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We propose a stochastic delayed one-predator and two-mutualistic-prey model perturbed by white noise and telegraph noise.
By the𝑀-matrix analysis and Lyapunov functions, sufficient conditions of stochastic permanence and extinction are established,
respectively. These conditions are all dependent on the subsystems’ parameters and the stationary probability distribution of the
Markov chain.We also investigate another asymptotic property and finally give two examples andnumerical simulations to illustrate
main results.

1. Introduction

Mutualism plays a key part in ecology, and researchers have
proposedmanymathematicalmodels to describe themutual-
istic interaction [1–6]. In particular, motivated by Holling
type II functional response [7], Wright [5] established the
Holling type II mutualistic model:
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For the biological meaning of parameters in the abovemodel,
we refer to [5, 6, 8].

Besides, the predator-prey interaction is extremely com-
mon in the natural world, and many researchers have paid
attention to the predator-prey model. Predator-prey mod-
els with Holling types I, II, III, and IV responses were
investigated in [9–12]. The Beddington-DeAngelis, Crowley-
Martin, and ratio-dependent functional responses were also
further considered in [13–15]. But limited work is available
on predator-prey model with mutualism. By considering

the coexistence of antagonism, mutualism, and competition,
Mougi and Kondoh [16] showed that interaction-type diver-
sity generally enhanced stability of complex communities.
Motivated by the above ideas, we consider the following one-
predator and two-mutualistic-prey model with Holling type
II and Beddington-DeAngelis responses:
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where species 𝑥, 𝑦 are two mutualistic preys and 𝑧 is the
predator. Furthermore, it is more realistic and reasonable that
the future state of population dynamics is determined by not
only the present states but also the past [17, 18]. Up to now,
there have been many works considering the effect of time
delay [13, 14, 19, 20]. Then, taking time delay on mutualistic
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interaction and predation into account, model (2) can be
modified as the following model:
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where 𝜏
𝑖
> 0 (𝑖 = 1, 2, 3, 4) denotes the time delay, and we

drop 𝑡 from 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) and do that throughout this
paper.

However, it is not enough to only consider certain factors.
The biological system is more or less affected by stochastic
fluctuations. One of these general fluctuations is white noise.
Recently, many authors have studied lots of stochastic models
with white noise, for example, [12, 19, 21].Theymostly put the
effect of white noise on the intrinsic birth rate and death rate.
In this paper, we assume that white noise affects the intrinsic
birth rate and intraspecific competition rate; that is,
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where 𝐵
𝑗
(𝑡), 𝑗 = 1, . . . , 6, denoting white noise, are inde-

pendent standard Brownian motions and 𝜎
2

𝑗
(𝑗 = 1, . . . , 6)

denotes the intensity of white noise.
Besides white noise, the biological system is inevitably

affected by another environment noise, that is, telegraph
noise. This noise can be represented by switching among two
or more regimes of environment, which are distinguished
by factors such as rain falls and nutrition [22, 23]. Suppose
{𝑟(𝑡), 𝑡 ≥ 0} is a Markov chain controlling the switching
among regimes and taking values in a finite state space S =

{1, 2, . . . , 𝑁}. Then, taking white noise and telegraph noise
into consideration and on the basis of model (3), we finally
developed the following stochastic delayed one-predator and
two-mutualistic-prey model with Markovian switching and
different functional responses:
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with the initial data
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are positive. In regime 𝑖 (𝑖 ∈ S), system (5) obeys
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Therefore, (7) is regarded as the subsystem of system (5).
In this paper, our main aim is to reveal how two kinds of



Discrete Dynamics in Nature and Society 3

environment noise, that is, white noise and telegraph noise,
affect permanence and extinction of system (5).

The stochastic differential equations controlled by a
continuous Markov chain have been applied to the popu-
lation models with telegraph noise. Li et al. [24] investi-
gated the logistic population system without intraspecific
competition incorporating white and telegraph noise and
mainly researched stochastic permanence and extinction.
A two-dimensional stochastic predator-prey model with
Markovian switching was developed by Ouyang and Li [15],
and they explored permanence and asymptotical behavior.
However, for the stochastic predator-preymodel withMarko-
vian switching, most of previous works focused on two-
dimensional systems. And to the best of our knowledge, there
is no work about 3-dimensional stochastic delayed predator-
prey models with Markovian switching, two mutualistic
preys, and different functional responses till now.

We arrange the rest of this paper as follows. In Section 2,
we prepare some notations and consider the existence and
uniqueness of the solution of system (5). By the 𝑀-matrix
analysis and Lyapunov functions, we study stochastically
ultimate boundedness and stochastic permanence, and the
sufficient condition of stochastic permanence is given in
Section 3. Section 4 gives the sample Lyapunov exponent
and hence shows the sufficient condition of extinction. We
study another asymptotic property in Section 5. In Section 6,
we give two examples and make numerical simulations to
illustrate main results and reveal the dynamical behavior. In
Section 7, we give conclusions and the future direction.

2. Preliminaries

Throughout this paper, let (Ω,F,P) be a complete proba-
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In order to study the dynamic behavior, we must firstly
guarantee that there exists a unique, positive, and global
solution.

Theorem 1. For any initial data (8), there is a unique positive
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This proof is standard, so please refer to [13, 25], and thus we
omit it.

3. Stochastic Permanence

In this section, we will consider stochastic permanence and
firstly study stochastically ultimate boundedness.

Definition 2 (e.g., see [24]). System (5) is said to be stochas-
tically permanent if for any 𝜖 ∈ (0, 1) there are two positive
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P {|𝑋 (𝑡)| ≥ 𝜒} ≥ 1 − 𝜖,

lim inf
𝑡→∞

P {|𝑋 (𝑡)| ≤ 𝛿} ≥ 1 − 𝜖.

(15)

Lemma 3. Let 0 < 𝑝 < 1. Then there is a constant 𝐻
1
=

𝐻
1
(𝑝) > 0, which is independent of the initial data (8), such

that the solution𝑋(𝑡) of system (5) satisfies

lim sup
𝑡→∞

E |𝑋 (𝑡)|
𝑝
≤ 𝐻
1
. (16)

Proof. Define a function

𝑉 (𝑥, 𝑦, 𝑧, 𝑖) = 𝑥
𝑝
+ 𝑦
𝑝
+ 𝑧
𝑝
. (17)

Bymeans of the generalized Itô formula (e.g., see [18]), we get

L𝑉 (𝑥, 𝑦, 𝑧, 𝑖) = 𝑝𝑥
𝑝
(𝐹
1
(𝑥, 𝑦, 𝑧, 𝑖) −

1 − 𝑝

2
𝜎
2

1
(𝑖)

−
1 − 𝑝

2
𝜎
2

2
(𝑖) 𝑥
2
) + 𝑝𝑦

𝑝
(𝐹
2
(𝑥, 𝑦, 𝑧, 𝑖)

−
1 − 𝑝

2
𝜎
2

3
(𝑖) −

1 − 𝑝

2
𝜎
2

4
(𝑖) 𝑦
2
)

+ 𝑝𝑧
𝑝
(𝐹
3
(𝑥, 𝑦, 𝑧, 𝑖) −

1 − 𝑝

2
𝜎
2

5
(𝑖)

−
1 − 𝑝

2
𝜎
2

6
(𝑖) 𝑧
2
) ≤ 𝑝𝑥

𝑝
(𝑎
1
(𝑖) + 𝑏

1
(𝑖) +

1

𝑝

−
1 − 𝑝

2
𝜎
2

2
(𝑖) 𝑥
2
) + 𝑝𝑦

𝑝
(𝑎
2
(𝑖) + 𝑏

2
(𝑖) +

1

𝑝

−
1 − 𝑝

2
𝜎
2

4
(𝑖) 𝑦
2
) + 𝑝𝑧

𝑝
(𝑎
3
(𝑖) +

𝑒
3
(𝑖)

𝑓
1
(𝑖)

+
𝑒
4
(𝑖)

𝑓
2
(𝑖)

+
1

𝑝
−
1 − 𝑝

2
𝜎
2

6
(𝑖) 𝑧
2
) − 𝑉 (𝑥, 𝑦, 𝑧, 𝑖) .

(18)

Note that 0 < 𝑝 < 1, L𝑉(𝑥, 𝑦, 𝑧, 𝑖) ≤ 𝐻
11
− 𝑉(𝑥, 𝑦, 𝑧, 𝑖),

where 𝐻
11
is a positive constant. Then applying the general-

ized Itô formula to 𝑒𝑡𝑉(𝑥, 𝑦, 𝑧, 𝑖), we get

L (𝑒
𝑡
𝑉 (𝑥, 𝑦, 𝑧, 𝑖))

= 𝑒
𝑡
[𝑉 (𝑥, 𝑦, 𝑧, 𝑖) +L𝑉 (𝑥, 𝑦, 𝑧, 𝑖)] ≤ 𝐻

11
𝑒
𝑡
.

