is based on assumption that
temperature distribution in an elastic object is governed
by hyperbolic type parabolic-type partial differential equa-
tion as described by Fourier law of heat conduction [3–
5]. According to Fourier law any thermal impulse is felt
everywhere instantly in an object. Obviously it raised some
serious concerns due to its unrealistic point of view. In
order to circumvent this problem and to make it realistic a
generalized theory of thermoelasticity was proposed which
takes into account a finite thermal relaxation time. In this the-
ory the temperature distribution is governed by hyperbolic
type equations, which results in heat propagation in solids

being considered as wave phenomenon instead of diffusion
phenomenon.

In order to investigate the wave propagation in aniso-
tropic inhomogeneous medium a new method of matrizant
was developed. This method allows investigation of wave
propagation in anisotropicmediumwith various physical and
mechanical properties [6–8].

In 1950 Thompson [9] proposed a matrix method in
order to investigate the elastic wave propagation in isotropic
stratified media. Haskell also enhanced the method in 1953
[10]. After that major work was carried out by Stroh and
others [11, 12]. He analytically investigated the dislocations
in anisotropic medium by expressing first-order motion
equations using (6×6)matrix. In order to investigate the insu-
lators made up of piezoelectric materials, six-dimensional
framework was enhanced to eight-dimensional formalism.
Matrixmethod also paved the way for carrying out numerical
simulation in anisotropic media [13, 14]. Various researchers
have investigated the ordered structures and layered medium
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by using the matrix method. In this connection, following
papers are of particular interest. Wave propagation has been
investigated bymatrix algebramethod [15, 16],WKBmethod,
and ray method [17–19]. Some investigations have tried to
employ matricant, in which infinite product of truncated
exponentials of the matrix of system coefficients and also
Peano expansion are satisfied [7, 8]. However in case of
periodic structure, Peano expansion cannot be fully solved.
Therefore development of analytical techniques will open
new dimensions to understand wave propagation in periodic
structure.

In case of layered and periodic medium the dispersion
equations have been obtained and also the matricant struc-
ture was formed for nonhomogenous isotropic medium [3].
In [4] the matricant was obtained employing Chebyshev-
Gegenbauer’s polynomial form, for the case of finite periodic
inhomogeneous layer. For such structures, the modified
conditions in determining the dispersion relationship having
mutual transformation of transverse and longitudinal waves
are obtained. In [20, 21] these results have been generalized
in case of anisotropic inhomogeneous media.

The applications of matrizant method for nondestructive
testing and wave propagation in thermoelastic media are
considered [22].

Periodically heterogeneous media have lot of importance
from applied and theoretical perspective. Wave propagation
in discrete periodic structures has been extensively studied.
While in case of continuous medium, layered homogeneous
isotropic periodic structures are well studied. However the
investigations of wave propagation in more complex period-
ically heterogeneous medium are carried out using various
numerical methods or approximate analytical method. One
of them is matrizant method; it was initially developed in
late 70s in the Kazakh scientific school of Jakhan Suleimenuly
Erzhanov, to investigate the dynamics of inhomogeneous
medium.

The method aims at reducing original equations of
motion, by using method of separation of variables, to an
equivalent system of ordinary differential equations of first
order with variable coefficients. After that the resulting
system of equations defines the structure of matrizant.

2. Elastic Waves

The motion equations in elastic medium and generalized
Hooke’s law describe wave propagation in elastic media as
follows [21]: 𝜕𝜎𝑖𝑗𝜕𝑥𝑗 = 𝜌𝜕2𝑢𝑖𝜕𝑡2𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙, (1)

where 𝜀𝑘𝑙 = (1/2)(𝜕𝑢𝑖/𝜕𝑥𝑗 + 𝜕𝑢𝑗/𝜕𝑥𝑖) represents the de-
formation tensor components, 𝑢𝑖 denotes the mechanical
displacement vector, 𝜎𝑖𝑗 are the stress tensor, 𝑐𝑖𝑗𝑘𝑙 represents
the elastic parameters of nonisotropic media, and density of
medium is represented by 𝜌.

