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We first show the interval-valued intuitionistic fuzzy entropy which reflects intuitionism and fuzziness of interval-valued
intuitionistic fuzzy set (IvIFS) based on interval-valued intuitionistic fuzzy cross-entropy. As for intuitionism and fuzziness of
IvIFS, we propose interval-valued intuitionistic entropy and interval-valued fuzzy entropy, respectively. Furthermore, we establish
the interval-valued span entropy describing the uncertainty of membership degree and nonmembership degree and show some
concrete measure formulas. Combining intuitionistic factor, fuzzy factor, and span factor, we ultimately put forward the axiomatic
definition of the compositive entropy and give a measure formula of compositive entropy. In addition, the effectiveness of the
compositive entropy measure is illuminated by comparison with other entropy measures. Furthermore, the compositive entropy is
applied tomultiple attributes’ decision-making by using theweighted correlation coefficient between IvIFSs and pattern recognition
by a similarity measure transformed from the compositive entropy.

1. Introduction

Since Zadeh [1] first introduced fuzzy set (FS) in 1965, many
theories of higher order fuzzy set have been proposed. In
1986, Atanassov [2] generalized FS to intuitionistic fuzzy set
(IFS) described by the membership degree and nonmember-
ship degree for each element of the universe. In addition, the
interval-valued fuzzy set (IvFS) [3] is conceived by Zadeh
to specify the interval-valued degree of membership to each
element of the universe. The concept of vague set (VS) [4]
introduced by Gau and Buehrer is another generalization
of fuzzy set, which is identified with IvFS pointed out in
[5]. Torra [6] proposed the concept of hesitant fuzzy set
(HFS) to permit the membership of an element to be a set of
several possible values between 0 and 1. In 1989, Atanassov
and Gargov [7] combined IFS with IvFS and introduced
the notion of interval-valued intuitionistic fuzzy set (IvIFS)
whose membership degree and nonmembership degree were

intervals rather than real numbers. The IvIFS could also
be described by a membership interval, a nonmembership
interval, and a hesitancy interval, which made IvIFS more
powerful and flexible in dealing with complexity and uncer-
tainty than IvFS and IFS. In recent years, further researches
about IvIFS have gained a series of achievements. Atanassov
[8] presented some operations of IvIFS and studied their
basic properties. Park et al. [9] investigated the correlation
coefficients of IvIFS, which considered three parameters
feature of IvIFS. Deschrijver and Kerre [10] established the
relationships among IvIFS, IFS, and 𝐿-fuzzy set. In [11], Xu
et al. investigated the clustering operations of IvIFS and in
[12], Xu and Chen defined a variety of distance measures and
similarity measures of IvIFS for decision-making.

In 1968, Zadeh [13] first introduced the entropy of fuzzy
event to measure uncertain information by probabilistic
methods. In the past decades, fuzzy entropy, as a very impor-
tant notion for measuring fuzziness degree or uncertain
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information in fuzzy set theory, has received great attention.
de Luca and Termini [14] presented the axiomatic definition
of fuzzy entropy. Kaufmann [15], Yager [16], and Liu [17]
defined some fuzzy entropy formulas for fuzzy set by utilizing
a distance measure that describes the difference between
FSs. In order to measure the uncertain information of IFS,
Burillo and Bustince [18, 19] defined intuitionistic fuzzy
entropy and extended this concept to interval-valued version.
Szmidt and Kacprzyk [20] proposed another intuitionistic
fuzzy entropy by employing a geometric interpretation of
IFS. Hung and Yang [21] and Wang and Lei [22] improved
entropy formula and its constructive principles, but they still
ignored the effect induced by changes of hesitancy degree
whenmembership degree is equal to nonmembership degree.
So Mao et al. [23] established a novel entropy of IFS, which
included two factors, the intuitionistic factor and the fuzzy
factor. For IvIFS, Zhang et al. [24] and Wei et al. [25] defined
the entropy of IvIFS, which generalized the entropy of IFS
in [20]. Zhang et al. [26] showed the entropy measure by
transforming the IvIFS into IFS. Jin et al. [27] proposed
the interval-valued intuitionistic fuzzy continuous weighted
entropy on the basis of the continuous ordered weighted
averaging (COWA) operator. Ye [28] proposed two entropy
measures for IvIFSs and established an entropy weighted
model to determine the entropy weights with respect to a
decision matrix provided as IvIFS. Besides, Qu et al. [29]
showed a reasonable entropy formula which considered the
span of membership degree and nonmembership degree.

In order to measure the discrimination information for
different kinds of fuzzy sets, the cross-entropy has been
widely studied. Shang and Jiang [30] defined the fuzzy
cross-entropy between two FSs. Vlachos and Sergiadis [31]
introduced the concept of intuitionistic fuzzy cross-entropy
of IFSs and applied a kind of intuitionistic fuzzy cross-entropy
measure to pattern recognition,medical diagnosis, and image
segmentation. Based on intuitionism and fuzziness of IFS,
Mao et al. [23] constructed a new cross-entropy to measure
discrimination uncertain information between IFSs. Peng et
al. [32] proposed the cross-entropy of intuitionistic hesitant
fuzzy sets (IHFSs) which was developed by integrating the
cross-entropy of IFSs and HFSs. By transforming IvIFS into
FS, Ye [33] structured a fuzzy cross-entropy of IvIFSs.

