
Research Article
The Order Classes of 2-Generator 𝑝-Groups

Mahmoud Bashir Alhasanat,1 Bilal Al-Hasanat,2 and Eman Al-Sarairah2

1Department of Civil Engineering, Al-Hussein Bin Talal University, Ma’an, Jordan
2Department of Mathematics, Al-Hussein Bin Talal University, Ma’an, Jordan

Correspondence should be addressed to Bilal Al-Hasanat; bilal hasanat@yahoo.com

Received 31 May 2016; Accepted 15 September 2016

Academic Editor: Ali R. Ashrafi

Copyright © 2016 Mahmoud Bashir Alhasanat et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In order to classify a finite group using its elements orders, the order classes are defined. This partition determines the number of
elements for each order. The aim of this paper is to find the order classes of 2-generator 𝑝-groups of class 2. The results obtained
here are supported by Groups, Algorithm and Programming (GAP).

1. Introduction

One of the major partitions for finite groups is the order
classes. A basic concept in group theory is that the order of
an element 𝑥 ∈ 𝐺 denoted by 𝑜(𝑥) is the smallest positive
integer 𝑘, such that 𝑥𝑘 is the identity. The relation “𝑥 is
of the same order as 𝑦” is an equivalence relation, which
induces a partition for the group 𝐺, which is called the order
classes. Order classes of symmetric and dihedral groups are
completely configured in [1] and [2], respectively.

Clearly, all conjugate elements have the same order.
Conjugacy classes are refinement partitions to order classes.
Therefore, each order class contains at least one conjugacy
class. Du and Shi [3] proved that if a finite group 𝐺 has
conjugacy classes number one greater than its same order
classes number, then 𝐺 is isomorphic to one of the following
groups:𝐴5, 𝐿2(7), 𝑆5,𝐶3,𝐶4, 𝑆4,𝐴4,𝐷10, Hol(𝐶5), or𝐶3⋊𝐶4.

In order to classify a finite group using its order classes,
there is a new issue obtained by the size of the order classes.
That is, a finite group 𝐺 is said to be a perfect order subsets
group (POS-group) if the cardinality of each order class
divides |𝐺|. Das [4] studied some of the properties of arbitrary
POS-groups and constructed a couple of new families of
nonabelian POS-groups. He also proved that the alternating
group𝐴𝑛, 𝑛 ≥ 3, is not a POS-group. Later, Jones and Toppin
[5] proved that any nontrivial finite POS-group has even
order.

The classification of all 𝑝-groups is not completed yet.
In 1993 the classification of finite 2-generator 𝑝-groups of
class 2 has been studied in [6]. Ahmad et al. [7] classified
2-generator 𝑝-groups of class 2 and defined these groups
as a central extension of cyclic 𝑝-groups, that is, to obtain
the exact number of conjugacy classes for these groups. In
this study we will follow the same classification found in [7],
to investigate the order classes of 2-generator 𝑝-groups of
nilpotency class 2.

The results obtained here were found using GAP. For-
tunately, using our main theorem, we have developed a
practical GAP algorithm to find the order classes of 2-
generator 𝑝-groups of class 2 (𝑝 odd prime).

2. Preliminaries and Definitions

Our notation is fairly standard. By |𝐺| we denote the order of
a finite group𝐺 and we denote the identity element of𝐺 by 𝑒.
The order of an element 𝑎 ∈ 𝐺, denoted by 𝑜(𝑎), is the smallest
positive integer 𝑚 such that 𝑎𝑚 = 𝑒. The set of all possible
orders for a finite group 𝐺 will be denoted by 𝑂. The class of
all elements of𝐺which have the same order of 𝑥 ∈ 𝐺 is called
the order class of 𝑥. Equivalently, the class of all elements of𝐺
of order 𝑜(𝑥) = 𝑗 is the order class of 𝑗 and is denoted by 𝑂𝑗.
The order classes of a group 𝐺 will be denoted byG𝐺, which
consists of all possible pairs of the form [𝑗, |𝑂𝑗|] for all 𝑗 ∈ 𝑂.
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The derived subgroup and the center of a group𝐺 are denoted
by 𝐺 and 𝑍(𝐺), respectively.