The medium is assumed to be stratified; that is, param-
eters employed to describe the material depend on space
variable along z-axis.

Using the representation of the solution𝑓 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑓 (𝑧) exp (𝑖𝜔𝑡 − 𝑖𝑘𝑥𝑥 − 𝑖𝑘𝑦𝑦) , (2)

where 𝜔 is radial frequency, 𝑘𝑖 are a projection of wave
number. The multiplier exp(𝑖𝜔𝑡 − 𝑖𝑘𝑥𝑥 − 𝑖𝑘𝑦𝑦) is omitted in
the following equations for clarity.

Taking into consideration propagation direction, deriva-
tive of anisotropic medium on z-axis, and using (2) then (1)
are reduced to a system of first-order ODEs having variable
coefficients. 𝑑W⃗𝑑𝑧 = BW⃗;

W⃗ = (𝑢𝑧, 𝜎𝑧𝑧, 𝑢𝑥, 𝜎𝑥𝑧, 𝑢𝑦, 𝜎𝑦𝑧)𝑡 ; (3)

the transposition operator is denoted by 𝑡.
The coefficient matrix B, for the case of triclinic

anisotropic medium, takes the following form:

B =(((((
(

0 𝑏12 𝑏13 𝑏14 𝑏15 𝑏16𝑏21 0 0 𝑏24 0 𝑏26𝑏24 𝑏14 𝑏33 𝑏34 𝑏35 𝑏360 𝑏13 𝑏43 𝑏33 𝑏45 𝑏46𝑏26 𝑏16 𝑏46 𝑏36 𝑏55 𝑏560 𝑏15 𝑏45 𝑏35 𝑏65 𝑏55
)))))
)

. (4)

For the orthorhombic anisotropy:

B =(((((
(

0 𝑏12 𝑏13 0 𝑏15 0𝑏21 0 0 𝑏24 0 𝑏26𝑏24 0 0 𝑏34 0 𝑏360 𝑏13 𝑏43 0 𝑏45 0𝑏26 0 0 𝑏36 0 𝑏560 𝑏15 𝑏45 0 𝑏65 0
)))))
)

. (5)

If the vector, representing the direction of wave propaga-
tion, is in (𝑥𝑧) plane of anisotropy orthorhombic medium,
the coefficient matrix given in (5) is divided into 4.

If the wave propagation direction vector lies in the media
matrix (5) splits into (4 × 4) and (2 × 2) matrices:

B󸀠 =( 0 𝑏12 𝑏13 0𝑏21 0 0 𝑏24𝑏24 0 0 𝑏340 𝑏13 𝑏43 0 );
W⃗ = (𝑢𝑧, 𝜎𝑧𝑧, 𝑢𝑥, 𝜎𝑥𝑧)𝑡 ;
B󸀠󸀠 = ( 0 𝑏56𝑏65 0 ) ;
W⃗ = (𝑢𝑦, 𝜎𝑦𝑧)𝑡 .

(6)
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3. Matricant Structure and Its Implications

3.1. Matricant Method. In order to describe the wave prop-
agation in elastic medium various analytical approaches are
used, like the formalism proposed by Stroh–Barnett–Lothe
[23] for piezoelasticity, the state vector “𝑊” method [13].
The matricant approach is different from others analytical
techniques used to investigate wave propagation in elastic
medium. In the matricant approach the vector 𝑊 of coeffi-
cient matrix 𝐵 is chosen in (𝑢𝑖, 𝜎𝑖𝑗), (𝜃, 𝑞𝑖), pairs, for instance.
The selection of pairs depends on the type of wave to be
investigated. Coupled waves in the general case and along
main crystal axes are suitably described by the use of such
notations.