(19)

Integrating both sides of d(𝑒𝑡𝑉(𝑥, 𝑦, 𝑧, 𝑖)) from 0 to 𝑡, taking
the expectation, and taking the limit superior, we obtain
lim sup

𝑡→∞
E𝑉(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑖) ≤ 𝐻

11
. Note that |𝑋(𝑡)|𝑝 =

|(𝑥, 𝑦, 𝑧)|
𝑝
≤ 3
𝑝/2max{𝑥𝑝, 𝑦𝑝, 𝑧𝑝} ≤ 3

𝑝/2
𝑉(𝑥, 𝑦, 𝑧), and thus

we have

lim sup
𝑡→∞

E |𝑋 (𝑡)|
𝑝
≤ 3
𝑝/2
𝐻
11

fl 𝐻
1
(𝑝) . (20)

Theorem 4. System (5) is stochastically ultimately bounded.

Proof. Let 𝑝 ∈ (0, 1). By the definition of stochastically
ultimate boundedness (e.g., see [24]), the conclusion follows
from Lemma 3 and Chebyshev’s inequality.

Next we will investigate stochastic permanence. Based
on the above conclusion, we only need to prove another
inequality about stochastic permanence. And one of themain
methods in this section is the 𝑀-matrix analysis which was
introduced by [18] and used in [15, 24].

Now we give notations, the classical result, and some
assumptions. Let 𝐴 be a vector or matrix. Denote by 𝐴 ≫ 0

that all elements of 𝐴 are positive. Set

𝑍
𝑁×𝑁

= {𝐴 = (𝑎
𝑖𝑗
)
𝑁×𝑁

: 𝑎
𝑖𝑗
≤ 0, 𝑖 ̸= 𝑗} . (21)
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Lemma 5 (e.g., see [18]). If 𝐴 ∈ 𝑍
𝑁×𝑁, then the following

statements are equivalent:

(i) 𝐴 is a nonsingular𝑀-matrix.
(ii) 𝐴 is semipositive; that is, there exists 𝑥 ≫ 0 inR𝑁 such

that 𝐴𝑥 ≫ 0.

Assumption (A1). For some 𝑛 ∈ S, 𝛾
𝑖𝑛
> 0, ∀𝑖 ̸= 𝑛.

Assumption (A2). ∑𝑁
𝑖=1

𝜋
𝑖
𝑞(𝑖) > 0, where 𝑞(𝑖) = 𝐵(𝑖) −

(1/2)𝐶(𝑖).

Assumption (A3). For some 𝑖 ∈ S, 𝑞(𝑖) = 𝐵(𝑖)−(1/2)𝐶(𝑖) > 0.

The proof of stochastic permanence is rather long and
technical. To make it more understandable, we divide the
proof into several lemmas.

Lemma 6. Assumptions (A1) and (A2) imply that there exists
a constant 𝛼 > 0 such that the matrix

𝐺 (𝛼) = diag {𝛽
1
(𝛼) , 𝛽

2
(𝛼) , . . . , 𝛽

𝑁
(𝛼)} − Γ (22)

is a nonsingular𝑀-matrix, where

𝛽
𝑖
(𝛼) = 𝛼𝑞 (𝑖) −

1

2
𝛼
2
𝐶 (𝑖) , 𝑖 ∈ S. (23)

Proof. This proof is standard, so please refer to [15, 24], and
thus we omit it.

Lemma 7. If there is a constant 𝛼 > 0 such that 𝐺(𝛼) is a
nonsingular 𝑀-matrix, then the solution 𝑋(𝑡) of system (5)
with any initial data (8) satisfies

lim sup
𝑡→∞

E 1

|𝑋 (𝑡)|
𝛼
≤ 𝐻
2
, (24)

where𝐻
2
= 𝐻
2
(𝛼) is a positive constant.

Proof. Define 𝑉(𝑥, 𝑦, 𝑧, 𝑖) = 𝑥 + 𝑦 + 𝑧. By the generalized Itô
formula, we have

d𝑉 (𝑥, 𝑦, 𝑧, 𝑖) = L𝑉 (𝑥, 𝑦, 𝑧, 𝑖) d𝑡 + 𝑀
1
(𝑥, 𝑦, 𝑧, 𝑖) , (25)

where
L𝑉 (𝑥, 𝑦, 𝑧, 𝑖) = 𝑥𝐹

1
(𝑥, 𝑦, 𝑧, 𝑖) + 𝑦𝐹

2
(𝑥, 𝑦, 𝑧, 𝑖)

+ 𝑧𝐹
3
(𝑥, 𝑦, 𝑧, 𝑖) .

(26)

Define again 𝑈(𝑥, 𝑦, 𝑧, 𝑖) = 1/𝑉(𝑥, 𝑦, 𝑧, 𝑖). By the generalized
Itô formula, we get

d𝑈 (𝑥, 𝑦, 𝑧, 𝑖)

= [−𝑈
2
L𝑉 (𝑥, 𝑦, 𝑧, 𝑖) + 𝑈

3
𝑁(𝑥, 𝑦, 𝑧, 𝑖)] d𝑡

− 𝑈
2
𝑀
1
(𝑥, 𝑦, 𝑧, 𝑖) .

(27)

For given 𝛼 > 0, by Lemma 5, there exists a vector �⃗� =

(𝜂
1
, . . . , 𝜂

𝑁
)
𝑇
≫ 0 such that 𝐺(𝛼)�⃗� ≫ 0; that is,

𝛽
𝑖
(𝛼) 𝜂
𝑖
−

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝜂
𝑗
> 0, 𝑖 ∈ S. (28)

Define the third function 𝑉(𝑥, 𝑦, 𝑧, 𝑖) = 𝜂
𝑖
𝑈
𝛼
(𝑥, 𝑦, 𝑧, 𝑖). By

the generalized Itô formula, we have

L𝑉 (𝑥, 𝑦, 𝑧, 𝑖) = 𝑈
𝛼−2

{

{

{

𝜂
𝑖
[−𝛼𝑈

3
L𝑉 (𝑥, 𝑦, 𝑧, 𝑖)

+
𝛼 (𝛼 + 1)

2
𝑈
4
𝑁(𝑥, 𝑦, 𝑧, 𝑖)] + 𝑈

2

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝜂
𝑗

}

}

}

.

(29)

Computing

− 𝑈
3
L𝑉 (𝑥, 𝑦, 𝑧, 𝑖) = −𝑈

3
(𝑥𝐹
3
(𝑥, 𝑦, 𝑧, 𝑖)

+ 𝑦𝐹
2
(𝑥, 𝑦, 𝑧, 𝑖) + 𝑧𝐹

3
(𝑥, 𝑦, 𝑧, 𝑖))

≤ −𝑈
3
[𝑥(𝑎

1
(𝑖) − 𝑐

1
(𝑖) 𝑥 −

𝑒
1
(𝑖) 𝑧

𝑓
1
(𝑖) 𝑥

)

+ 𝑦(𝑎
2
(𝑖) − 𝑐

2
(𝑖) 𝑦 −

𝑒
2
(𝑖) 𝑧

𝑓
2
(𝑖) 𝑦

)

+ 𝑧 (𝑎
3
(𝑖) − 𝑐

3
(𝑖) 𝑧)] = −𝑈

3
{𝑎
1
(𝑖) 𝑥 + 𝑎

2
(𝑖) 𝑦

+ (𝑎
3
(𝑖) −

𝑒
1
(𝑖)

𝑓
1
(𝑖)

−
𝑒
2
(𝑖)

𝑓
2
(𝑖)
) 𝑧

− [𝑐
1
(𝑖) 𝑥
2
+ 𝑐
2
(𝑖) 𝑦
2
+ 𝑐
3
(𝑖) 𝑧
2
]}

≤ −min{𝑎
1
(𝑖) , 𝑎
2
(𝑖) , 𝑎
3
(𝑖) −

𝑒
1
(𝑖)

𝑓
1
(𝑖)

−
𝑒
2
(𝑖)

𝑓
2
(𝑖)
}𝑈
2

+max {𝑐
1
(𝑖) , 𝑐
2
(𝑖) , 𝑐
3
(𝑖)} 𝑈 = −𝐵 (𝑖) 𝑈

2
+ 𝐷 (𝑖) 𝑈,

𝑈
4
𝑁(𝑥, 𝑦, 𝑧, 𝑖) ≤ max {𝜎2

1
(𝑖) , 𝜎
2

3
(𝑖) , 𝜎
2

5
(𝑖)}𝑈

2

+max {𝜎2
2
(𝑖) , 𝜎
2

4
(𝑖) , 𝜎
2

6
(𝑖)} = 𝐶 (𝑖) 𝑈

2
+ 𝐸 (𝑖)

(30)

and substituting (30) into (29), we obtain

L𝑉 (𝑥, 𝑦, 𝑧, 𝑖)

≤ 𝑈
𝛼−2

{

{

{

−[

[

𝜂
𝑖
(𝛼𝐵 (𝑖) −

𝛼 (𝛼 + 1)

2
𝐶 (𝑖))

−

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝜂
𝑗
]

]

𝑈
2
+ 𝜂
𝑖
𝛼𝐷 (𝑖) 𝑈 +

𝜂
𝑖
𝛼 (𝛼 + 1)

2
𝐸 (𝑖)

}

}

}

.