Previous works only reflect one or two aspects of the
uncertainty information of IvIFS. In fact, there are three
types of uncertainty factors for IvIFS, including intuitionistic
factor, fuzzy factor, and newly proposed span factor which
can depict the extent of variation for the interval values of
membership degree and nonmembership degree. Based on
these three kinds of uncertainty factors, the main purpose of
this paper is to construct a new compositive entropy which
can measure uncertain information of IvIFS accurately. First,
we put forward three kinds of entropy of IvIFS, including
interval-valued intuitionistic entropy, interval-valued fuzzy
entropy, and interval-valued span entropy. The interval-
valued span entropy is studied in particular and general
measure formula for the interval-valued span entropy is
presented. Then by integrating these three kinds of entropy
of IvIFS, we give a measure formula of compositive entropy
which meets the axiomatic definition of compositive entropy

of IvIFS. Finally, we also make comparisons with other
existing formulas and apply the compositive entropymeasure
in decision-making and pattern recognition to demonstrate
its efficiency. The rest of the paper is organized as follows. In
Section 2, some definitions about IFS and IvIFS are shown.
In Section 3, firstly, the intuitionistic fuzzy cross-entropy
and intuitionistic fuzzy entropy are presented. Then we
propose another three kinds of entropy for IvIFS, including
interval-valued intuitionistic entropy, interval-valued fuzzy
entropy, and interval-valued span entropy. Finally, based on
intuitionistic factor, fuzzy factor, and span factor, we show
the axiomatic conditions of the compositive entropy and
construct a measure formula. In Section 4, we compare the
compositive entropy measure with other existing entropy
measures. And the proposed formula is applied to multiple
attributes’ decision-making and pattern recognition. Conclu-
sions are presented in Section 5.

2. Preliminaries

In this section, some basic concepts are illustrated, which will
be needed in the following analysis.

Definition 1 (see [2]). Let a nonempty set 𝑋 be the universe
of discourse; an intuitionistic fuzzy set on 𝑋 is defined by
Atanassov as 𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥), ]
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋}, where

𝜇
𝐴
, ]
𝐴
: 𝑋 → [0, 1], with the condition 0 ≤ 𝜇

𝐴
(𝑥)+]

𝐴
(𝑥) ≤ 1

for all 𝑥 ∈ 𝑋.
The numbers 𝜇

𝐴
(𝑥), ]
𝐴
(𝑥) are called the degree of mem-

bership and nonmembership of 𝑥 to 𝐴, respectively. We call
𝜋
𝐴
(𝑥) = 1 − 𝜇

𝐴
(𝑥) − ]

𝐴
(𝑥) the intuitionistic index of 𝑥 in

𝐴, which denotes the hesitancy degree of 𝑥 to 𝐴. And it is
evident that 0 ≤ 𝜋

𝐴
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋. For convenience, we

abbreviate the intuitionistic fuzzy set to IFS and denote the
set of all IFSs on𝑋 by IFS(𝑋).

Sometimes, we can not give the accurate values of
membership degree and nonmembership degree, but a value
range. In such cases, Atanassov and Gargov [7] introduced
the following notion of the interval-valued intuitionistic
fuzzy set, which generalized IFS.

Definition 2 (see [7]). Let a nonempty set 𝑋 be the universe
of discourse and let int[0, 1] be all closed subintervals of the
interval [0, 1]. An interval-valued intuitionistic fuzzy set is
defined by Atanassov and Gargov as 𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥), ]
𝐴
(𝑥)⟩ |

𝑥 ∈ 𝑋}, where 𝜇
𝐴
, ]
𝐴
: 𝑋 → int[0, 1], with the condition 0 ≤

sup(𝜇
𝐴
(𝑥)) + sup(]

𝐴
(𝑥)) ≤ 1 for all 𝑥 ∈ 𝑋.

The interval numbers 𝜇
𝐴
(𝑥), ]
𝐴
(𝑥) are called the degree

of membership and nonmembership of 𝑥 to 𝐴, respectively.
For convenience, we denote 𝜇

𝐴
(𝑥) = [𝜇

−

𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)], ]

𝐴
(𝑥) =

[]−
𝐴
(𝑥), ]+
𝐴
(𝑥)], and then 𝐴 = {⟨𝑥, [𝜇

−

𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)], []−

𝐴
(𝑥),

]+
𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋} with condition 0 ≤ 𝜇

+

𝐴
(𝑥) + ]+

𝐴
(𝑥) ≤ 1

and call the interval [1 − 𝜇+
𝐴
(𝑥) − ]+

𝐴
(𝑥), 1 − 𝜇

−

𝐴
(𝑥) − ]−

𝐴
(𝑥)]

abbreviated by [𝜋−
𝐴
(𝑥), 𝜋
+

𝐴
(𝑥)] = 𝜋

𝐴
(𝑥) the interval-valued

intuitionistic index of 𝑥 in 𝐴, which denotes the hesitancy
degree of 𝑥 to 𝐴. Similarly, we abbreviate the interval-valued
intuitionistic fuzzy set to IvIFS and denote the set of all the
IvIFSs on𝑋 by IvIFS(𝑋).
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Definition 3 (see [18, 24]). Let [𝜇−
𝐴
, 𝜇
+

𝐴
], [𝜇
−

𝐵
, 𝜇
+

𝐵
] ∈ int[0, 1];

we define

(a) [𝜇−
𝐴
, 𝜇
+

𝐴
] ≤ [𝜇

−

𝐵
, 𝜇
+

𝐵
], iff 𝜇−

𝐴
≤ 𝜇
−

𝐵
, 𝜇+
𝐴
≤ 𝜇
+

𝐵
;

(b) [𝜇−
𝐴
, 𝜇
+

𝐴
] ⪯ [𝜇

−

𝐵
, 𝜇
+

𝐵
], iff 𝜇−

𝐴
≤ 𝜇
−

𝐵
, 𝜇+
𝐴
≥ 𝜇
+

𝐵
;

(c) [𝜇−
𝐴
, 𝜇
+

𝐴
] = [𝜇

−

𝐵
, 𝜇
+

𝐵
], iff 𝜇−

𝐴
= 𝜇
−

𝐵
, 𝜇+
𝐴
= 𝜇
+

𝐵
.