Solutions of (5) are written as

W⃗ (𝑧) = T (𝑧, 𝑧0) W⃗ (𝑧0) (7)

Here, T(𝑧, 𝑧0) is the matricant, that is, the normalized
fundamental solution matrix of the systems of ODEs. For
T(𝑧, 𝑧0) and T−1(𝑧, 𝑧0), there are representations in the form
of the infinite matrix integral series of exponential type as
follows [9, 10]:

T (𝑧, 𝑧0) = I + ∫𝑧
𝑧0

B (𝑧1) d𝑧1+ ∫𝑧
𝑧0

∫𝑧1
𝑧0

B (𝑧1)B (𝑧2) d𝑧1d𝑧2 + ⋅ ⋅ ⋅ (8)

T−1 (𝑧, 𝑧0) = I − ∫𝑧
0
B1 (𝑧1) d𝑧1+ ∫𝑧

0
∫𝑧1
0

B2 (𝑧2)B1 (𝑧1) d𝑧1d𝑧 − ⋅ ⋅ ⋅ ; (9)

the identity matrix is denoted by I.
The expansion in (9) is the alternating-sign series with

reverse argument ordering of the integrated product of B(𝑧𝑖).
Note that the matrix B(𝑧𝑖) does not commute. As the initial
system of equations are satisfied by the matricant, so the
successive approximation methods can be used to obtain (8).

dT
d𝑧 = BT. (10)

It follows from substitution of (7) into (10).
Similar to (10), inversematricantT−1 is the solution of the

equation

dT−1

d𝑧 = −T−1B. (11)

It follows from differentiation that the identity

TT−1 ≡ T−1T ≡ I (12)

The solutions of (2 × 2) order matrix are well known.

B = ( 0 𝑏12𝑏21 0 ) ; (13)

the matricants have the structure

T = (𝑡11 𝑡12𝑡21 𝑡22) ;
T−1 = ( 𝑡22 −𝑡12−𝑡21 𝑡11 ) . (14)

For unimodular matrices the above result can be carried
out.

In case of (4×4) coefficientmatrix in (6), its inversematrix
is given by

T−1 = [[[[[[
𝑡22 −𝑡12 −𝑡42 𝑡32−𝑡21 𝑡11 𝑡41 −𝑡31−𝑡24 𝑡14 𝑡44 −𝑡34𝑡23 −𝑡13 −𝑡43 𝑡33

]]]]]] . (15)

The result given in (15) defines the properties of solutions
of systems of first-order ODEs with variable coefficients.This
has been obtained with term to term comparison of elements
of (8) and (9) and with the help of mathematical induction
[5, 24].

In the case of the coefficient matrix (5), the (6 × 6)
matricant structure is obtained in the following form:

T−1 =
[[[[[[[[[[[[

𝑡22 −𝑡12 −𝑡42 𝑡32 −𝑡62 𝑡52−𝑡21 𝑡11 𝑡41 −𝑡31 𝑡61 −𝑡51−𝑡24 𝑡14 𝑡44 −𝑡34 𝑡64 −𝑡54𝑡23 −𝑡13 −𝑡43 𝑡33 −𝑡63 𝑡53−𝑡26 𝑡16 𝑡46 −𝑡36 𝑡66 −𝑡56𝑡25 −𝑡15 −𝑡45 𝑡35 −𝑡65 𝑡55
]]]]]]]]]]]]
. (16)