Let 𝐺 be a group.The commutator of 𝑥, 𝑦 ∈ 𝐺 is given by[𝑥, 𝑦] = 𝑥−1𝑦−1𝑥𝑦. For any subgroups 𝐴 and 𝐵 of a group 𝐺
the commutator subgroup is [𝐴, 𝐵] = ⟨[𝑎, 𝑏] | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵⟩.
Note that the lower central series of a group 𝐺 is

𝐺 = 𝛾0 (𝐺) ≥ 𝛾1 (𝐺) ≥ ⋅ ⋅ ⋅ ≥ 𝛾𝑐 (𝐺) ≥ ⋅ ⋅ ⋅ , (1)

where 𝛾𝑖(𝐺) = [𝛾𝑖−1(𝐺), 𝐺] for 𝑖 = 1, 2, 3, . . ..
Definition 1. Agroup𝐺 is called nilpotent if there exists 𝑐 such
that 𝛾𝑐(𝐺) = [𝛾𝑐−1(𝐺), 𝐺] = {𝑒}, and the smallest such 𝑐 is the
class of nilpotency.

All abelian groups are nilpotent of class 1. If 𝑝 is prime,
then the group in which every element has order a power of𝑝 is called a 𝑝-group. If 𝐺 is a finite 𝑝-group, then the order
of 𝐺 is a power of 𝑝. Such groups are nilpotent. A group 𝐺 is
nilpotent group of class 2 if 𝛾2(𝐺) = {𝑒}; equivalently 𝛾1(𝐺) =[𝛾0(𝐺), 𝐺] = [𝐺, 𝐺] = 𝐺 ≤ 𝑍(𝐺).

In a finite 𝑝-group 𝐺 of order 𝑝𝑛, the center 𝑍(𝐺) is a
subgroup of 𝐺. Using Lagrange’s theorem, it is implied that|𝑍(𝐺)| = 𝑝𝑘 for some integer 𝑘 ≤ 𝑛.
Lemma 2 (see [8]). Let 𝐺 be a group of nilpotency classes 2.
Let 𝑥, 𝑦, 𝑧 ∈ 𝐺 and 𝑛 ∈ N; then

(1) [𝑥, 𝑦𝑧] = [𝑥, 𝑦][𝑥, 𝑧],
(2) [𝑥𝑦, 𝑧] = [𝑥, 𝑧][𝑦, 𝑧],
(3) [𝑥𝑛, 𝑦] = [𝑥, 𝑦𝑛] = [𝑥, 𝑦]𝑛,
(4) (𝑥𝑦)𝑛 = 𝑥𝑛𝑦𝑛[𝑦, 𝑥]( 𝑛2 ).

Lemma 3 (see [6]). Let 𝐺 be a group of nilpotency classes 2
and 𝑔, ℎ ∈ 𝐺 with 𝑜(𝑔) and 𝑜(ℎ) being odd. Then

(1) 𝑜(𝑔ℎ) ≤ max{𝑜(𝑔), 𝑜(ℎ)},
(2) 𝑜([𝑔, ℎ]) ≤ min{𝑜(𝑔), 𝑜(ℎ)}.
The following theorem is used to describe the structure

of a 2-generator 𝑝-group of nilpotency class 2 in terms of
generators and relations.

Theorem 4 (see [7]). Let 𝑝 be a prime and 𝑛 > 2 a positive
integer. Every 2-generator 𝑝-group of order 𝑝𝑛 and class 2
corresponds to an ordered 5-tuple of integers, (𝛼, 𝛽, 𝛾; 𝜌, 𝜎),
such that

(1) 𝛼 ≥ 𝛽 ≥ 𝛾 ≥ 1,
(2) 𝛼 + 𝛽 + 𝛾 = 𝑛,
(3) 0 ≤ 𝜌 ≤ 𝛾 and 0 ≤ 𝜎 ≤ 𝛾,

where (𝛼, 𝛽, 𝛾; 𝜌, 𝜎) corresponds to the group presented by
𝐺 = ⟨𝑎, 𝑏 | [𝑎, 𝑏]𝑝𝛾 = [𝑎, 𝑏, 𝑎] = [𝑎, 𝑏, 𝑏] = 𝑒, 𝑎𝑝𝛼

= [𝑎, 𝑏]𝑝𝜌 , 𝑏𝑝𝛽 = [𝑎, 𝑏]𝑝𝜎⟩ . (2)