Definition 4 (see [18, 24]). For two IvIFSs 𝐴 = {⟨𝑥, [𝜇
−

𝐴
(𝑥),

𝜇
+

𝐴
(𝑥)], []−

𝐴
(𝑥), ]+
𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋}, 𝐵 = {⟨𝑥, [𝜇

−

𝐵
(𝑥), 𝜇
+

𝐵
(𝑥)],

[]−
𝐵
(𝑥), ]+
𝐵
(𝑥)]⟩ | 𝑥 ∈ 𝑋}, we define the following relations

and operation:

(a) 𝐴 ⊆ 𝐵, iff [𝜇−
𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)] ≤ [𝜇

−

𝐵
(𝑥), 𝜇
+

𝐵
(𝑥)], []−

𝐴
(𝑥),

]+
𝐴
(𝑥)] ≥ []−

𝐵
(𝑥), ]+
𝐵
(𝑥)], for all 𝑥 ∈ 𝑋;

(b) 𝐴 ⪯ 𝐵, iff [𝜇−
𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)] ⪯ [𝜇

−

𝐵
(𝑥), 𝜇
+

𝐵
(𝑥)], []−

𝐴
(𝑥),

]+
𝐴
(𝑥)] ⪰ []−

𝐵
(𝑥), ]+
𝐵
(𝑥)], for all 𝑥 ∈ 𝑋;

(c) 𝐴 = 𝐵, iff [𝜇−
𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)] = [𝜇

−

𝐵
(𝑥), 𝜇
+

𝐵
(𝑥)], []−

𝐴
(𝑥),

]+
𝐴
(𝑥)] = []−

𝐵
(𝑥), ]+
𝐵
(𝑥)], for all 𝑥 ∈ 𝑋;

(d) 𝐴𝑐 = {⟨𝑥, []−
𝐴
(𝑥), ]+
𝐴
(𝑥)], [𝜇

−

𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋}.

Definition 5 (see [9]). Let 𝐴, 𝐵 ∈ IvIFS(𝑋), 𝑋 = {𝑥
1
, 𝑥
2
, . . .,

𝑥
𝑛
}, 𝐴 = {⟨𝑥

𝑖
, [𝜇
−

𝐴
(𝑥
𝑖
), 𝜇
+

𝐴
(𝑥
𝑖
)], []−
𝐴
(𝑥
𝑖
), ]+
𝐴
(𝑥
𝑖
)]⟩ | 𝑥

𝑖
∈ 𝑋},

and 𝐵 = {⟨𝑥
𝑖
, [𝜇
−

𝐵
(𝑥
𝑖
), 𝜇
+

𝐵
(𝑥
𝑖
)], []−
𝐵
(𝑥
𝑖
), ]+
𝐵
(𝑥
𝑖
)]⟩ | 𝑥

𝑖
∈ 𝑋};

then the correlation coefficient of 𝐴 and 𝐵 is defined by

𝐾 (𝐴, 𝐵) =
𝐶 (𝐴, 𝐵)

√𝐸 (𝐴) 𝐸 (𝐵)

, (1)

where the correlation of two IvIFSs 𝐴 and 𝐵 is given by

𝐶 (𝐴, 𝐵) =
1

2

𝑛

∑

𝑖=1

{𝜇
−

𝐴
(𝑥
𝑖
) 𝜇
−

𝐵
(𝑥
𝑖
) + 𝜇
+

𝐴
(𝑥
𝑖
) 𝜇
+

𝐵
(𝑥
𝑖
)

+ ]−
𝐴
(𝑥
𝑖
) ]−
𝐵
(𝑥
𝑖
) + ]+
𝐴
(𝑥
𝑖
) ]+
𝐵
(𝑥
𝑖
) + 𝜋
−

𝐴
(𝑥
𝑖
) 𝜋
−

𝐵
(𝑥
𝑖
)

+ 𝜋
+

𝐴
(𝑥
𝑖
) 𝜋
+

𝐵
(𝑥
𝑖
)}

(2)

and the informational intuitionistic energies of two IvIFSs 𝐴
and 𝐵 are given by

𝐸 (𝐴) =
1

2

𝑛

∑

𝑖=1

{[𝜇
−

𝐴
(𝑥
𝑖
)]
2

+ [𝜇
+

𝐴
(𝑥
𝑖
)]
2

+ []−
𝐴
(𝑥
𝑖
)]
2

+ []+
𝐴
(𝑥
𝑖
)]
2

+ [𝜋
−

𝐴
(𝑥
𝑖
)]
2

+ [𝜋
+

𝐴
(𝑥
𝑖
)]
2

} ,

𝐸 (𝐵) =
1

2

𝑛

∑

𝑖=1

{[𝜇
−

𝐵
(𝑥
𝑖
)]
2

+ [𝜇
+

𝐵
(𝑥
𝑖
)]
2

+ []−
𝐵
(𝑥
𝑖
)]
2

+ []+
𝐵
(𝑥
𝑖
)]
2

+ [𝜋
−

𝐵
(𝑥
𝑖
)]
2

+ [𝜋
+

𝐵
(𝑥
𝑖
)]
2

} .

(3)

The correlation coefficient of two IvIFSs 𝐴 and 𝐵 satisfies
the following properties [9]:

(a) 0 ≤ 𝐾(𝐴, 𝐵) ≤ 1;
(b) 𝐾(𝐴, 𝐵) = 𝐾(𝐵, 𝐴);
(c) 𝐾(𝐴, 𝐵) = 1 iff 𝐴 = 𝐵.