(31)

Under (28), there is a sufficiently small constant 𝑙 > 0 such
that 𝐺(𝛼)�⃗� − 𝑙�⃗� ≫ 0; that is,

𝛽
𝑖
(𝛼) 𝜂
𝑖
−

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝜂
𝑗
− 𝑙𝜂
𝑖
> 0, 𝑖 ∈ S. (32)
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Applying the generalized Itô formula to 𝑒
𝑙𝑡
𝑉(𝑥, 𝑦, 𝑧, 𝑖) and

noticing (23), we obtain
L [𝑒
𝑙𝑡
𝑉 (𝑥, 𝑦, 𝑧, 𝑖)] = 𝑙𝑒

𝑙𝑡
𝑉 (𝑥, 𝑦, 𝑧, 𝑖)

+ 𝑒
𝑙𝑡
L𝑉 (𝑥, 𝑦, 𝑧, 𝑖) ≤ 𝑒

𝑙𝑡
𝑈
𝛼−2

{

{

{

𝜂
𝑖
𝛼 (𝛼 + 1)

2
𝐸 (𝑖)

+ 𝜂
𝑖
𝛼𝐷 (𝑖) 𝑈 − [

[

𝛽
𝑖
(𝛼) 𝜂
𝑖
−

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝜂
𝑗
− 𝑙𝜂
𝑖
]

]

𝑈
2
}

}

}

.

(33)

By (32), it is obvious thatL[𝑒
𝑙𝑡
𝑉(𝑥, 𝑦, 𝑧, 𝑖)] ≤ 𝐻

22
𝑒
𝑙𝑡, where

𝐻
22
= max
𝑖∈S

{

{

{

sup
𝑈∈R+

𝑈
𝛼−2

{

{

{

𝜂
𝑖
𝛼 (𝛼 + 1)

2
𝐸 (𝑖)

+ 𝜂
𝑖
𝛼𝐷 (𝑖) 𝑈 − [

[

𝛽
𝑖
(𝛼) 𝜂
𝑖
−

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝜂
𝑗
− 𝑙𝜂
𝑖
]

]

𝑈
2
}

}

}

,

1

}

}

}

.

(34)

Thus, lim sup
𝑡→∞

E𝑉(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑖) ≤ 𝐻
22
. Noting that

(𝑥 + 𝑦 + 𝑧)
𝛼
≤ 3
𝛼
|(𝑥, 𝑦, 𝑧)|

𝛼, we have

lim sup
𝑡→∞

E 1

|𝑋 (𝑡)|
𝛼
≤
3
𝛼

�̂�
𝐻
22

fl 𝐻
2
. (35)

Theorem 8. Under Assumptions (A1) and (A2), system (5) is
stochastically permanent.

Proof. By Lemma 7, Chebyshev’s inequality, and Theorem 4,
we can get the desired conclusion.

On the basis of the above theorem, we directly give the
following corollary about subsystems permanence.

Corollary 9. Under Assumption (A3), subsystem (7) is
stochastically permanent.

4. Extinction
In this section, wewill discuss the sample Lyapunov exponent
of system (5) and hence get the sufficient condition for three
species to be extinct.

Theorem 10. For any initial data (8), the solution 𝑋(𝑡) of
system (5) has the property that

lim sup
𝑡→∞

ln𝑥 (𝑡)
𝑡

≤ ∑

𝑖∈S

𝜋
𝑖
(𝑎
1
(𝑖) + 𝑏

1
(𝑖) −

1

2
𝜎
2

1
(𝑖))

𝑎.𝑠.,

lim sup
𝑡→∞

ln𝑦 (𝑡)
𝑡

≤ ∑

𝑖∈S

𝜋
𝑖
(𝑎
2
(𝑖) + 𝑏

2
(𝑖) −

1

2
𝜎
2

3
(𝑖))

𝑎.𝑠.,

lim sup
𝑡→∞

ln 𝑧 (𝑡)
𝑡

≤ ∑

𝑖∈S

𝜋
𝑖
(𝑎
3
(𝑖) +

𝑒
3
(𝑖)

𝑓
1
(𝑖)

+
𝑒
4
(𝑖)

𝑓
2
(𝑖)

−
1

2
𝜎
2

5
(𝑖)) 𝑎.𝑠.

(36)

Particularly, if ∑
𝑖∈S 𝜋𝑖(𝑎1(𝑖) + 𝑏

1
(𝑖) − (1/2)𝜎

2

1
(𝑖)) < 0,

∑
𝑖∈S 𝜋𝑖(𝑎2(𝑖) + 𝑏

2
(𝑖) − (1/2)𝜎

2

3
(𝑖)) < 0 and ∑

𝑖∈S 𝜋𝑖(𝑎3(𝑖) +

𝑒
3
(𝑖)/𝑓
1
(𝑖) + 𝑒

4
(𝑖)/𝑓
2
(𝑖) − (1/2)𝜎

2

5
(𝑖)) < 0, then

lim
𝑡→∞

𝑥 (𝑡) = 0,

lim
𝑡→∞

𝑦 (𝑡) = 0,

lim
𝑡→∞

𝑧 (𝑡) = 0

𝑎.𝑠.

(37)

Proof. By the generalized Itô formula, we have

d ln𝑥 (𝑡) = (𝐹
1
(𝑥, 𝑦, 𝑧, 𝑟 (𝑡)) −

1

2
𝜎
2

1
(𝑟 (𝑡))

−
1

2
𝜎
2

2
(𝑟 (𝑡)) 𝑥

2
(𝑡)) d𝑡 + 𝜎

1
(𝑟 (𝑡)) d𝐵

1
(𝑡)

+ 𝜎
2
(𝑟 (𝑡)) 𝑥 (𝑡) d𝐵

2
(𝑡) ≤ (𝑎

1
(𝑟 (𝑡)) + 𝑏

1
(𝑟 (𝑡))

−
1

2
𝜎
2

1
(𝑟 (𝑡)) −

1

2
𝜎
2

2
(𝑟 (𝑡)) 𝑥

2
(𝑡)) d𝑡

+ 𝜎
1
(𝑟 (𝑡)) d𝐵

1
(𝑡) + 𝜎

2
(𝑟 (𝑡)) 𝑥 (𝑡) d𝐵

2
(𝑡) .

(38)

Integrating from 0 to 𝑡 on both sides of the above inequality,
we obtain

ln 𝑥 (𝑡)

𝑥 (0)
≤ ∫

𝑡

0

(𝑎
1
(𝑟 (𝑠)) + 𝑏

1
(𝑟 (𝑠)) −

1

2
𝜎
2

1
(𝑟 (𝑠))

−
1

2
𝜎
2

2
(𝑟 (𝑠)) 𝑥

2
(𝑠)) d𝑠 + 𝜎

1
(𝑟 (𝑡)) 𝐵

1
(𝑡)

+ 𝑀
2
(𝑡) ,

(39)

where

𝑀
2
(𝑡) = ∫

𝑡

0

𝜎
2
(𝑟 (𝑠)) 𝑥 (𝑠) d𝐵

2
(𝑠) (40)

is real-valued continuous local martingale and its quadratic
form is defined by

⟨𝑀
2
(𝑡) ,𝑀

2
(𝑡)⟩ = ∫

𝑡

0

𝜎
2

2
(𝑟 (𝑠)) 𝑥

2
(𝑠) d𝑠. (41)

Let 𝜖 ∈ (0, 1) be arbitrary. By the exponential martingale
inequality (e.g., see [18]), for each 𝑘 ≥ 1,

P{ sup
0≤𝑡≤𝑘

[𝑀
2
(𝑡) −

𝜖

2
⟨𝑀
2
(𝑡) ,𝑀

2
(𝑡)⟩] >

2 ln 𝑘
𝜖

}

≤ 𝑘
−2
.