It may be noted that elements of T−1 contain only of
elements from matricant T. It is a one to one correspon-
dence of elements of direct and its inverse matricant given
in (15) and (16). The conservation laws are contained by
invariant relationships; these laws have to be satisfied in
wave processes. In 1D inhomogeneous isotropic medium
having various crystals symmetry is described by matricant
structure.Thematricant of coefficient matrix is of order (2𝑛×2𝑛) [5].
3.2. Periodic Structures. Suppose the variation in parameters
that describes medium is 𝑓𝑖(𝑧). The condition𝑓𝑖(𝑧 + ℎ) =𝑓𝑖(𝑧) is satisfied by periodic structure and also by parameters
altered by environment. The period of inhomogeneity is
denoted by ℎ. Monodromy matrix is matricant of single
period of inhomogeneity. It is known for single period
inhomogeneity that W⃗(ℎ) = T(0, ℎ)W⃗0(0) and the Floquet–
Bloch conditions W⃗(𝑧 + ℎ) = W⃗0(𝑧) exp(𝑖𝑘𝑧ℎ). From this
follows the following equality:(T − I exp (𝑖𝑘𝑧ℎ)) W⃗0 = 0; (17)
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the equivalent condition are obtained bymultiplying (17)with
T−1𝑒𝑖𝑘ℎ. (T−1 − I exp (−𝑖𝑘𝑧ℎ)) W⃗0 = 0. (18)

Using auxiliary matrix and (17) and (18), the modified
conditions as given below are derived as follows:(p̂ − I cos 𝑘𝑧ℎ) W⃗0 = 0,

p̂ = 12 (T + T−1) . (19)

Matrix p̂ for cases (6) is given by

p̂ =( 𝑝11 0 𝑝13 𝑝140 𝑝11 𝑝23 𝑝24−𝑝24 𝑝14 𝑝22 0𝑝23 −𝑝13 0 𝑝22). (20)

The dispersion in periodic structure is determined by charac-
teristics of (19). 𝑠 det 󵄨󵄨󵄨󵄨p̂ − I cos 𝑘𝑧ℎ󵄨󵄨󵄨󵄨 = 0. (21)

The dispersion equation in case of (4 × 4) matrices is found
by

cos 𝑘1𝑧ℎ = 𝑝̃1
cos 𝑘2𝑧ℎ = 𝑝̃2}= 12 (𝑝11 + 𝑝22)± 12√(𝑝11 − 𝑝22)2 + 4 (𝑝14𝑝23 − 𝑝13𝑝24).

(22)

The equation of dispersion is obtained. However, the
order of characteristic equation is reduced by half when the
conditions as laid down in (19) are imposed.

Following recurrence relationship can be obtained from
(19) as follows:

T2 = 2p̂T − I. (23)

Matricant representing periodically inhomogeneous lay-
ers can be obtained applying (24).

In the presence of 𝑛 periods of heterogeneity in form𝐻 =𝑛ℎ, we can obtain

T (𝐻) = Tn
m (ℎ) = Pn (p̂)Tm − Pn−1 (p̂) , (24)

where Tm = T(ℎ) represents the monodromy matrix and
Pn(p̂)denotesmatrix polynomials of Chebyshev-Gegenbauer
[5, 25].The results of Brillouin andParodi [26] are generalized
by above equations.

3.3. Structuring the Matrizant. Structuring the matrizant
(normalized matrix of fundamental solutions) is based on its
representation in the form of the exponential matrix series
[5, 7], (8) and (9).

Thesematrix series converge absolutely and uniformly on
any finite interval. In this case, the following relation is true,
(12).

For the matrizant the following expressions also hold:

(i) 𝑇(𝑧0, 𝑧) = 𝑇(𝑧1, 𝑧)𝑇(𝑧0, 𝑧1).
(ii) ln |𝑇(𝑧0, 𝑧)| = ∫𝑧𝑧0 𝑠𝑝𝐵(𝑧1)𝑑𝑧1.
(iii) If𝐵 = 𝐵0 – constantmatrix, then𝑇0 = exp[𝐵0(𝑧−𝑧0)].
(iv) 𝑑𝑇−1/𝑑𝑧 = −𝑇−1𝐵.
Matrix series (8) and (9) can be written in summation

form 𝑇 = ∞∑
𝑛=0

𝑇(𝑛),
𝑇−1 = ∞∑

𝑛=0

𝑇−1(𝑛). (25)