3. The Uncertain Information of IvIFS

In this section, we give some kinds of entropy to measure
different types of uncertain information of IvIFS and show
an efficient compositive entropy measure of IvIFS. We only
discuss the case where the universe has finite objects; that is,
𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}.

In order to describe the discrimination information of
IFSs, Mao et al. [23] define a suitable intuitionistic fuzzy
cross-entropy. Let 𝐴, 𝐵 ∈ IFS(𝑋), 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}; then

the intuitionistic fuzzy cross-entropy of𝐴 against 𝐵 based on
uncertain information is defined as

𝐶𝐸 (𝐴, 𝐵) =

𝑛

∑

𝑖=1

(𝜋
𝐴
(𝑥
𝑖
) ln

𝜋
𝐴
(𝑥
𝑖
)

(1/2) (𝜋𝐴 (𝑥𝑖) + 𝜋𝐵 (𝑥𝑖))

+ Δ
𝐴
(𝑥
𝑖
) ln

Δ
𝐴
(𝑥
𝑖
)

(1/2) (Δ𝐴 (𝑥𝑖) + Δ𝐵 (𝑥𝑖))
) ,

(4)

where 𝜋
𝐴
(𝑥
𝑖
) = 1−𝜇

𝐴
(𝑥
𝑖
) − ]
𝐴
(𝑥
𝑖
) shows degree of hesitancy

and Δ
𝐴
(𝑥
𝑖
) = |𝜇

𝐴
(𝑥
𝑖
) − ]
𝐴
(𝑥
𝑖
)| describe the balance of power

between membership degree and nonmembership degree of
𝑥 to 𝐴.

The symmetric intuitionistic fuzzy cross-entropy is
𝐷𝐸(𝐴, 𝐵) = 𝐶𝐸(𝐴, 𝐵)+𝐶𝐸(𝐵, 𝐴), and it has been proved that
0 ≤ 𝐶𝐸(𝐴, 𝐵) ≤ 𝑛 ln 2, 0 ≤ 𝐷𝐸(𝐴, 𝐵) ≤ 2𝑛 ln 2.

The symmetric intuitionistic fuzzy cross-entropy 𝐷𝐸(𝐴,
𝐵) is used to describe discrimination uncertain information
which includes intuitionism and fuzziness. So when 𝐵 is a
crisp set in 𝐷𝐸(𝐴, 𝐵), that is, 𝜋

𝐵
(𝑥) = 0, Δ

𝐵
(𝑥) = 1 for all

𝑥 ∈ 𝑋, then 𝐷𝐸(𝐴, 𝐵) can describe intuitionistic and fuzzy
information of 𝐴. Based on this, Mao et al. [23] construct an
intuitionistic fuzzy entropy measure

𝐸 (𝐴) =
1

2𝑛 ln 2
𝐷𝐸 (𝐴, 𝐵) =

1

2𝑛 ln 2

𝑛

∑

𝑖=1

(𝜋
𝐴
(𝑥
𝑖
) ln 2

+ Δ
𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
)

+ (Δ
𝐴
(𝑥
𝑖
) + 1) ln 2

Δ
𝐴
(𝑥
𝑖
) + 1

)

(5)

which satisfies four axiomatic principles of the intuitionistic
fuzzy entropy in [23].

3.1. Interval-Valued Intuitionistic Fuzzy Cross-Entropy and
Interval-Valued Intuitionistic Fuzzy Entropy. In order to
reflect the intuitionism and fuzziness of IvIFS, we will
introduce two factors Ψ

𝐴
(𝑥), Δ

𝐴
(𝑥).

Definition 6. Let 𝐴 ∈ IvIFS(𝑋), 𝐴 = {⟨𝑥, [𝜇
−

𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)],

[]−
𝐴
(𝑥), ]+
𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋}, [𝜋−

𝐴
(𝑥), 𝜋
+

𝐴
(𝑥)] = [1−𝜇

+

𝐴
(𝑥)−]+

𝐴
(𝑥),

1 − 𝜇
−

𝐴
(𝑥) − ]−

𝐴
(𝑥)]. The intuitionistic factor Ψ

𝐴
(𝑥) is defined

as the arithmetic average of 𝜋−
𝐴
(𝑥) and 𝜋+

𝐴
(𝑥); that is,

Ψ
𝐴 (𝑥) =

𝜋
−

𝐴
(𝑥) + 𝜋

+

𝐴
(𝑥)

2

=
2 − 𝜇
−

𝐴
(𝑥) − 𝜇

+

𝐴
(𝑥) − ]−

𝐴
(𝑥) − ]+

𝐴
(𝑥)

2

(6)

which can depict the average hesitancy degree of 𝑥 to 𝐴.
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The fuzzy factor Δ
𝐴
(𝑥) is defined as the distance between

[𝜇
−

𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)] and []−

𝐴
(𝑥), ]+
𝐴
(𝑥)]; that is,

Δ
𝐴 (𝑥) =

1

2

𝜇
−

𝐴
(𝑥) − ]−

𝐴
(𝑥)
 +

1

2

𝜇
+

𝐴
(𝑥) − ]+

𝐴
(𝑥)
 ,

(7)

which can describe the balance of power between member-
ship degree and nonmembership degree of 𝑥 to 𝐴.

Example 7. Assume that there is an expert evaluating an
event, where the support degree is given by interval [0.6, 0.8]
and the opposition degree is the interval [0, 0.2]; then the
hesitancy degree is the interval [0, 0.4]. We can calculate the
intuitionistic factor by Ψ = (0 + 0.4)/2 = 0.2 and the fuzzy
factor by Δ = (1/2)|0.6 − 0| + (1/2)|0.8 − 0.2| = 0.6.