(42)
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Noting that the series ∑∞
𝑘=1

𝑘
−2 converges and by the Borel-

Cantelli lemma (e.g., see [18]), there exists Ω
0
⊆ Ω with

P(Ω
0
) = 1 such that, for any 𝜔 ∈ Ω

0
, there is an integer

𝑘
0
= 𝑘
0
(𝜔) such that

𝑀
2
(𝑡) ≤

𝜖

2
⟨𝑀
2
(𝑡) ,𝑀

2
(𝑡)⟩ +

2 ln 𝑘
𝜖

, (43)

for all 0 ≤ 𝑡 ≤ 𝑘 and 𝑘 ≥ 𝑘
0
(𝜔). Substituting (43) into (39)

and noting that 𝜖 ∈ (0, 1), we get

ln 𝑥 (𝑡)

𝑥 (0)
≤ ∫

𝑡

0

(𝑎
1
(𝑟 (𝑠)) + 𝑏

1
(𝑟 (𝑠)) −

1

2
𝜎
2

1
(𝑟 (𝑠))) d𝑠

+ 𝜎
1
(𝑟 (𝑡)) 𝐵

1
(𝑡) +

2 ln 𝑘
𝜖

,

(44)

for all 0 ≤ 𝑡 ≤ 𝑘 and 𝑘 ≥ 𝑘
0
(𝜔). Then for any 𝜔 ∈ Ω

0
, if

𝑘 ≤ 𝑡 ≤ 𝑘 + 1 and 𝑘 ≥ 𝑘
0
(𝜔), we obtain

ln [𝑥 (𝑡) /𝑥 (0)]
𝑡

≤
1

𝑡
∫

𝑡

0

(𝑎
1
(𝑟 (𝑠)) + 𝑏

1
(𝑟 (𝑠)) −

1

2
𝜎
2

1
(𝑟 (𝑠))) d𝑠

+
𝜎
1
(𝑟 (𝑡)) 𝐵

1
(𝑡)

𝑡
+
2 ln 𝑘
𝜖𝑘

.

(45)

Taking the limit superior on both sides of the above inequality
and by the strong law of large numbers and the ergodic
property of Markov chain (e.g., see [18]), we finally obtain

lim sup
𝑡→∞

ln𝑥 (𝑡)
𝑡

≤ ∑

𝑖∈S

𝜋
𝑖
(𝑎
1
(𝑖) + 𝑏

1
(𝑖) −

1

2
𝜎
2

1
(𝑖))

a.s.

(46)

By the above same methods and procedures, we have

lim sup
𝑡→∞

ln𝑦 (𝑡)
𝑡

≤ ∑

𝑖∈S

𝜋
𝑖
(𝑎
2
(𝑖) + 𝑏

2
(𝑖) −

1

2
𝜎
2

3
(𝑖))

a.s.,

lim sup
𝑡→∞

ln 𝑧 (𝑡)
𝑡

≤ ∑

𝑖∈S

𝜋
𝑖
(𝑎
3
(𝑖) +

𝑒
3
(𝑖)

𝑓
1
(𝑖)

+
𝑒
4
(𝑖)

𝑓
2
(𝑖)

−
1

2
𝜎
2

5
(𝑖)) a.s.

(47)

The proof is completed.

On the basis of the above theorem, we directly give the
following corollary about subsystem’s extinction.

Corollary 11. For subsystem (7), if the solution (𝑥(𝑡), 𝑦(𝑡),

𝑧(𝑡)) satisfies 𝑎
1
(𝑖) + 𝑏

1
(𝑖) − (1/2)𝜎

2

1
(𝑖) < 0, 𝑎

2
(𝑖) + 𝑏

2
(𝑖) −

(1/2)𝜎
2

3
(𝑖) < 0, and 𝑎

3
(𝑖) + 𝑒

3
(𝑖)/𝑓
1
(𝑖) + 𝑒

4
(𝑖)/ 𝑓

2
(𝑖) −

(1/2)𝜎
2

5
(𝑖) < 0, then

lim
𝑡→∞

𝑥 (𝑡) = 0,

lim
𝑡→∞

𝑦 (𝑡) = 0,

lim
𝑡→∞

𝑧 (𝑡) = 0

𝑎.𝑠.

(48)

5. Asymptotic Property

In this section, we will consider another asymptotic property
of system (5).

Theorem 12. For any initial data (8), the solution 𝑋(𝑡) of
system (5) has the property that

lim sup
𝑡→∞

ln |𝑋 (𝑡)|

ln 𝑡
≤ 1 𝑎.𝑠. (49)

Proof. Define

𝑉 = 𝑉 (𝑋 (𝑡)) = 𝑥 (𝑡) + 𝑦 (𝑡) + 𝑧 (𝑡) . (50)

Let 𝜆 > 0 be arbitrary. Applying the generalized Itô formula
to 𝑒𝜆𝑡 ln𝑉(𝑋(𝑡)), we get

𝑒
𝜆𝑡 ln𝑉 (𝑋 (𝑡)) = ln𝑉 (𝑋 (0)) + 𝑀

3
(𝑡)

+ ∫

𝑡

0

𝑒
𝜆𝑠
[𝜆 ln𝑉 (𝑋 (𝑠)) +

𝑥

𝑉
𝐹
1
(𝑥, 𝑦, 𝑧, 𝑟 (𝑠))

+
𝑦

𝑉
𝐹
2
(𝑥, 𝑦, 𝑧, 𝑟 (𝑠)) +

𝑧

𝑉
𝐹
3
(𝑥, 𝑦, 𝑧, 𝑟 (𝑠))

−
𝜎
2

1
(𝑟 (𝑠)) 𝑥

2
+ 𝜎
2

2
(𝑟 (𝑠)) 𝑥

4

2𝑉2

−
𝜎
2

3
(𝑟 (𝑠)) 𝑦

2
+ 𝜎
2

4
(𝑟 (𝑠)) 𝑦

4

2𝑉2

−
𝜎
2

5
(𝑟 (𝑠)) 𝑧

2
+ 𝜎
2

6
(𝑟 (𝑠)) 𝑧

4

2𝑉2
] d𝑠,

(51)

where 𝑀
1
(𝑥, 𝑦, 𝑧, 𝑟(𝑡)) and 𝑁(𝑥, 𝑦, 𝑧, 𝑟(𝑡)) are defined in

Section 2.

𝑀
3
(𝑡) = ∫

𝑡

0

𝑒
𝜆𝑠

𝑉
𝑀
1
(𝑥 (𝑠) , 𝑦 (𝑠) , 𝑧 (𝑠) , 𝑟 (𝑠)) (52)

is real-valued continuous local martingale and its quadratic
form is defined by

⟨𝑀
3
(𝑡) ,𝑀

3
(𝑡)⟩

= ∫

𝑡

0

𝑒
2𝜆𝑠

𝑉2
𝑁(𝑥 (𝑠) , 𝑦 (𝑠) , 𝑧 (𝑠) , 𝑟 (𝑠)) d𝑠.

(53)
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Let 𝜖 ∈ (0, 1) and 𝜂 > 1 be arbitrary. By the exponential
martingale inequality, for each 𝑘 ≥ 1,

P{ sup
0≤𝑡≤𝑘

[𝑀
3
(𝑡) −

𝜖

2
𝑒
−𝜆𝑘

⟨𝑀
3
(𝑡) ,𝑀

3
(𝑡)⟩]

>
𝜂𝑒
𝜆𝑘

𝜖
ln 𝑘} ≤ 𝑘

−𝜂
.