Moreover

(1) if 𝛼 > 𝛽, then 𝐺 is isomorphic to

(a) (𝛼, 𝛽, 𝛾; 𝜌, 𝜎) when 𝜌 ≤ 𝜎;
(b) (𝛼, 𝛽, 𝛾; 𝜌, 𝜎) when 0 ≤ 𝜎 < 𝜎 + 𝛼 − 𝛽 or 𝜎 < 𝜌 =𝛾;
(c) (𝛼, 𝛽, 𝛾; 𝜌, 𝜎) when 0 ≤ 𝜎 < 𝜌 < min(𝛾, 𝜎 + 𝛼 −𝛽);

(2) if 𝛼 = 𝛽 > 𝛾, or 𝛼 = 𝛽 = 𝛾 and 𝑝 > 2, then 𝐺 is
isomorphic to (𝛼, 𝛽, 𝛾;min(𝜌, 𝜎), 𝛾);

(3) if 𝛼 = 𝛽 = 𝛾 and 𝑝 = 2, then 𝐺 is isomorphic to

(a) (𝛼, 𝛽, 𝛾;min(𝜌, 𝜎), 𝛾) when 0 ≤ min(𝜌, 𝜎) < 𝛾 −1;
(b) (𝛼, 𝛽, 𝛾; 𝛾 − 1, 𝛾 − 1) when 𝜌 = 𝜎 = 𝛾 − 1;
(c) (𝛼, 𝛽, 𝛾; 𝛾, 𝛾) when min(𝜌, 𝜎) ≥ 𝛾 − 1 and

max(𝜌, 𝜎) = 𝛾.
The groups listed in 1(a)–3(c) are pairwise nonisomorphic.

If 𝑝 is prime and 𝐺 is a 2-generator 𝑝-group of class 2,
with |𝐺| = 𝑝𝑛, 𝑛 ≥ 3, then |𝑍(𝐺)| = 𝑝𝑛−2𝛾, where |𝐺| = 𝑝𝛾
[7]. Let 𝐺 be a 2-generator 𝑝-group of class 2. Then 𝐶𝑝𝛼 , 𝐶𝑝𝛽 ,
and 𝐶𝑝𝛾 are the polycyclic series of 𝐺. Hence, 𝑎, 𝑏 and [𝑎, 𝑏]
are the polycyclic generators of 𝐺. Therefore, if 𝑔 ∈ 𝐺, then 𝑔
can be written uniquely as 𝑔 = 𝑎𝑥𝑏𝑦[𝑎, 𝑏]𝑧, where 0 ≤ 𝑥 ≤ 𝛼,0 ≤ 𝑦 ≤ 𝛽, and 0 ≤ 𝑧 ≤ 𝛾.
3. Order Classes of 2-Generator 𝑝-Groups of

Nilpotency Class 2

The previous classification for 2-generator 𝑝-groups will be
used to obtain the order classes of these groups. LetG be the
set of all 2-generator 𝑝-groups of nilpotency class 2 with 𝑝
being an odd prime and |𝐺| = 𝑝𝑛, 𝑛 ≥ 3, |𝐺| = 𝑝𝛾. To find the
order classes of a group𝐺, we need to answer some important
issues related to 𝐺, such as the description of the available
orders 𝑗; the largest possible order exp(𝐺), to achieve the set𝑂; the count of elements of each order family to obtain |𝑂𝑗|.
The following lemmas will justify these issues and concepts to
establish the order classes in terms ofO𝐺 = {[𝑗, |𝑂𝑗|] | 𝑗 ∈ 𝑂}.
Lemma 5. Let 𝐺 ∈ G be the group generated by 𝑎 and 𝑏, with𝑜(𝑎) = 𝑝𝑖, 𝑜(𝑏) = 𝑝𝑗. Then 𝛾 ≤ min{𝑖, 𝑗}, where |𝐺| = 𝑝𝛾.
Proof. The proof follows directly using Lemma 3, since

𝑝𝛾 = 𝐺 = |⟨[𝑎, 𝑏]⟩| ≤ min {𝑝𝑖, 𝑝𝑗} . (3)