The index 𝑛 corresponds to the number of multiplied
under signs of integral matrices, where 𝐵(𝑧𝑖) is the number
of integrals of the matrix in each term of the series as given
in (1). Moreover, the terms of the series with even and odd
values of 𝑛 are as follows:𝑇even = ∞∑

𝑛=0

𝑇(2𝑛),
𝑇odd = ∞∑

𝑛=0

𝑇(2𝑛+1)
𝑇−1even = ∞∑

𝑛=0

𝑇−1(2𝑛),
𝑇−1odd = ∞∑

𝑛=0

𝑇−1(2𝑛+1), (𝑛 = 0, 1, 2, 3, . . .) .
(26)

In such case constructing the matrizant is basically
expressing the relationships between the elements of the 𝑇
and𝑇−1matrices, it is based on the element-wise comparison.

As a first approximation 𝑡(1)𝑖𝑗 = −𝑡(1)𝑖𝑗 , 𝑡(−1)𝑖𝑗 = ∫𝑧
0
𝑏𝑖𝑗(𝑧)𝑑𝑧.

Elastic waves propagating in the orthorhombic syngony
of the classes mm2 and 222, hexagonal syngony (6, 6, 622,
6mm, 6m2), tetragonal syngony (class 422), and matrizant
structure are built based on the structure of the coefficient
matrix, based on the element-wise comparison of matrix 𝑇
and 𝑇−1. The structure of the coefficient matrix in the bulk
case is as follows [5]:

𝐵 =
[[[[[[[[[[[[

0 𝑏12 𝑏13 0 𝑏15 0𝑏21 0 0 𝑏24 0 𝑏26𝑏24 0 0 𝑏34 0 00 𝑏13 𝑏43 0 𝑏45 0𝑏26 0 0 0 0 𝑏560 𝑏15 𝑏45 0 𝑏65 0
]]]]]]]]]]]]
. (27)
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See (3).

W⃗ = (𝑢𝑧, 𝜎𝑧𝑧, 𝑢𝑥, 𝜎𝑥𝑧, 𝑢𝑦, 𝜎𝑦𝑧)𝑡 . (28)

The coefficients of the matrix 𝑏𝑖𝑗 (27) for the crystals of
orthorhombic syngony are equal to

𝑏12 = 1𝑐33 ;𝑏13 = 𝑏42 = 𝑖𝑘𝑥 𝑐13𝑐33 ;𝑏15 = 𝑏62 = 𝑖𝑘𝑦 𝑐32𝑐33 ;𝑏21 = −𝜌𝜔2;𝑏24 = 𝑏31 = 𝑖𝑘𝑥;𝑏26 = 𝑏51 = 𝑖𝑘𝑦;𝑏34 = 1𝑐55 ;𝑏43 = 𝑘2𝑦𝑐66 − 𝜌𝜔2 + 𝑘2𝑥 (𝑐11 − 𝑐213𝑐33) ;𝑏45 = 𝑏63 = (𝑐66 + 𝑐12 − 𝑐13𝑐32𝑐33 )𝑘𝑥𝑘𝑦;𝑏56 = 1𝑐44 ;𝑏65 = 𝑘2𝑥𝑐66 − 𝜌𝜔2 + (𝑐22 − 𝑐223𝑐33)𝑘2𝑦,

(29)

where 𝑐𝛼𝛽- are elastic parameters, 𝑘𝑥, 𝑘𝑦- are components
of the wave vector, 𝜌 is medium density, and 𝜔 isangular
frequency.