For a crisp set 𝐴, that is, 𝜇
𝐴
(𝑥) = [1, 1], ]

𝐴
(𝑥) = [0, 0] or

𝜇
𝐴
(𝑥) = [0, 0], ]

𝐴
(𝑥) = [1, 1] for all 𝑥 ∈ 𝑋, we can calculate

Ψ
𝐴
(𝑥) = 0, Δ

𝐴
(𝑥) = 1 for all 𝑥 ∈ 𝑋.

Nowwewill define the interval-valued intuitionistic fuzzy
cross-entropy of IvIFS based on the intuitionistic fuzzy cross-
entropy of IFS [23] as follows.

Definition 8. Let𝐴, 𝐵 ∈ IvIFS(𝑋),𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. Based

on intuitionistic factor and fuzzy factor, the interval-valued
intuitionistic fuzzy cross-entropy of 𝐴 against 𝐵 is defined as

𝐶𝐸 (𝐴, 𝐵) =

𝑛

∑

𝑖=1

(Ψ
𝐴
(𝑥
𝑖
) ln

Ψ
𝐴
(𝑥
𝑖
)

(1/2) (Ψ𝐴 (𝑥𝑖) + Ψ𝐵 (𝑥𝑖))

+ Δ
𝐴
(𝑥
𝑖
) ln

Δ
𝐴
(𝑥
𝑖
)

(1/2) (Δ𝐴 (𝑥𝑖) + Δ𝐵 (𝑥𝑖))
) ,

(8)

where

Ψ
𝐴
(𝑥
𝑖
) =

𝜋
−

𝐴
(𝑥
𝑖
) + 𝜋
+

𝐴
(𝑥
𝑖
)

2

=
2 − 𝜇
−

𝐴
(𝑥
𝑖
) − 𝜇
+

𝐴
(𝑥
𝑖
) − ]−
𝐴
(𝑥
𝑖
) − ]+
𝐴
(𝑥
𝑖
)

2
,

Δ
𝐴
(𝑥
𝑖
) =

1

2

𝜇
−

𝐴
(𝑥
𝑖
) − ]−
𝐴
(𝑥
𝑖
)


+
1

2

𝜇
+

𝐴
(𝑥
𝑖
) − ]+
𝐴
(𝑥
𝑖
)
 .

(9)

Proposition 9. Let 𝐴, 𝐵 ∈ 𝐼V𝐼𝐹𝑆(𝑋); 𝐶𝐸(𝐴, 𝐵) satisfies fol-
lowing properties:

(a) 𝐶𝐸(𝐴, 𝐵) = 𝐶𝐸(𝐴, 𝐵𝑐) = 𝐶𝐸(𝐴𝑐, 𝐵) = 𝐶𝐸(𝐴𝑐, 𝐵𝑐);

(b) 𝐶𝐸(𝐴, 𝐵) = 0 iff 𝐴 = 𝐵 or 𝐴 = 𝐵
𝑐;

(c) 0 ≤ 𝐶𝐸(𝐴, 𝐵) ≤ 𝑛 ln 2.

Proof. (a) One has 𝐴
𝑐

= {⟨𝑥
𝑖
, []−
𝐴
(𝑥
𝑖
), ]+
𝐴
(𝑥
𝑖
)], [𝜇
−

𝐴
(𝑥
𝑖
),

𝜇
+

𝐴
(𝑥
𝑖
)]⟩ | 𝑥

𝑖
∈ 𝑋}. Based on formulas (6) and (7) in

Definition 6, we can see Ψ
𝐴
(𝑥
𝑖
) = Ψ
𝐴
𝑐(𝑥
𝑖
), Ψ
𝐵
(𝑥
𝑖
) = Ψ
𝐵
𝑐(𝑥
𝑖
),

Δ
𝐴
(𝑥
𝑖
) = Δ

𝐴
𝑐(𝑥
𝑖
), and Δ

𝐵
(𝑥
𝑖
) = Δ

𝐵
𝑐(𝑥
𝑖
) for all 𝑥

𝑖
∈ 𝑋. From

equation 𝐶𝐸(𝐴, 𝐵) (8), it is easy to verify property (a).

(b) First we have 0 ≤ Ψ
𝐴
(𝑥) + Δ

𝐴
(𝑥) = (2 − 𝜇

−

𝐴
(𝑥) −

𝜇
+

𝐴
(𝑥)−]−

𝐴
(𝑥)−]+

𝐴
(𝑥))/2+ (1/2)|𝜇−

𝐴
(𝑥)−]−

𝐴
(𝑥)|+(1/2)|𝜇

+

𝐴
(𝑥)−

]+
𝐴
(𝑥)| ≤ (2−𝜇

−

𝐴
(𝑥)−𝜇

+

𝐴
(𝑥)−]−

𝐴
(𝑥)−]+

𝐴
(𝑥))/2+(1/2)(𝜇

−

𝐴
(𝑥)+

]−
𝐴
(𝑥)) + (1/2)(𝜇

+

𝐴
(𝑥) + ]+

𝐴
(𝑥)) = 1, for all 𝑥 ∈ 𝑋. According

to Shannon’s inequality, we can verify 𝐶𝐸(𝐴, 𝐵) ≥ 0 and
𝐶𝐸(𝐴, 𝐵) = 0 iff 𝐴 = 𝐵 or 𝐴 = 𝐵

𝑐.
(c)The relationΨ

𝐴
(𝑥
𝑖
) ln(Ψ

𝐴
(𝑥
𝑖
)/(1/2)(Ψ

𝐴
(𝑥
𝑖
)+Ψ
𝐵
(𝑥
𝑖
)))