Reasonably, for 𝐺 ∈ G, the order 5-tuple of integers(𝛼, 𝛽, 𝛾; 𝜌, 𝜎) in Theorem 4 was configured to construct the
group 𝐺. But the new order pair (𝑖, 𝑗) obtained by the
generators orders is a different pair; it is clear that 𝑖+𝑗 ≤ 𝑛 for
all 𝐺 ∈ G. So that (𝑖, 𝑗) will never be used instead of (𝛼, 𝛽),
although they are occasionally similar.
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Let 𝐺 ∈ G. Then the order of any element in 𝐺 should
divides |𝐺| = 𝑝𝑛. Therefore, if 𝑔 ∈ 𝐺, then 𝑜(𝑔) should be
written as a power of 𝑝. Thus, 𝑂 = {1, 𝑝, 𝑝2, . . . , 𝑝𝑟} where𝑟 < 𝑛 (if 𝑟 = 𝑛, then 𝐺 is cyclic group). The following
lemma establishes the largest possible order 𝑝𝑟 in terms of
the generators orders (𝑖, 𝑗).
Lemma 6. If 𝐺 ∈ G is the group generated by 𝑎 and 𝑏, such
that 𝑜(𝑎) = 𝑝𝑖, 𝑜(𝑏) = 𝑝𝑗, letting 𝑤 = max{𝑖, 𝑗}, then the
exponent of 𝐺, denoted by exp(𝐺), is given by

exp (𝐺) = 𝑝𝑤. (4)
Proof. Let 𝐺 ∈ G and 𝑔 ∈ 𝐺. Theorem 4 gives that 𝑔 =𝑎𝑥𝑏𝑦[𝑎, 𝑏]𝑧, where 1 ≤ 𝑥 ≤ 𝑝𝑖, 1 ≤ 𝑦 ≤ 𝑝𝑗, and 1 ≤ 𝑧 ≤𝑝𝛾 = |𝐺|. Therefore

𝑔𝑝𝑘 = (𝑎𝑥𝑏𝑦 [𝑎, 𝑏]𝑧)𝑝𝑘 = (𝑎𝑥𝑏𝑦)𝑝𝑘 [𝑎, 𝑏]𝑧𝑝𝑘

= 𝑎𝑥𝑝𝑘𝑏𝑦𝑝𝑘 [𝑎, 𝑏]𝑥𝑦(𝑝𝑘2 ) [𝑎, 𝑏]𝑧𝑝𝑘
= 𝑎𝑥𝑝𝑘𝑏𝑦𝑝𝑘 [𝑎, 𝑏](1/2)𝑥𝑦𝑝𝑘(𝑝𝑘−1)+𝑧𝑝𝑘 .

(5)

Then

𝑔𝑝𝑘 = (𝑎𝑝𝑘)𝑥 (𝑏𝑝𝑘)𝑦 ([𝑎, 𝑏]𝑝𝑘)(1/2)𝑥𝑦(𝑝𝑘−1)+𝑧 . (6)

Notice that 𝑎𝑝𝑤 = 𝑏𝑝𝑤 = [𝑎, 𝑏]𝑝𝑤 = 𝑒. Hence
𝑔𝑝𝑤 = (𝑎𝑝𝑤)𝑥 (𝑏𝑝𝑤)𝑦 ([𝑎, 𝑏]𝑝𝑤)(1/2)𝑥𝑦(𝑝𝑤−1)+𝑧

= 𝑒𝑥𝑒𝑦𝑒(1/2)𝑥𝑦(𝑝𝑤−1)+𝑧 = 𝑒.
(7)

Using Lemma 6, it follows that the set of all possible
orders is 𝑂 = {1, 𝑝, 𝑝2, . . . , 𝑝𝑤}, where 𝑤 = max{𝑖, 𝑗}. Hence
G𝐺 = {[1, 1], [𝑝, 𝑌1], [𝑝2, 𝑌2], . . . , [𝑝𝑤, 𝑌𝑤]}, where 𝑌𝑘 is the
number of elements of order 𝑝𝑘 for 𝑘 = 1, 2, . . . , 𝑤.

According to the previous classifications our main results
will be as follows.