Coefficients 𝑏𝑖𝑗 for hexagonal syngony (classes 6, 6, 622,
6mm, 6m2) have the form

𝑏12 = 1𝑐33 ;𝑏13 = 𝑖𝑘𝑥 𝑐13𝑐33 ;𝑏15 = 𝑖𝑘𝑦 𝑐13𝑐33 ;𝑏21 = −𝜌𝜔2;𝑏24 = 𝑖𝑘𝑥;𝑏26 = 𝑖𝑘𝑦;𝑏34 = 𝑏56 = 1𝑐44 ;

𝑏43 = 𝑘2𝑦 (𝑐11 − 𝑐122 ) + 𝑘2𝑥 (𝑐11 − 𝑐213𝑐33) − 𝜌𝜔2;𝑏45 = (𝑐12 + 𝑐11 − 𝑐122 − 𝑐213𝑐33)𝑘𝑥𝑘𝑦;𝑏65 = 𝑘2𝑥 𝑐11 − 𝑐122 + (𝑐11 − 𝑐213𝑐33)𝑘2𝑦 − 𝜌𝜔2.
(30)

Coefficients 𝑏𝑖𝑗 for tetragonal syngony (class 422) have the
form

𝑏12 = 1𝑐33 ;𝑏13 = 𝑖𝑘𝑥 𝑐13𝑐33 ;𝑏15 = 𝑖𝑘𝑦 𝑐13𝑐33 ;𝑏21 = −𝜌𝜔2;𝑏24 = 𝑖𝑘𝑥;𝑏26 = 𝑖𝑘𝑦;𝑏34 = 𝑏56 = 1𝑐44 ;𝑏43 = 𝑘2𝑦𝑐66 + 𝑘2𝑥 (𝑐11 − 𝑐213𝑐33) − 𝜌𝜔2;𝑏45 = (𝑐12 + 𝑐66 − 𝑐213𝑐33)𝑘𝑥𝑘𝑦;𝑏65 = 𝑘2𝑥𝑐66 + (−𝑐213𝑐33)𝑘2𝑦 − 𝜌𝜔2.

(31)

As it can be seen from the last relations coefficients 𝑏𝑖𝑗
of crystals of high and average symmetry differ only in the
values of the elastic constants 𝑐𝛼𝛽.

Matrix of order 6 describes the propagation of bound
elastic one longitudinal and two transverse waves.

The second approximation matrizant has the form

𝑇(2) = ∫𝑧
0
∫𝑧1
0
𝐵 (𝑧1) 𝐵 (𝑧2) 𝑑𝑧1𝑑𝑧2. (32)

Inverse matrizant in the second approximation takes the
form

𝑇−1(2) = ∫𝑧
0
∫𝑧1
0
𝐵 (𝑧2) 𝐵 (𝑧1) 𝑑𝑧1𝑑𝑧2. (33)
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Comparison of the terms of the second approximation
gives the following relationship between the elements of
matrizant 𝑇 and 𝑇−1:

𝑇−1(2) =
[[[[[[[[[[[[

𝑡22 0 0 𝑡32 0 𝑡520 𝑡11 𝑡41 0 𝑡61 00 𝑡14 𝑡44 0 𝑡64 0𝑡23 0 0 𝑡33 0 𝑡530 𝑡16 𝑡46 0 𝑡66 0𝑡25 0 0 𝑡35 0 𝑡55
]]]]]]]]]]]](2)

. (34)

The elements 𝑡𝑖𝑗 are the elements of the direct matrizant
(27).

Similarly, elements of the third approximation are com-
pared. 𝑇(3) =∭𝐵(𝑧1) 𝐵 (𝑧2) 𝐵 (𝑧3) 𝑑𝑧1𝑑𝑧2𝑑𝑧3

or 𝑇(3) = 𝑇(2)𝐵 (𝑧3)
𝑇(3) =

[[[[[[[[[[[[

0 𝑡12 𝑡13 0 𝑡15 0𝑡21 0 0 𝑡24 0 𝑡26𝑡31 0 0 𝑡34 0 𝑡360 𝑡42 𝑡43 0 𝑡45 0𝑡51 0 0 𝑡54 0 𝑡560 𝑡62 𝑡63 0 𝑡65 0
]]]]]]]]]]]](3)