(54)

Noting that the series ∑∞
𝑘=1

𝑘
−𝜂 converges and by the Borel-

Cantelli lemma, there exists Ω
0
⊆ Ω with P(Ω

0
) = 1 such

that, for any 𝜔 ∈ Ω
0
, there is an integer 𝑘

0
= 𝑘
0
(𝜔) such that

𝑀
3
(𝑡) ≤

𝜖

2
𝑒
−𝜆𝑘

⟨𝑀
3
(𝑡) ,𝑀

3
(𝑡)⟩ +

𝜂𝑒
𝜆𝑘

𝜖
ln 𝑘, (55)

for all 0 ≤ 𝑡 ≤ 𝑘 and 𝑘 ≥ 𝑘
0
(𝜔). Note that

𝑥

𝑉
𝐹
1
(𝑥, 𝑦, 𝑧, 𝑟 (𝑡)) ≤ 𝑎

1
(𝑟 (𝑡)) + 𝑏

1
(𝑟 (𝑡)) ,

𝑦

𝑉
𝐹
2
(𝑥, 𝑦, 𝑧, 𝑟 (𝑡)) ≤ 𝑎

2
(𝑟 (𝑡)) + 𝑏

2
(𝑟 (𝑡)) ,

𝑧

𝑉
𝐹
3
(𝑥, 𝑦, 𝑧, 𝑟 (𝑡)) ≤ 𝑎

3
(𝑟 (𝑡)) +

𝑒
3
(𝑟 (𝑡))

𝑓
1
(𝑟 (𝑡))

+
𝑒
4
(𝑟 (𝑡))

𝑓
2
(𝑟 (𝑡))

,

(56)

and choose three constants𝑚
1
, 𝑚
2
, 𝑚
3
∈ (0, 1) such that

𝜎
2

2
(𝑟 (𝑡)) 𝑥

4

2𝑉2
≤
𝜎
2

2
(𝑟 (𝑡))𝑚

1

2
𝑥
2
,

𝜎
2

4
(𝑟 (𝑡)) 𝑦

4

2𝑉2
≤
𝜎
2

2
(𝑟 (𝑡))𝑚

2

2
𝑦
2
,

𝜎
2

6
(𝑟 (𝑡)) 𝑧

4

2𝑉2
≤
𝜎
2

6
(𝑟 (𝑡))𝑚

3

2
𝑧
2
.

(57)

Substituting (55)–(57) into (51) and noting that 𝜖 ∈ (0, 1), we
obtain

𝑒
𝜆𝑡 ln𝑉 (𝑋 (𝑡)) ≤ ln𝑉 (𝑋 (0)) +

𝜂𝑒
𝜆𝑘

𝜖
ln 𝑘

+ ∫

𝑡

0

𝑒
𝜆𝑠
[𝜆 ln𝑉 (𝑋 (𝑠)) + 𝑎

1
(𝑟 (𝑠)) + 𝑏

1
(𝑟 (𝑠))

+ 𝑎
2
(𝑟 (𝑠)) + 𝑏

2
(𝑟 (𝑠)) + 𝑎

3
(𝑟 (𝑠)) +

𝑒
3
(𝑟 (𝑠))

𝑓
1
(𝑟 (𝑠))

+
𝑒
4
(𝑟 (𝑠))

𝑓
2
(𝑟 (𝑠))

−
(1 − 𝜖)𝑚

1
𝜎
2

2
(𝑟 (𝑠))

2
𝑥
2

−
(1 − 𝜖)𝑚

2
𝜎
2

4
(𝑟 (𝑠))

2
𝑦
2

−
(1 − 𝜖)𝑚

3
𝜎
2

6
(𝑟 (𝑠))

2
𝑧
2
] d𝑠,

(58)

for all 0 ≤ 𝑡 ≤ 𝑘 and 𝑘 ≥ 𝑘
0
(𝜔). It is obvious that there is a

positive constant𝐻
3
such that

𝜆 ln𝑉 (𝑋 (𝑡)) + 𝑎
1
(𝑟 (𝑡)) + 𝑏

1
(𝑟 (𝑡)) + 𝑎

2
(𝑟 (𝑡))

+ 𝑏
2
(𝑟 (𝑡)) + 𝑎

3
(𝑟 (𝑡)) +

𝑒
3
(𝑟 (𝑡))

𝑓
1
(𝑟 (𝑡))

+
𝑒
4
(𝑟 (𝑡))

𝑓
2
(𝑟 (𝑡))

−
(1 − 𝜖)𝑚

1
𝜎
2

2
(𝑟 (𝑡))

2
𝑥
2

−
(1 − 𝜖)𝑚

2
𝜎
2

4
(𝑟 (𝑡))

2
𝑦
2

−
(1 − 𝜖)𝑚

3
𝜎
2

6
(𝑟 (𝑡))

2
𝑧
2
≤ 𝐻
3
.

(59)

Then

𝑒
𝜆𝑡 ln𝑉 (𝑋 (𝑡)) ≤ ln𝑉 (𝑋 (0)) +

𝜂𝑒
𝜆𝑘

𝜖
ln 𝑘 +

𝐻
3

𝜆
𝑒
𝜆𝑡
, (60)

for all 0 ≤ 𝑡 ≤ 𝑘 and 𝑘 ≥ 𝑘
0
(𝜔). Thus, for any 𝜔 ∈ Ω

0
, if

𝑘 − 1 ≤ 𝑡 ≤ 𝑘 (𝑘 > 2) and 𝑘 ≥ 𝑘
0
(𝜔), we have

ln𝑉 (𝑋 (𝑡))

ln 𝑡
≤

1

ln (𝑘 − 1)
[𝑒
−𝜆(𝑘−1) ln𝑉 (𝑋 (0))

+
𝜂𝑒
𝜆

𝜖
ln 𝑘 +

𝐻
3

𝜆
] .

(61)

This implies

lim sup
𝑡→∞

ln𝑉 (𝑋 (𝑡))

ln 𝑡
≤
𝜂𝑒
𝜆

𝜖
a.s. (62)

Let 𝜖 → 1, 𝜂 → 1, and 𝜆 → 0, so we get
lim sup

𝑡→∞
(ln𝑉(𝑋(𝑡))/ ln 𝑡) ≤ 1 a.s. Then we can directly

get the desired conclusion.

6. Examples and Numerical Simulations

In this section, we will give two examples and make some
numerical simulations to support main results. By the
method mentioned in [26], the discrete form of system (5)
can be given by

𝑥
𝑛+1

= 𝑥
𝑛
+ 𝑥
𝑛
(𝑎
1
(𝑟
𝑛
) +

𝑏
1
(𝑟
𝑛
) 𝑦
𝑛−𝑚1

𝑘
1
(𝑟
𝑛
) + 𝑦
𝑛−𝑚1

− 𝑐
1
(𝑟
𝑛
) 𝑥
𝑛
−

𝑒
1
(𝑟
𝑛
) 𝑧
𝑛

1 + 𝑓
1
(𝑟
𝑛
) 𝑥
𝑛

)Δ𝑡 + 𝜎
1
(𝑟
𝑛
)

⋅ 𝑥
𝑛
√Δ𝑡𝜁
1𝑛
+ 𝜎
2
(𝑟
𝑛
) 𝑥
2

𝑛
√Δ𝑡𝜁
2𝑛
+
𝜎
2

1
(𝑟
𝑛
)

2
𝑥
𝑛
(𝜁
2

1𝑛

− 1)Δ𝑡 + 𝜎
2

2
(𝑟
𝑛
) 𝑥
3

𝑛
(𝜁
2

2𝑛
− 1)Δ𝑡,
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Figure 1: (Stochastic permanence) the trajectories of the solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) for subsystem (64) and its corresponding deterministic
system.

𝑦
𝑛+1

= 𝑦
𝑛
+ 𝑦
𝑛
(𝑎
2
(𝑟
𝑛
) +

𝑏
2
(𝑟
𝑛
) 𝑥
𝑛−𝑚2

𝑘
2
(𝑟
𝑛
) + 𝑥
𝑛−𝑚2

− 𝑐
2
(𝑟
𝑛
) 𝑦
𝑛

−
𝑒
2
(𝑟
𝑛
) 𝑧
𝑛

1 + 𝑓
2
(𝑟
𝑛
) 𝑦
𝑛
+ 𝑓
3
(𝑟
𝑛
) 𝑧
𝑛

)Δ𝑡 + 𝜎
3
(𝑟
𝑛
)

⋅ 𝑦
𝑛
√Δ𝑡𝜁
3𝑛
+ 𝜎
4
(𝑟
𝑛
) 𝑦
2

𝑛
√Δ𝑡𝜁
4𝑛
+
𝜎
2

3
(𝑟
𝑛
)

2
𝑦
𝑛
(𝜁
2

3𝑛

− 1)Δ𝑡 + 𝜎
2

4
(𝑟
𝑛
) 𝑦
3

𝑛
(𝜁
2

4𝑛
− 1)Δ𝑡,

𝑧
𝑛+1

= 𝑧
𝑛
+ 𝑧
𝑛
(𝑎
3
(𝑟
𝑛
) +

𝑒
3
(𝑟
𝑛
) 𝑥
𝑛−𝑚3

1 + 𝑓
1
(𝑟
𝑛
) 𝑥
𝑛−𝑚3

+

𝑒
4
(𝑟
𝑛
) 𝑦
𝑛−𝑚4

1 + 𝑓
2
(𝑟
𝑛
) 𝑦
𝑛−𝑚4

+ 𝑓
3
(𝑟
𝑛
) 𝑧
𝑛−𝑚4

− 𝑐
3
(𝑟
𝑛
) 𝑧
𝑛
)

⋅ Δ𝑡 + 𝜎
5
(𝑟
𝑛
) 𝑧
𝑛
√Δ𝑡𝜁
5𝑛
+ 𝜎
6
(𝑟
𝑛
) 𝑧
2

𝑛
√Δ𝑡𝜁
6𝑛

+
𝜎
2

5
(𝑟
𝑛
)

2
𝑧
𝑛
(𝜁
2

5𝑛
− 1)Δ𝑡 + 𝜎

2

6
(𝑟
𝑛
) 𝑧
3

𝑛
(𝜁
2

6𝑛
− 1)Δ𝑡,

(63)

where 𝜁
𝑗𝑛
, 𝑗 = 1, 2, . . . , 6, are Gaussian random variables that

follow 𝑁(0, 1) and 𝑚
𝑗
denotes the integer part of 𝜏

𝑗
/Δ𝑡 −

1, 𝑗 = 1, 2, 3, 4. For the procedure of generating the discrete
Markov chain {𝑟

𝑛
, 𝑛 = 0, 1, 2, . . .}, please refer to [18].