Theorem7. Let𝐺 ∈ G be the group generated by 𝑎 and 𝑏, with|𝐺| = 𝑝𝑛, 𝑛 ≥ 3, 𝑜(𝑎) = 𝑝𝑖, and 𝑜(𝑏) = 𝑝𝑗 (𝑖 + 𝑗 ≤ 𝑛 for all𝐺 ∈ G). Let 𝑤 = max{𝑖, 𝑗}. Then, 𝐺 has 𝑌𝑘 elements of order𝑝𝑘, 𝑘 = 0, 1, . . . , 𝑤, where
𝑌0 = 1,
𝑌1 = 𝑝2𝑚1 − 1,
𝑌𝑘 = 𝑝2𝑚𝑘, 𝑤𝑖𝑡ℎ 𝑘 = 2, 3, . . . , 𝑤

(8)

such that
(1)

𝑚1 = {1, 𝑖 + 𝑗 = 𝑛
𝑝, 𝑖 + 𝑗 < 𝑛. (9)

(2)

𝑚2 = {𝑝𝑛−𝑤 − 1, 𝑖 + 𝑗 = 𝑛
𝑝𝑛−𝑤 − 𝑝, 𝑖 + 𝑗 < 𝑛. (10)

(3) If 𝑤 ≥ 3. Then𝑚𝑤 = 𝑝𝑛−3(𝑝 − 1).
(4) If𝑤 > 3. Then𝑚(𝑤−𝑘) = 𝑚𝑤/𝑝𝑘 for 𝑘 = 0, 1, . . . , 𝑤 − 3.
(5) ∑𝑤𝑖=1𝑚𝑖 = 𝑝𝑛−2.

Proof. The identity element 𝑒 is the only element in𝐺 of order
1; therefore 𝑌0 = 1. Without loss of generality, let 𝑖 ≥ 𝑗.

(1) Let 𝑔 ∈ 𝐺; then 𝑔 = 𝑎𝑥𝑏𝑦[𝑎, 𝑏]𝑧, where 1 ≤ 𝑥 ≤ 𝑝𝑖,1 ≤ 𝑦 ≤ 𝑝𝑗, and 1 ≤ 𝑧 ≤ 𝑝𝛾.
Using (6), it is implied that

𝑔𝑝 = (𝑎𝑝)𝑥 (𝑏𝑝)𝑦 ([𝑎, 𝑏]𝑝)(1/2)𝑥𝑦(𝑝−1)+𝑧 . (11)

Since 𝑝 > 2 ≥ 𝛾, hence [𝑎, 𝑏]𝑝 = 𝑒; therefore
𝑔𝑝 = (𝑎𝑝)𝑥 (𝑏𝑝)𝑦 . (12)

Then

𝑌1 = {𝑔 ∈ 𝐺 | 𝑔𝑝 = 𝑒} = {(𝑥, 𝑦) ∈ N

× N | (𝑎𝑝)𝑥 (𝑏𝑝)𝑦 = 𝑒; 1 ≤ 𝑥 ≤ 𝑝𝑖, 1 ≤ 𝑦 ≤ 𝑝𝑗} .
(13)

Case 1. If 𝑖 + 𝑗 = 𝑛, then
𝑥 = 𝑐1𝑝, 𝑐1 = 1, 2, . . . , 𝑝,
𝑦 = 𝑐2𝑝, 𝑐2 = 1, 2, . . . , 𝑝. (14)

Hence, there are 𝑝 choices for 𝑐1; they are originally for 𝑥
and similarly there are 𝑝 choices for 𝑦. Therefore there are𝑝2 choices for (𝑥, 𝑦). Note that (𝑎𝑝)𝑥 = (𝑏𝑝)𝑦 = 𝑒 for 𝑥 = 𝑝𝑖
and 𝑦 = 𝑝𝑗. Then
{(𝑥, 𝑦) ∈ N × N | (𝑎𝑝)𝑥 (𝑏𝑝)𝑦 = 𝑒; 1 ≤ 𝑥 ≤ 𝑝𝑖, 1 ≤ 𝑦

≤ 𝑝𝑗} = 𝑝2 − 1. (15)

Case 2. If 𝑖 + 𝑗 < 𝑛, then
𝑥 = 𝑐1𝑝, 𝑐1 = 1, 2, . . . 𝑝,
𝑦 = 𝑐2𝑝, 𝑐2 = 1, 2, . . . , 𝑝2. (16)

Therefore, there are 𝑝 ⋅ 𝑝2 choices for (𝑥, 𝑦). The identity
element is omitted. Thus{(𝑥, 𝑦) ∈ N × N | (𝑎𝑝)𝑥 (𝑏𝑝)𝑦 = 𝑒; 1 ≤ 𝑥 ≤ 𝑝𝑖, 1 ≤ 𝑦