. (35)

Inversematrizant in the third approximation has the form𝑇−1(3) =∭𝐵(𝑧3) 𝐵 (𝑧2) 𝐵 (𝑧1) 𝑑𝑧1𝑑𝑧2𝑑𝑧3
or 𝑇−1(3) = 𝐵 (𝑧3) 𝑇−1(2) (36)

and has the structure

𝑇−1(3) =
[[[[[[[[[[[[

0 𝑡12 𝑡42 0 𝑡62 0𝑡21 0 0 𝑡15 0 𝑡51𝑡24 0 0 𝑡34 0 𝑡540 𝑡13 𝑡43 0 𝑡63 0𝑡26 0 0 𝑡36 0 𝑡560 𝑡15 𝑡45 0 𝑡65 0
]]]]]]]]]]]](3)

. (37)

The elements 𝑡𝑖𝑗 are the elements of the matrizant (35).
Endless rows of the matrix can be written as follows [5]:𝑇 = 𝑇even + 𝑇odd,𝑇−1 = 𝑇−1even − 𝑇−1odd, (38)

where 𝑇±1 – corresponds to the sum of odd and even rows (9,
10).

Mathematical induction proves that the structure of the𝑇−1(𝑛) is preserved for any 𝑛.

Structure (34) is valid for all even 𝑇−1 and the structure
of (37) is valid for all odd values of 𝑇−1. Generalizing (34)
and (37) according to (38), we obtain the structure of the 𝑇−1
matrizant as follows [5]:

𝑇−1 =
[[[[[[[[[[[[

𝑡22 −𝑡12 −𝑡42 𝑡32 −𝑡62 𝑡52−𝑡21 𝑡11 𝑡41 −𝑡31 𝑡61 −𝑡51−𝑡24 𝑡14 𝑡44 −𝑡34 𝑡64 −𝑡54𝑡23 −𝑡13 −𝑡43 𝑡33 −𝑡63 𝑡53−𝑡26 𝑡16 𝑡46 −𝑡36 𝑡66 −𝑡56𝑡25 −𝑡15 −𝑡45 𝑡35 −𝑡65 𝑡55
]]]]]]]]]]]]
. (39)

Elements 𝑡𝑖𝑗 of matrices 𝑇−1even and 𝑇−1odd are elements of
matrices; 𝑇even and 𝑇odd are the elements of direct matrix 𝑇,
respectively.

Thus, the structure of matrizant is a relationship between
elements of the forward and inverse matrizant in the form
(39), as well as the relationship between the elements 𝑇 and𝑇−1 as follows from (12).

Analytical representation of matrizant of periodically
inhomogeneous layer is derived from knowing the structure𝑇−1.
4. Dispersion Equations for the Elastic

Anisotropic Mediums

We introduce the following matrix [5]:𝑝̂ = 12 (𝑇 + 𝑇−1) ; (40)

substituting values of 𝑇 and 𝑇−1 in (40), we obtain

2𝑝̂ =(((((
(

𝑝1 0 𝑝13 𝑝14 𝑝15 𝑝160 𝑝1 𝑝23 𝑝24 𝑝25 𝑝26−𝑝24 𝑝14 𝑝3 0 𝑝35 𝑝36𝑝23 −𝑝13 0 𝑝3 𝑝45 𝑝46−𝑝26 𝑝16 𝑝46 −𝑝36 𝑝5 0𝑝25 −𝑝15 −𝑝45 𝑝35 0 𝑝5
)))))
)

. (41)

The matrix 𝑝 as given in (40) which is important for the
regular structures gives the recurrence relation as in (23).

Consistent application of (23) gives possibility of repre-
senting 𝑇𝑛 in the form𝑇𝑛 = 𝑃𝑛 (𝑝) 𝑇 − 𝑃𝑛−1 (𝑝) , (42)

where 𝑃𝑛(𝑝) is Chebyshev-Gegenbaur matrix polynomials of
the second kind.