Throughout this section, we assume that Δ𝑡 = 0.01, 𝜏
1
=

0.1, 𝜏
2
= 0.2, 𝜏

3
= 0.3, 𝜏

4
= 0.4, and let the initial data be

𝑥(𝜃) = 1.5, 𝑦(𝜃) = 1.3, 𝑧(𝜃) = 1, 𝑟(0) = 1, 𝜃 ∈ [−𝜏, 0], where
𝜏 = max{𝜏

1
, 𝜏
2
, 𝜏
3
, 𝜏
4
}. Please note that in this section all of

numerical results are computed by MATLAB and displayed
in rational format. Therefore there may be an error for some
numerical results.

Example 1. Let 𝑟(𝑡) be a right-continuous Markov chain
taking values in S = {1, 2}. System (5) may be regarded as
the result of the following two subsystems:

d𝑥 (𝑡)

= 𝑥(0.5 +

0.1𝑦
𝜏1

3 + 𝑦
𝜏1

− 0.5𝑥 −
0.1𝑧

1 + 2𝑥
) d𝑡

+ 0.2𝑥 d𝐵
1
(𝑡) + 0.1𝑥

2d𝐵
2
(𝑡) ,

d𝑦 (𝑡)

= 𝑦(0.6 +

0.25𝑥
𝜏2

2 + 𝑥
𝜏2

− 0.6𝑦 −
0.2𝑧

1 + 2𝑦 + 𝑧
) d𝑡

+ 0.2𝑦 d𝐵
3
(𝑡) + 0.1𝑦

2d𝐵
4
(𝑡) ,

d𝑧 (𝑡)

= 𝑧(0.7 +

0.01𝑥
𝜏3

1 + 2𝑥
𝜏3

+

0.05𝑦
𝜏4

1 + 2𝑦
𝜏4
+ 𝑧
𝜏4

− 0.7𝑧) d𝑡

+ 0.2𝑧 d𝐵
5
(𝑡) + 0.1𝑧

2d𝐵
6
(𝑡) ,

(64)
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Figure 2: (Extinction) the trajectories of the solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) for subsystem (65) and its corresponding deterministic system.

d𝑥 (𝑡)

= 𝑥(0.45 +

0.2𝑦
𝜏1

1 + 𝑦
𝜏1

− 0.45𝑥 −
0.25𝑧

1 + 3𝑥
) d𝑡

+ 1.2𝑥 d𝐵
1
(𝑡) + 0.05𝑥

2d𝐵
2
(𝑡) ,

d𝑦 (𝑡)

= 𝑦(0.75 +

0.3𝑥
𝜏2

1 + 𝑥
𝜏2

− 0.75𝑦 −
0.2𝑧

1 + 3𝑦 + 𝑧
) d𝑡

+ 1.5𝑦 d𝐵
3
(𝑡) + 0.05𝑦

2d𝐵
4
(𝑡) ,

d𝑧 (𝑡)

= 𝑧(0.5 +

0.04𝑥
𝜏3

1 + 3𝑥
𝜏3

+

0.03𝑦
𝜏4

1 + 3𝑦
𝜏4
+ 𝑧
𝜏4

− 0.4𝑧) d𝑡

+ 1.1𝑧 d𝐵
5
(𝑡) + 0.05𝑧

2d𝐵
6
(𝑡) ,

(65)

switching from one to another according to the movement of
Markov chain 𝑟(𝑡).

Then we compute that 𝑞(1) = 12/25 > 0, 𝑎
1
(1) + 𝑏

1
(1) −

(1/2)𝜎
2

1
(1) = 29/50, 𝑎

2
(1) + 𝑏

2
(1) − (1/2)𝜎

2

3
(1) = 83/100,

𝑎
3
(1) + 𝑒

3
(1)/𝑓
1
(1) + 𝑒

4
(1)/𝑓
2
(1) − (1/2)𝜎

2

5
(1) = 71/100.

Therefore, by Corollary 9, subsystem (64) is stochastically
permanent. See Figure 1.

Compute also 𝑞(2) = −31/40, 𝑎
1
(2)+𝑏

1
(2)− (1/2)𝜎

2

1
(2) =

−7/100 < 0, 𝑎
2
(2) + 𝑏

2
(2) − (1/2)𝜎

2

3
(2) = −3/40 < 0,

𝑎
3
(2)+𝑒

3
(2)/𝑓
1
(2)+𝑒

4
(2)/𝑓
2
(2)− (1/2)𝜎

2

5
(2) = −49/600 < 0.

Therefore, by Corollary 11, subsystem (65) is extinct. See
Figure 2.

0
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Figure 3: (Stochastic permanence) the trajectories of the solution
(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) for the overall system (5) in Case 1 of Example 1.

Case 1. Assume that the generator of Markov chain 𝑟(𝑡) is

Γ = [
−1 1

8 −8
] . (66)

By solving (11), we get the unique stationary distribution

𝜋 = (
8

9
,
1

9
) . (67)

Then compute that∑𝑁
𝑖=1

𝜋
𝑖
𝑞(𝑖) = ∑

𝑁

𝑖=1
𝜋
𝑖
(min{𝑎

1
(𝑖), 𝑎
2
(𝑖), 𝑎
3
(𝑖)−

𝑒
1
(𝑖)/𝑓
1
(𝑖) − 𝑒

2
(𝑖)/𝑓
2
(𝑖)} − (1/2)max{𝜎2

1
(𝑖), 𝜎
2

3
(𝑖), 𝜎
2

5
(𝑖)}) =

(12/25)𝜋
1
− (31/40)𝜋

2
= 613/1800 > 0. Therefore, by

Theorem 8, the overall system (5) is stochastically permanent.
See Figures 3–5.
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Figure 4: The subgraphs (a) and (b) denote the trajectory and frequency of the discrete Markov chain 𝑟
𝑛
taking value in {1, 2}, respectively.

𝑟
𝑛
= 1 and 𝑟

𝑛
= 2mean that the overall system (5) switches to subsystems (64) and (65) in step 𝑛, respectively. The change of 𝑟

𝑛
in (a) means

the process of regime switching of system (5) between subsystems (64) and (65). And the frequency of 𝑟
𝑛
in (b) shows the result of regime

switching—the total number of steps of the overall system (5) switching to subsystem (64) or subsystem (65). This graph shows that under
the control of the Markov chain the overall system (5) mostly switches to subsystem (64) in Case 1 of Example 1.

Case 2. Assume that the generator of Markov chain 𝑟(𝑡) is

Γ = [
−12 12

1 −1
] . (68)

By solving (11), we get the unique stationary distribution

𝜋 = (
1

13
,
12

13
) . (69)

Then we compute that ∑
𝑖∈S 𝜋𝑖(𝑎1(𝑖) + 𝑏

1
(𝑖) − (1/2)𝜎

2

1
(𝑖)) =

(29/50)𝜋
1
− (7/100)𝜋

2
= −1/50 < 0, ∑

𝑖∈S 𝜋𝑖(𝑎2(𝑖) +

𝑏
2
(𝑖) − (1/2)𝜎

2

3
(𝑖)) = (83/100)𝜋

1
− (3/40)𝜋

2
= −7/1300 <

0, ∑
𝑖∈S 𝜋𝑖(𝑎3(𝑖) + 𝑒

3
(𝑖)/𝑓
1
(𝑖) + 𝑒

4
(𝑖)/𝑓
2
(𝑖) − (1/2)𝜎

2

5
(𝑖)) =

(71/100)𝜋
1
− (49/600)𝜋

2
= −27/1300 < 0. Therefore, by

Theorem 10, the overall system (5) is extinct. See Figures 6–8.