≤ 𝑝𝑗} = 𝑝3 − 1. (17)

(2) Using similar arguments as Case 1, then
𝑌2 = {𝑔 ∈ 𝐺 | 𝑔𝑝2 = 𝑒} =

{(𝑥, 𝑦) ∈ N

× N | (𝑎𝑝2)𝑥 (𝑏𝑝2)𝑦 = 𝑒; 1 ≤ 𝑥 ≤ 𝑝𝑖, 1 ≤ 𝑦 ≤ 𝑝𝑗} .
(18)

If 𝑖 + 𝑗 < 𝑛, then
𝑥 = 𝑐1𝑝, 𝑐1 = 1, 2, . . . , 𝑝𝑛−𝑖 − 𝑝,
𝑦 = 𝑐2𝑝, 𝑐2 = 1, 2, . . . , 𝑝2. (19)
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Hence, there are 𝑝𝑛−𝑖 − 𝑝 = 𝑝(𝑝𝑛−𝑤−1 − 1) choices for 𝑥 and𝑝2 choices for 𝑦. Hence, 𝑌2 = 𝑝2(𝑝𝑛−𝑤 − 𝑝) = 𝑝2𝑚2; else,𝑖 + 𝑗 = 𝑛. Then

𝑥 = 𝑐1𝑝, 𝑐1 = 1, 2, . . . , 𝑝𝑛−𝑖 − 1,
𝑦 = 𝑐2𝑝, 𝑐2 = 1, 2, . . . , 𝑝2. (20)

There are 𝑝𝑛−𝑖−1 choices for 𝑥 and 𝑝2 choices for 𝑦, implying
that 𝑌2 = 𝑝2(𝑝𝑛−𝑖 − 1) = 𝑝2(𝑝𝑛−𝑤 − 1) = 𝑝2𝑚2.

(3) Similarly, if 𝑤 ≥ 3, then
𝑌𝑤 = {𝑔 ∈ 𝐺 | 𝑔𝑝𝑤 = 𝑒} = {(𝑥, 𝑦) ∈ N

× N | (𝑎𝑝𝑤)𝑥 (𝑏𝑝𝑤)𝑦 = 𝑒; 1 ≤ 𝑥 ≤ 𝑝𝑖, 1 ≤ 𝑦 ≤ 𝑝𝑗} .
(21)

Then

𝑥 = 𝑐1𝑝, 𝑐1 = 1, 2, . . . , 𝑝𝑛−1,
𝑦 = 𝑐2𝑝, 𝑐2 = 1, 2, . . . , 𝑝 − 1. (22)

Hence,𝑌𝑤 = 𝑝𝑛−1(𝑝−1) = 𝑝2𝑝𝑛−3(𝑝−1) = 𝑝2(𝑝𝑛−3(𝑝−1)) =𝑝2𝑚𝑤.
(4) If𝑤 > 3, for all 𝑘 = 0, 1, . . . , 𝑤−3, then the number of

choices for 𝑥 reduces in a ratio of 𝑝𝑘 for each 𝑘. Thus𝑚𝑤−𝑘 =(𝑝𝑛−3/𝑝𝑘)(𝑝 − 1) = 𝑚𝑤/𝑝𝑘.
(5) When |𝐺| = 𝑝𝑛, then
𝑝𝑛 = 1 + 𝑤∑

𝑖=1
𝑌𝑖 = 1 + 𝑌1 + 𝑤∑

𝑖=2
𝑌𝑖

= 1 + 𝑝2𝑚1 − 1 + 𝑤∑
𝑖=2
𝑝2𝑚𝑖 = 𝑝2𝑚1 + 𝑝2 𝑤∑

𝑖=2
𝑚𝑖

= 𝑝2(𝑚1 + 𝑤∑
𝑖=2
𝑚𝑖) = 𝑝2( 𝑤∑

𝑖=1
𝑚𝑖) .

(23)

Hence, ∑𝑤𝑖=1𝑚𝑖 = 𝑝𝑛−2.
Corollary 8. Let 𝐺 ∈ G be the group generated by 𝑎 and 𝑏,
with |𝐺| = 𝑝𝑛, 𝑛 ≥ 3. Then 𝐺 is not a POS-group.