Equation (42) allows obtaining 𝑇𝑛 in an explicit analytic
form 𝑇𝑛 = 3∑

𝑖=1

𝑃𝑖 [𝑃𝑛 (𝑝̃𝑖) 𝑇 − 𝑃𝑛 (𝑝̃𝑖) I] , (43)
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where 𝑃𝑖 = (1/(𝑝̃𝑖 − 𝑝̃𝑗)(𝑝̃𝑖 − 𝑝̃𝑘))[𝑝̂ − 𝑝̃𝑗I][𝑝̂ − 𝑝̃𝑘I], 𝑖,𝑗, 𝑘-1, 2, 3; 𝑖 ̸= 𝑗, 𝑗 ̸= 𝑘, 𝑖 ̸= 𝑘.𝑝̃1, 𝑝̃21, 𝑝̃31are the roots of the characteristic equation,
satisfying the following condition (23).

Thematrixmethod ofmatrizant allows twice lowering the
degree of the characteristic equation, which in the end has the
form [𝜆3 + 𝑎𝜆2 + 𝑏𝜆 + 𝑐]2 = 0𝜆3 + 𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0, (44)

where𝜆 = cos 𝑘̃ℎ𝑖𝑎 = − (𝑝1 + 𝑝2 + 𝑝5)𝑏 = 𝑝1𝑝3 + 𝑝1𝑝5 + 𝑝3𝑝5 − 𝑝14𝑝23 + 𝑝13𝑝24 − 𝑝16𝑝25+ 𝑝15𝑝26 + 𝑝35𝑝46𝑐 = −𝑝1 (𝑝3𝑝5 + 𝑝36𝑝45 − 𝑝35𝑝46)+ 𝑝3 (𝑝16𝑝25 − 𝑝15𝑝26) + 𝑝5 (𝑝14𝑝23 − 𝑝13𝑝24) −− 𝑝16 (𝑝23𝑝35 + 𝑝24𝑝45) + 𝑝13 (𝑝26𝑝35 − 𝑝25𝑝36)+ 𝑝15 (𝑝23𝑝36 + 𝑝24𝑝46) + 𝑝14 (𝑝26𝑝45 − 𝑝25𝑝46) .
(45)

The solution of the characteristic equation (44) gives
three roots, which have the following form:

cos 𝑘̃ℎ1 = 16 (1.58 3√𝛿 − 2𝑎 + 2.52 (𝑎2 − 3𝑏)3√𝛿 )
cos 𝑘̃ℎ2 = 112 (−3.17 3√𝛿 − 4𝑎 − 4 3√−2 (𝑎2 − 3𝑏)3√𝛿 )
cos 𝑘̃ℎ3 = 112 (−3.17 3√−1 3√𝛿 − 4𝑎 + 5 (𝑎2 − 3𝑏)3√𝛿 ) ,

(46)

where 𝛿 = −2𝑎3 + 9𝑎𝑏 − 27𝑐 +√(2𝑎3 − 9𝑎𝑏 + 27𝑐)2 − 4(𝑎2 − 3𝑏)3.
Relations (46) determine the dispersion equations of

elastic waves in above-mentioned crystals. The difference lies
in the roots of the difference between the coefficients 𝑏𝑖𝑗 in the
matrix (27).

5. Conclusion

In this paper we have developed the structure of matrizant
and from it obtained invariant relations which reflects the
inner symmetry of inner equations and contains conserva-
tion laws. Also we have derived an analytical representation
of matrizant of periodically inhomogeneous layer using
Chebyshev-Gegenbauer polynomials and obtained a separate
dispersion equation. Finally, by using different crystals sys-
tems the analytical solution of equations of motion for a wide
class of homogenous anisotropic medium has been obtained.
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