Example 2. Let 𝑟(𝑡) be a right-continuous Markov chain
taking values in S = {1, 2, 3}. System (5) may be regarded
as the result of the following three subsystems:

d𝑥 (𝑡)

= 𝑥(0.5 +

0.1𝑦
𝜏1

3 + 𝑦
𝜏1

− 0.5𝑥 −
0.1𝑧

1 + 2𝑥
) d𝑡

+ 1.2𝑥 d𝐵
1
(𝑡) + 0.1𝑥

2d𝐵
2
(𝑡) ,

d𝑦 (𝑡)

= 𝑦(0.6 +

0.25𝑥
𝜏2

2 + 𝑥
𝜏2

− 0.6𝑦 −
0.2𝑧

1 + 2𝑦 + 𝑧
) d𝑡

+ 1.4𝑦 d𝐵
3
(𝑡) + 0.1𝑦

2d𝐵
4
(𝑡) ,

d𝑧 (𝑡)

= 𝑧(0.7 +

0.01𝑥
𝜏3

1 + 2𝑥
𝜏3

+

0.05𝑦
𝜏4

1 + 2𝑦
𝜏4
+ 𝑧
𝜏4

− 0.7𝑧) d𝑡

+ 1.3𝑧 d𝐵
5
(𝑡) + 0.1𝑧

2d𝐵
6
(𝑡) ,

(70)
d𝑥 (𝑡)

= 𝑥(0.3 +

0.05𝑦
𝜏1

3 + 𝑦
𝜏1

− 0.5𝑥 −
0.1𝑧

1 + 8𝑥
) d𝑡

+ 1.1𝑥 d𝐵
1
(𝑡) + 0.06𝑥

2d𝐵
2
(𝑡) ,

d𝑦 (𝑡)

= 𝑦(0.2 +

0.1𝑥
𝜏2

2 + 𝑥
𝜏2

− 0.4𝑦 −
0.1𝑧

1 + 7𝑦 + 𝑧
) d𝑡

+ 1.05𝑦 d𝐵
3
(𝑡) + 0.06𝑦

2d𝐵
4
(𝑡) ,

d𝑧 (𝑡)

= 𝑧(0.1 +

0.08𝑥
𝜏3

1 + 8𝑥
𝜏3

+

0.07𝑦
𝜏4

1 + 7𝑦
𝜏4
+ 𝑧
𝜏4

− 0.3𝑧) d𝑡

+ 0.9𝑧 d𝐵
5
(𝑡) + 0.08𝑧

2d𝐵
6
(𝑡) ,

(71)
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Figure 5: The subgraphs (a), (b), (c), and (d) denote the discrete point distribution of two subsystems and the overall system in 𝑥𝑦, 𝑥𝑧, 𝑦𝑧,
and 𝑥𝑦𝑧, respectively. The blue, green, and red areas represent the overall system (5), subsystem (64), and subsystem (65), respectively. The
green area which means stochastic permanence is far away from the origin while most points of the red area which means extinction lie in
the origin. Under the control of Markov chain, the blue area also keeps away from the origin and means stochastic permanence in Case 1 of
Example 1.

d𝑥 (𝑡)

= 𝑥(0.75 +

0.01𝑦
𝜏1

3 + 𝑦
𝜏1

− 0.75𝑥 −
0.3𝑧

1 + 6𝑥
) d𝑡

+ 0.4𝑥 d𝐵
1
(𝑡) + 0.1𝑥

2d𝐵
2
(𝑡) ,

d𝑦 (𝑡)

= 𝑦(0.7 +

0.01𝑥
𝜏2

3 + 𝑥
𝜏2

− 0.68𝑦 −
0.4𝑧

1 + 8𝑦 + 3𝑧
) d𝑡

+ 0.4𝑦 d𝐵
3
(𝑡) + 0.1𝑦

2d𝐵
4
(𝑡) ,

d𝑧 (𝑡)

= 𝑧(0.68 +

0.04𝑥
𝜏3

1 + 6𝑥
𝜏3

+

0.06𝑦
𝜏4

1 + 8𝑦
𝜏4
+ 3𝑧
𝜏4

− 0.7𝑧) d𝑡

+ 0.4𝑧 d𝐵
5
(𝑡) + 0.1𝑧

2d𝐵
6
(𝑡) ,

(72)
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Figure 6: (Extinction) the trajectories of the solution (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) for the overall system (5) in Case 2 of Example 1.
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Figure 7: The above subgraphs have the same notations as in Figure 4. The change of 𝑟
𝑛
in (a) means the process of regime switching of

system (5) between subsystems (64) and (65). And the frequency of 𝑟
𝑛
in (b) shows the result of regime switching—the total number of steps

of the overall system (5) switching to subsystem (64) or subsystem (65). This graph means that under the control of the Markov chain the
overall system (5) mostly switches to subsystem (65) in Case 2 of Example 1.

switching from one to another according to the movement of
Markov chain 𝑟(𝑡).

We compute that 𝑞(1) = −12/25, 𝑎
1
(1) + 𝑏

1
(1) −

(1/2)𝜎
2

1
(1) = −3/25 < 0, 𝑎

2
(1) + 𝑏

2
(1) − (1/2)𝜎

2

3
(1) =

−13/100 < 0, 𝑎
3
(1) + 𝑒

3
(1)/𝑓
1
(1) + 𝑒

4
(1)/𝑓
2
(1) − (1/2)𝜎

2

5
(1) =

−23/200 < 0. Therefore, by Corollary 11, subsystem (70) is
extinct.

Compute 𝑞(2) = −527/991, 𝑎
1
(2) + 𝑏

1
(2) − (1/2)𝜎

2

1
(2) =

−51/200 < 0, 𝑎
2
(2) + 𝑏

2
(2) − (1/2)𝜎

2

3
(2) = −201/800 < 0,

𝑎
3
(2)+𝑒

3
(2)/𝑓
1
(2)+𝑒

4
(2)/𝑓
2
(2)− (1/2)𝜎

2

5
(2) = −57/200 < 0.

Therefore, by Corollary 11, subsystem (71) is extinct.
Compute again 𝑞(3) = 1/2 > 0, 𝑎

1
(3) + 𝑏

1
(3) −

(1/2)𝜎
2

1
(3) = 17/25, 𝑎

2
(3) + 𝑏

2
(3) − (1/2)𝜎

2

3
(3) = 63/100,

𝑎
3
(3) + 𝑒

3
(3)/𝑓
1
(3) + 𝑒

4
(3)/𝑓
2
(3) − (1/2)𝜎

2

5
(3) = 737/1200.

Therefore, by Corollary 9, subsystem (72) is stochastically
permanent.

Case 1. Assume that the generator of the Markov chain 𝑟(𝑡) is

Γ =
[
[

[

−11 1 10

3 −3 0

1 0 −1

]
]

]

. (73)

By solving (11), we get the unique stationary distribution

𝜋 = (
3

34
,
1

34
,
15

17
) . (74)
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Figure 8:The above subgraphs have the same notations as in Figure 5. Under the control of Markov chain, most points of the blue area lie in
the origin and mean extinction in Case 2 of Example 1.

Then compute that ∑𝑁
𝑖=1

𝜋
𝑖
𝑞(𝑖) = ∑

𝑁

𝑖=1
𝜋
𝑖
(min{𝑎

1
(𝑖), 𝑎
2
(𝑖),

𝑎
3
(𝑖)−𝑒
1
(𝑖)/𝑓
1
(𝑖)−𝑒
2
(𝑖)/𝑓
2
(𝑖)}−(1/2)max{𝜎2

1
(𝑖), 𝜎
2

3
(𝑖), 𝜎
2

5
(𝑖)}) =

−(12/25)𝜋
1
− (527/991)𝜋

2
+ (1/2)𝜋

3
= 679/1772 > 0.There-

fore, by Theorem 8, the overall system (5) is stochastically
permanent.

Case 2. Assume that the generator of the Markov chain 𝑟(𝑡) is

Γ =
[
[

[

−3 2 1

1 −1 0

2 0 −2

]
]

]

. (75)

By solving (11), we get the unique stationary distribution

𝜋 = (
2

7
,
4

7
,
1

7
) . (76)

Then we compute that ∑
𝑖∈S 𝜋𝑖(𝑎1(𝑖) + 𝑏

1
(𝑖) − (1/2)𝜎

2

1
(𝑖)) =

−(3/25)𝜋
1
− (51/200)𝜋

2
+ (17/25)𝜋

3
= −29/350 <

0, ∑
𝑖∈S 𝜋𝑖(𝑎2(𝑖) + 𝑏

2
(𝑖) − (1/2)𝜎

2

3
(𝑖)) = −(13/100)𝜋

1
−

(201/800)𝜋
2
+ (63/100)𝜋

3
= −127/1400 < 0, ∑

𝑖∈S 𝜋𝑖(𝑎3(𝑖) +

𝑒
3
(𝑖)/𝑓
1
(𝑖) + 𝑒

4
(𝑖)/𝑓
2
(𝑖) − (1/2)𝜎

2

5
(𝑖)) = −(23/200)𝜋

1
−

(57/200)𝜋
2
+ (737/1200)𝜋

3
= −199/1843 < 0. Therefore, by

Theorem 10, the overall system (5) is extinct.
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Case 3. Now we only consider the effect of white noise’s
intensities. From Examples 1 and 2, we know that subsystem
(64) is stochastically permanent while subsystem (70) is
extinct. Note that the only difference between subsystems
(64) and (70) is the intensity of white noise, that is, 𝜎

1
, 𝜎
3
,

𝜎
5
. In other words, large white noise leads to extinction.