Proof. It is enough to show that there exists [𝑝𝑟, 𝑌𝑟] ∈ O𝐺
such that 𝑌𝑟 ∤ 𝑝𝑛 = |𝐺|. For [𝑝, 𝑌1] ∈ O𝐺, where

𝑌1 = {{{
𝑝2 − 1, 𝑖 + 𝑗 = 𝑛
𝑝3 − 1, 𝑖 + 𝑗 < 𝑛, (24)

suppose, on the contrary, that𝑌1 | 𝑝𝑛.Then there exists 𝑥 ∈ N

with 𝑥 ≤ 𝑛 and 𝑌1 = 𝑝𝑥. Therefore

𝑝𝑥 = 𝑝2 − 1 if 𝑖 + 𝑗 = 𝑛 or

𝑝𝑥 = 𝑝3 − 1 if 𝑖 + 𝑗 < 𝑛. (25)

Then

𝑝2 − 𝑝𝑥 = 1 if 𝑖 + 𝑗 = 𝑛 or

𝑝3 − 𝑝𝑥 = 1 if 𝑖 + 𝑗 < 𝑛 (26)

so that 𝑥 < 2. If 𝑥 = 0, then 𝑝2 = 𝑝3 = 1, which implies
that 𝑝 = 1, a contradiction. If 𝑥 = 1, then 𝑝2 − 𝑝 = 1 and𝑝3 − 𝑝 = 1 have no solution for 𝑝 as an integer which gives a
contradiction as well. It follows that there is no integer 𝑥 ≤ 𝑛
such that 𝑌1 = 𝑝𝑥. Thus 𝑌1 ∤ 𝑝𝑛, which means that 𝐺 is not a
POS-group.

4. GAP

This study includes GAP’s algorithms. Algorithm 1 (see the
appendix) is derived from Theorem 7 and is used to find
the order classes of all 2-generator 𝑝-groups of nilpotency
class 2 (as a list), by determining the values of 𝑝 and 𝑛.
Algorithm 2 (see the appendix) is being built using the
ordinary GAP formulas and commands (already installed
with GAP’s packages) to give the same results as Algorithm 1.

Example 9. When both Algorithms 1 and 2 are used to find
the order classes for all 2-generator 𝑝-groups of class 2,
where 𝑝 = 43 and 𝑛 = 3, the results obtained are as follows:

Algorithm 1 Algorithm 2

G=(C43 x C43) : C43 G=(C43 x C43) : C43|G| =79507 p=43 n=3 N.class 2 |G| =79507 p=43 n=3 N.class 2

no of gen.=2 o(a)=43 o(b)=43 w=1 no of gen.=2 o(a)=43 o(b)=43 w=1

WW=[ [ 1,1 ], [ 43, 79506 ] ] YY=[ [ 1, 1 ], [ 43, 79506] ]

G=C1849 : C43 G=C1849 : C43|G| =79507 p=43 n=3 N.class 2 |G| =79507 p=43 n=3 N.class 2

no of gen.=2 o(a)=1849 o(b)=43 w=2 no of gen.=2 o(a)=1849 o(b)=43 w=2

WW=[ [ 1, 1 ], [ 43, 1848 ], YY=[ [ 1, 1 ], [ 43, 1848 ],

[ 1849, 77658 ] ] [ 1849, 77658 ] ]

time:14180 time:38064
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p:= ⃝;;n:= ⃝;;order:=p ̂ n;; # Input the values of p and n, where the order of G is p ̂ n
G:=AllSmallGroups(Size,order);;

D:=NumberSmallGroups(order);;

for k in [1..D] do;

f:=G[k];;m:=Size(MinimalGeneratingSet(f));;WW:=[ ];;

if NilpotencyClassOfGroup(f)=2 and m=2 then;

Add(WW,[1,1]);

Print(k,") G=",StructureDescription(f), " |G|=",Size(f)," p=",p,"n=",n," N.class

",NilpotencyClassOfGroup(f));

gg:=MinimalGeneratingSet(f);;

e:=Identity(f);;

a:=gg[1];;b:=gg[2];;

i:=Log(Order(a),p);;j:=Log(Order(b),p);;w:=Maximum(i,j);;

if i+j=n then;

m1:=1; m2:=p ̂ n/p ̂ w-1;Add(WW,[p,m1*p ̂ 2-1]);
if w>=2 then;