+Δ
𝐴
(𝑥
𝑖
) ln(Δ

𝐴
(𝑥
𝑖
)/((1/2)(Δ

𝐴
(𝑥
𝑖
)+Δ
𝐵
(𝑥
𝑖
)))) ≤ ln 2(Ψ

𝐴
(𝑥
𝑖
)+

Δ
𝐴
(𝑥
𝑖
)) ≤ ln 2 is true, and when Ψ

𝐴
(𝑥
𝑖
) = 1, Δ

𝐴
(𝑥
𝑖
) = 0 or

Ψ
𝐴
(𝑥
𝑖
) = 0, Δ

𝐴
(𝑥
𝑖
) = 1, Ψ

𝐴
(𝑥
𝑖
) ln(Ψ

𝐴
(𝑥
𝑖
)/((1/2)(Ψ

𝐴
(𝑥
𝑖
) +

Ψ
𝐵
(𝑥
𝑖
)))) + Δ

𝐴
(𝑥
𝑖
) ln(Δ

𝐴
(𝑥
𝑖
)/((1/2)(Δ

𝐴
(𝑥
𝑖
) + Δ

𝐵
(𝑥
𝑖
))))

reaches maximum ln 2. For all 𝑥
𝑖
∈ 𝑋, property (c) can be

verified.
Now, we proceed to the symmetric interval-valued intu-

itionistic fuzzy cross-entropy 𝐷𝐸(𝐴, 𝐵) = 𝐶𝐸(𝐴, 𝐵) + 𝐶𝐸(𝐵,
𝐴). It is easy to verify that 𝐷𝐸(𝐴, 𝐵) have the following
properties:

(a) 𝐷𝐸(𝐴, 𝐵) = 𝐷𝐸(𝐵, 𝐴);
(b) 𝐷𝐸(𝐴, 𝐵) = 𝐷𝐸(𝐴, 𝐵𝑐) = 𝐷𝐸(𝐴𝑐, 𝐵) = 𝐷𝐸(𝐴𝑐, 𝐵𝑐);
(c) 𝐶𝐸(𝐴, 𝐵) = 0 iff 𝐴 = 𝐵 or 𝐴 = 𝐵

𝑐;
(d) 0 ≤ 𝐷𝐸(𝐴, 𝐵) ≤ 2𝑛 ln 2.

Based on intuitionistic factor and fuzzy factor of IvIFS,
we propose the axiomatic conditions of the interval-valued
intuitionistic fuzzy entropy, which canmeasure the uncertain
information of fuzziness and intuitionism of IvIFS.

Definition 10. For an IvIFS 𝐴 defined on 𝑋, the interval-
valued intuitionistic fuzzy entropy is a real-valued function
𝐸(𝐴) = 𝑓(Ψ

𝐴
, Δ
𝐴
) : IvIFS(𝑋) → [0, 1], which satisfies the

following axiomatic conditions:

(a) 𝐸(𝐴) = 0 iff 𝐴 is a crisp set; that is, 𝜇
𝐴
(𝑥) = [1, 1],

]
𝐴
(𝑥) = [0, 0] or 𝜇

𝐴
(𝑥) = [0, 0], ]

𝐴
(𝑥) = [1, 1] for all

𝑥 ∈ 𝑋;
(b) 𝐸(𝐴) = 1 iff ]

𝐴
(𝑥) = 𝜇

𝐴
(𝑥) = [0, 0], 𝜋

𝐴
(𝑥) = [1, 1] for

all 𝑥 ∈ 𝑋;
(c) 𝐸(𝐴) = 𝐸(𝐴𝑐);
(d) 𝐸(𝐴) = 𝑓(Ψ

𝐴
, Δ
𝐴
) is a real-valued continuous func-

tion being increasing with respect to the variable Ψ
𝐴

and decreasing with the variable Δ
𝐴
, where Ψ

𝐴
, Δ
𝐴

are in Definition 6.

Analogously, we know when 𝑃 is a crisp set, that is,
Ψ
𝑃
(𝑥) = 0, Δ

𝑃
(𝑥) = 1 for all 𝑥 ∈ 𝑋, 𝐷𝐸(𝐴, 𝑃) can measure

the uncertain information of IvIFS, including fuzziness and
intuitionism.

Theorem 11. Let 𝐴 ∈ IvIFS(𝑋) and 𝑃 is a crisp set; then

𝐸 (𝐴) =
1

2𝑛 ln 2
𝐷𝐸 (𝐴, 𝑃) =

1

2𝑛 ln 2

𝑛

∑

𝑖=1

(Ψ
𝐴
(𝑥
𝑖
) ln 2

+ Δ
𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
)

+ (Δ
𝐴
(𝑥
𝑖
) + 1) ln 2

Δ
𝐴
(𝑥
𝑖
) + 1

)

(10)
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is an interval-valued intuitionistic fuzzy entropy measure,
where𝐷𝐸(𝐴, 𝑃) is the symmetric interval-valued intuitionistic
fuzzy cross-entropy.

Proof. For 𝐸(𝐴), in order to be qualified as the interval-
valued intuitionistic fuzzy entropy measure, it must satisfy
conditions (a)–(d) in Definition 10.

(a) Let 𝐴 be a crisp set; that is, Ψ
𝐴
(𝑥) = 0, Δ

𝐴
(𝑥) = 1

for all 𝑥 ∈ 𝑋; it is easy to verify that 𝐸(𝐴) = 0. Conversely,
suppose 𝐸(𝐴) = 0; that is,𝐷𝐸(𝐴, 𝑃) = 0; from the properties
of 𝐷𝐸(𝐴, 𝐵), we know 𝐴 = 𝑃 or 𝐴 = 𝑃

𝑐, which means 𝐴 is
also a crisp set.