7. Discussion and Conclusion

In this paper, we investigate dynamical behavior of a stochas-
tic delayed one-predator and two-mutualistic-prey model
perturbed by white noise and telegraph noise.

Theorems 8 and 10 show us sufficient conditions of
stochastic permanence and extinction for system (5), respec-
tively. These conditions are all dependent on both param-
eters of each subsystem (7) and the stationary distribution
probability. This means that under the control of Markov
chain, if some subsystems are stochastically permanent while
others are extinct, the overall system (5) is stochastically
permanent or extinct, determined by the sign of ∑𝑁

𝑖=1
𝜋
𝑖
𝑞(𝑖)

and ∑
𝑖∈S 𝜋𝑖(𝑎1(𝑖) + 𝑏

1
(𝑖) − (1/2)𝜎

2

1
(𝑖)), ∑

𝑖∈S 𝜋𝑖(𝑎2(𝑖) +

𝑏
2
(𝑖) − (1/2)𝜎

2

3
(𝑖)), ∑

𝑖∈S 𝜋𝑖(𝑎3(𝑖) + 𝑒
3
(𝑖)/𝑓
1
(𝑖) + 𝑒

4
(𝑖)/𝑓
2
(𝑖) −

(1/2)𝜎
2

5
(𝑖)). This explanation can be verified by Cases 1-2 of

Example 1 or Cases 1-2 of Example 2.
Corollaries 9 and 11 also give sufficient conditions of

stochastic permanence and extinction for subsystem (7),
respectively. These two corollaries tell us that large white
noise can cause extinctionwhile relatively small one canmake
system stochastically permanent; see Case 3 of Example 2.

It is worth noting that the traditional definition of
stochastic permanence (Definition 2) has weakness: even
some species are extinctive; the model could be stochastic
permanent. Some authors have introduced a more appro-
priate definition of permanence for stochastic population
model, that is, stochastically persistent in probability (e.g.,
see [27, 28]), which is a more appropriate definition of
permanence than stochastic permanence. We are interested
in investigating stochastic persistence in probability in the
future.

Beside the one-predator and two-mutualistic-preymodel,
there are other three-species models, for example, tri-trophic
food-chain model and two-prey one-predator model; please
see [29–31]. At the same time, beside white noise and tele-
graph noise, Lévy noise is inevitable in the nature. And there
are some researches about stochastic population models with
Lévy noise; please see [31–33]. Therefore, the above three-
species models with Lévy noise deserve further investigation
and we may consider them in the future.
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[6] J. Garćıa-Algarra, J. Galeano, J. M. Pastor, J. M. Iriondo, and J.
J. Ramasco, “Rethinking the logistic approach for population
dynamics of mutualistic interactions,” Journal of Theoretical
Biology, vol. 363, pp. 332–343, 2014.

[7] C. S. Holling, “Some characteristics of simple types of predation
and parasitism,” The Canadian Entomologist, vol. 91, no. 7, pp.
385–398, 1959.

[8] S. R.-J. Jang, “Dynamics of herbivore-plant-pollinator models,”
Journal ofMathematical Biology, vol. 44, no. 2, pp. 129–149, 2002.

[9] T. K. Kar and A. Ghorai, “Dynamic behaviour of a delayed
predator-prey model with harvesting,” Applied Mathematics
and Computation, vol. 217, no. 22, pp. 9085–9104, 2011.

[10] Y. Wang and M. Zhao, “Dynamic analysis of an impulsively
controlled predator-preymodel withHolling type IV functional
response,” Discrete Dynamics in Nature and Society, vol. 2012,
Article ID 141272, 18 pages, 2012.

[11] P. J. Pal, P. K. Mandal, and K. K. Lahiri, “A delayed ratio-
dependent predator-preymodel of interacting populations with
Holling type III functional response,” Nonlinear Dynamics, vol.
76, no. 1, pp. 201–220, 2014.

[12] L. Zu, D. Jiang, andD.O’Regan, “Conditions for persistence and
ergodicity of a stochastic Lotka-Volterra predator-prey model
with regime switching,” Communications in Nonlinear Science
and Numerical Simulation, vol. 29, no. 1–3, pp. 1–11, 2015.

[13] M. Liu and C. Bai, “Global asymptotic stability of a stochas-
tic delayed predator-prey model with Beddington-DeAngelis
functional response,” Applied Mathematics and Computation,
vol. 226, pp. 581–588, 2014.

[14] J. P. Tripathi, S. Tyagi, and S. Abbas, “Global analysis of a delayed
density dependent predator-prey model with Crowley-Martin
functional response,” Communications in Nonlinear Science and
Numerical Simulation, vol. 30, no. 1–3, pp. 45–69, 2016.

[15] M. Ouyang and X. Li, “Permanence and asymptotical behavior
of stochastic prey-predator system with Markovian switching,”
Applied Mathematics and Computation, vol. 266, pp. 539–559,
2015.

[16] A. Mougi and M. Kondoh, “Stability of competition-antago-
nism-mutualism hybrid community and the role of community
network structure,” Journal of Theoretical Biology, vol. 360, pp.
54–58, 2014.



16 Discrete Dynamics in Nature and Society

[17] Y. Kuang, Delay Differential Equations: with Applications in
Population Dynamics, vol. 191 of Mathematics in Science and
Engineering, Academic Press, Boston, Mass, USA, 1993.

[18] X. Mao and C. Yuan, Stochastic Differential Equations with
Markovian Switching, Imperial College Press, London, UK,
2006.

[19] D. Jana, R. Agrawal, and R. K. Upadhyay, “Dynamics of gen-
eralist predator in a stochastic environment: effect of delayed
growth and prey refuge,” Applied Mathematics and Computa-
tion, vol. 268, pp. 1072–1094, 2015.

[20] L. Zou, Z. Xiong, and Z. Shu, “The dynamics of an eco-
epidemic model with distributed time delay and impulsive
control strategy,” Journal of the Franklin Institute, vol. 348, no.
9, pp. 2332–2349, 2011.

[21] M. Liu and P. S. Mandal, “Dynamical behavior of a one-prey
two-predator model with random perturbations,” Communica-
tions in Nonlinear Science andNumerical Simulation, vol. 28, no.
1–3, pp. 123–137, 2015.

[22] M. Slatkin, “The dynamics of a population in a Markovian
environment,” Ecology, vol. 59, no. 2, pp. 249–256, 1978.

[23] Q. Luo and X. Mao, “Stochastic population dynamics under
regime switching,” Journal of Mathematical Analysis and Appli-
cations, vol. 334, no. 1, pp. 69–84, 2007.

[24] X. Li, A. Gray, D. Jiang, and X. Mao, “Sufficient and neces-
sary conditions of stochastic permanence and extinction for
stochastic logistic populations under regime switching,” Journal
ofMathematical Analysis and Applications, vol. 376, no. 1, pp. 11–
28, 2011.

[25] X. Li, X. Mao, and Y. Shen, “Approximate solutions of stochastic
differential delay equations with Markovian switching,” Journal
of Difference Equations andApplications, vol. 16, no. 2-3, pp. 195–
207, 2010.

[26] P. E. Kloeden and T. Shardlow, “The Milstein scheme for
stochastic delay differential equations without using anticipa-
tive calculus,” Stochastic Analysis and Applications, vol. 30, no.
2, pp. 181–202, 2012.

[27] M. Liu, K. Wang, and Q. Wu, “Survival analysis of stochastic
competitive models in a polluted environment and stochastic
competitive exclusion principle,” Bulletin of Mathematical Biol-
ogy, vol. 73, no. 9, pp. 1969–2012, 2011.

[28] S. J. Schreiber, “Persistence for stochastic difference equations: a
mini-review,” Journal of Difference Equations and Applications,
vol. 18, no. 8, pp. 1381–1403, 2012.
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