Add(WW,[p ̂ 2,m2*p ̂ 2]);
fi;

else;

m1:=p;m2:=p ̂ (n-w)-p;Add(WW,[p,m1*p ̂ 2-1]);
if w>=2 then;

Add(WW,[p ̂ 2,m2*p ̂ 2]);
fi;

fi;

Yw:=p ̂ (n-1)*(p-1);;
for 1 in [0..(w-3)] do;

Add(WW,[p ̂ (w-l),Yw/(p ̂ 1)]);
od;

Print("\n no. of gen.=",m,", o(a)=",p ̂ i,", o(b)=",p ̂ j,", w=",w,"\n OC=",WW,"\n\n");
fi;od;time;

Algorithm 1: Theorem 7 in GAP’s algorithm.

p:= ⃝;;n:= ⃝;;order:=p ̂ n;; # Input the values of p and n, where the order of G is p ̂ n
G:=AllSmallGroups(Size,order);;

D:=NumberSmallGroups(order);;

for k in [1..D] do;

f:=G[k];;x:=Elements(f);;YY:=Collected(List(x,i->[Order(i)]));;
m:=Size(MinimalGeneratingSet(f));;

if NilpotencyClassOfGroup(f)=2 and m=2 then;

Print(k,") |G|=",Size(f)," p=",p," n=",n," N.class ",NilpotencyClassOfGroup(f),

gg:=MinimalGeneratingSet(f);;

e:=Identity(f);;

a:=gg[1];;b:=gg[2];;c:=Comm(a,b);;

i:=Log(Order(a),p);;j:=Log(Order(b),p);;w:=Maximum(i,j);;

Print("\n no. of gen.=",m,", o(a)=",Order(a),", o(b)=",Order(b),",w=",w,"\n
OC=",YY,"\n\n");
fi;od;time;

Algorithm 2: The ordinary GAP algorithm.
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Similarly, for 𝑝 = 47 and 𝑛 = 4
Algorithm 1 Algorithm 2

G=(C2209 x C47) : C47|G| =4879681 p=47 n=4 N.class 2

no of gen.=2 o(a)=2209 o(b)=47 w=2

WW=[ [ 1, 1 ], [ 47, 103822 ],

[ 2209, 4775858 ] ]

G=C2209 : C2209|G| =4879681 p=47 n=4 N.class 2

no of gen.=2 o(a)=103823 o(b)=47 w=3 exceeded the permitted memory

WW=[ [ 1, 1 ], [ 47, 2208 ],

[ 2209, 101614 ], [ 103823, 4775858 ] ]

G=C103823 : C47|G| =4879681 p=47 n=4 N.class 2

no of gen.=2 o(a)=103823 o(b)=47 w=3

WW=[ [ 1, 1 ], [ 47, 2208 ],

[ 2209, 101614 ], [ 103823, 4775858 ] ]

time:100355

The time required for Algorithm 2 to find the order
classes of 2-generator 𝑝-groups of class 2, when 𝑝 = 43 and𝑛 = 3, is 38064 milliseconds while Algorithm 1 needs 14180
milliseconds to find the same results. Next, for 𝑝 = 47 and𝑛 = 4, Algorithm 2 could not complete the process, for the
group size (4879681) exceeded the permitted memory size.
Conversely, Algorithm 1 takes 100355milliseconds.Distinctly,
Algorithm 1 is much better than the ordinary GAP algorithm
and it can be used instead.

5. Conclusion

In this paper, the classification of 2-generator 𝑝-groups of
nilpotency class 2 has been used to determine the order
classes of this type of groups.This work contains an apprecia-
ble number of imperative results. We have used these results
to create a GAP algorithm (Algorithm 1) to find the order
classes of 2-generator 𝑝-groups of nilpotency class 2, 𝑝 odd
prime.When Algorithm 1 is compared to Algorithm 2, which
has been used for the same purpose, we have found that
Algorithm 1 does not use all of the group elements and only
depends on two elements (generators) to classify the order
class of this group, while Algorithm 2 uses all of the group
elements to give the same results. Therefore, it works very
slow and interrupts large size groups, on the contrary to
Algorithm 1.

Appendix

See Algorithms 1 and 2.
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