(b) For an IvIFS 𝐴, when ]
𝐴
(𝑥) = 𝜇

𝐴
(𝑥) = [0, 0],

𝜋
𝐴
(𝑥) = [1, 1] for all 𝑥 ∈ 𝑋, we can calculate Ψ

𝐴
(𝑥) = 1,

Δ
𝐴
(𝑥) = 0. It is easy to verify that 𝐸(𝐴) = 1. Conversely,

when𝐸(𝐴) = 1, we only haveΨ
𝐴
(𝑥
𝑖
) ln 2+Δ

𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
)+

(Δ
𝐴
(𝑥
𝑖
) + 1) ln(2/(Δ

𝐴
(𝑥
𝑖
) + 1)) = 2 ln 2 iff Ψ

𝐴
(𝑥
𝑖
) =

(𝜋
−

𝐴
(𝑥
𝑖
) + 𝜋
+

𝐴
(𝑥
𝑖
))/2 = 1, Δ

𝐴
(𝑥
𝑖
) = (1/2)|𝜇

−

𝐴
(𝑥
𝑖
) − ]−
𝐴
(𝑥
𝑖
)| +

(1/2)|𝜇
+

𝐴
(𝑥
𝑖
) − ]+
𝐴
(𝑥
𝑖
)| = 0 iff ]

𝐴
(𝑥
𝑖
) = 𝜇

𝐴
(𝑥
𝑖
) = [0, 0],

𝜋
𝐴
(𝑥
𝑖
) = [1, 1] for all 𝑥

𝑖
∈ 𝑋.

(c) From the properties of𝐷𝐸(𝐴, 𝐵), we know𝐷𝐸(𝐴, 𝑃) =
𝐷𝐸(𝐴

𝑐
, 𝑃), so 𝐸(𝐴) = 𝐸(𝐴𝑐).

(d) In order to prove that 𝐸(𝐴) satisfies condition (d) in
Definition 10, it suffices to prove that the function 𝑓(𝑥, 𝑦) =
𝑥 ln 2 + 𝑦 ln𝑦 + (𝑦 + 1)[ln 2 − ln(𝑦 + 1)], where 𝑥, 𝑦 ∈

[0, 1], is increasing with its argument 𝑥 and decreasing for its
argument 𝑦. Taking the partial derivative of 𝑓 with 𝑥 and 𝑦,
respectively, we yield

𝜕𝑓 (𝑥, 𝑦)

𝜕𝑥
= ln 2 ≥ 0,

𝜕𝑓 (𝑥, 𝑦)

𝜕𝑦
= ln𝑦 + ln 2 − ln (𝑦 + 1) = ln

2𝑦

𝑦 + 1
.

(11)

Since 0 ≤ 𝑦 ≤ 1, we have 0 ≤ 2𝑦/(𝑦+1) ≤ 1, ln(2𝑦/(𝑦+1)) ≤
0, so 𝜕𝑓(𝑥, 𝑦)/𝜕𝑦 ≤ 0.

3.2. Interval-Value Intuitionistic Entropy and Interval-Valued
Fuzzy Entropy. Mao et al. [23] presented that the intuition-
istic fuzzy entropy for IFS could measure intuitionism and
fuzziness of IFS. And they rewrote the intuitionistic fuzzy
entropy measure as 𝐸(𝐴) = (1/2)𝐸

𝐼
(𝐴) + (1/2)𝐸

𝐹
(𝐴), where

𝐸
𝐼
(𝐴), 𝐸

𝐹
(𝐴) are the intuitionistic entropy and fuzzy entropy

measure of 𝐴 of IFS, respectively. For IvIFS, the interval-
valued intuitionistic fuzzy entropy has similar characteristic.

In fact, for the interval-valued intuitionistic fuzzy entropy
measure 𝐸(𝐴), we have

𝐸 (𝐴) =
1

2𝑛 ln 2

𝑛

∑

𝑖=1

(Ψ
𝐴
(𝑥
𝑖
) ln 2 + Δ

𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
)

+ (Δ
𝐴
(𝑥
𝑖
) + 1) ln 2

Δ
𝐴
(𝑥
𝑖
) + 1

) =
1

2𝑛

𝑛

∑

𝑖=1

Ψ
𝐴
(𝑥
𝑖
)

+
1

2𝑛 ln 2

𝑛

∑

𝑖=1

{Δ
𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
)

+ (Δ
𝐴
(𝑥
𝑖
) + 1) ln 2

Δ
𝐴
(𝑥
𝑖
) + 1

} =
1

2
𝐸
𝐼 (𝐴) +

1

2

⋅ 𝐸
𝐹 (𝐴) ,

(12)

where 𝐸
𝐼
(𝐴) = (1/𝑛)∑

𝑛

𝑖=1
Ψ
𝐴
(𝑥
𝑖
) and 𝐸

𝐹
(𝐴) = (1/

𝑛 ln 2)∑𝑛
𝑖=1
{Δ
𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
) + (Δ

𝐴
(𝑥
𝑖
) + 1) ln(2/(Δ

𝐴
(𝑥
𝑖
) +

1))}.
Now, we will extend 𝐸

𝐼
(𝐴) and 𝐸

𝐹
(𝐴) of IFS to counter-

parts of IvIFS.

Definition 12. For an IvIFS 𝐴, the interval-valued intuition-
istic entropy is a real-valued function 𝐸

𝐼
(𝐴) = 𝑔

1
(Ψ
𝐴
) :

IvIFS(𝑋) → [0, 1], which satisfies the following axiomatic
conditions:

(a) 𝐸
𝐼
(𝐴) = 0 iff 𝐴 is a fuzzy set;

(b) 𝐸
𝐼
(𝐴) = 1 iff ]

𝐴
(𝑥) = 𝜇

𝐴
(𝑥) = [0, 0], 𝜋

𝐴
(𝑥) = [1, 1]

for all 𝑥 ∈ 𝑋;
(c) 𝐸
𝐼
(𝐴) = 𝐸

𝐼
(𝐴
𝑐
);

(d) 𝐸
𝐼
(𝐴) = 𝑔

1
(Ψ
𝐴
) is a real-valued continuous function

being increasing with respect to the variable Ψ
𝐴
.

Theorem 13. Let 𝐴 ∈ 𝐼V𝐼𝐹𝑆(𝑋); then

𝐸
𝐼 (𝐴) =

1

𝑛

𝑛

∑

𝑖=1

Ψ
𝐴
(𝑥
𝑖
) (13)

is an interval-value intuitionistic entropy measure.

Proof. For 𝐸
𝐼
(𝐴), in order to be qualified as an interval-

valued intuitionistic entropy measure, it must satisfy condi-
tions (a)–(d) in Definition 12.

(a) When 𝐸
𝐼
(𝐴) = 0, we only have for all 𝑥

𝑖
∈ 𝑋,

Ψ
𝐴
(𝑥
𝑖
) = (𝜋

−

𝐴
(𝑥
𝑖
) + 𝜋
+

𝐴
(𝑥
𝑖
))/2 = 0 ⇒ 𝜋

−

𝐴
(𝑥
𝑖
) = 𝜋

+

𝐴
(𝑥
𝑖
) =

0 ⇒ 𝜇
+

𝐴
(𝑥
𝑖
) + ]+
𝐴
(𝑥
𝑖
) = 1, 𝜇−

𝐴
(𝑥
𝑖
) + ]−
𝐴
(𝑥
𝑖
) = 1. Subtracting

the latter two equations, we have 𝜇+
𝐴
(𝑥
𝑖
) − 𝜇
−

𝐴
(𝑥
𝑖
) + ]+
𝐴
(𝑥
𝑖
) −

]−
𝐴
(𝑥
𝑖
) = 0 ⇒ 𝜇

+

𝐴
(𝑥
𝑖
) = 𝜇
−

𝐴
(𝑥
𝑖
), ]+
𝐴
(𝑥
𝑖
) = ]−
𝐴
(𝑥
𝑖
). Additionally,

𝜇
+

𝐴
(𝑥
𝑖
) + ]+
𝐴
(𝑥
𝑖
) = 1 for all 𝑥

𝑖
∈ 𝑋; we know that 𝐴 is a fuzzy

set. Conversely, when 𝐴 is a fuzzy set, it is easy to verify that
Ψ
𝐴
(𝑥
𝑖
) = (𝜋

−

𝐴
(𝑥
𝑖
) + 𝜋
+

𝐴
(𝑥
𝑖
))/2 = 0 for 𝑥

𝑖
∈ 𝑋; then 𝐸

𝐼
(𝐴) = 0.

(b) When 𝐸
𝐼
(𝐴) = 1, we only have Ψ

𝐴
(𝑥
𝑖
) = (𝜋

−

𝐴
(𝑥
𝑖
) +

𝜋
+

𝐴
(𝑥
𝑖
))/2 = 1 ⇒ 𝜋

−

𝐴
(𝑥
𝑖
) = 𝜋
+

𝐴
(𝑥
𝑖
) = 1 ⇒ 𝜇

+

𝐴
(𝑥
𝑖
) + ]+
𝐴
(𝑥
𝑖
) =

0,𝜇−
𝐴
(𝑥
𝑖
)+]−
𝐴
(𝑥
𝑖
) = 0 ⇒ 𝜇

+

𝐴
(𝑥
𝑖
) = ]+
𝐴
(𝑥
𝑖
) = 𝜇
−

𝐴
(𝑥
𝑖
) = ]−
𝐴
(𝑥
𝑖
) =

0.That is to say, ]
𝐴
(𝑥
𝑖
) = 𝜇
𝐴
(𝑥
𝑖
) = [0, 0],𝜋

𝐴
(𝑥
𝑖
) = [1, 1] for all

𝑥
𝑖
∈ 𝑋. Conversely, when ]

𝐴
(𝑥
𝑖
) = 𝜇
𝐴
(𝑥
𝑖
) = [0, 0], 𝜋

𝐴
(𝑥
𝑖
) =

[1, 1] for all𝑥
𝑖
∈ 𝑋, we haveΨ

𝐴
(𝑥
𝑖
) = (𝜋

−

𝐴
(𝑥
𝑖
)+𝜋
+

𝐴
(𝑥
𝑖
))/2 = 1;

then 𝐸
𝐼
(𝐴) = 1.

(c) SinceΨ
𝐴
(𝑥
𝑖
) = Ψ
𝐴
𝑐(𝑥
𝑖
) for all 𝑥

𝑖
∈ 𝑋, 𝐸

𝐼
(𝐴) = 𝐸

𝐼
(𝐴
𝑐
).

(d) Condition (d) in Definition 12 is apparent.

Definition 14. For IvIFS 𝐴, the interval-valued fuzzy entropy
is a real-valued function 𝐸

𝐹
(𝐴) = 𝑔

2
(Δ
𝐴
) : IvIFS(𝑋) →

[0, 1], which satisfies the following axiomatic conditions:

(a) 𝐸
𝐹
(𝐴) = 0 iff 𝐴 is a crisp set;

(b) 𝐸
𝐹
(𝐴) = 1 iff [𝜇−

𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)] = []−

𝐴
(𝑥), ]+
𝐴
(𝑥)] for all

𝑥 ∈ 𝑋;
(c) 𝐸
𝐹
(𝐴) = 𝐸

𝐹
(𝐴
𝑐
);

(d) 𝐸
𝐹
(𝐴) = 𝑔

2
(Δ
𝐴
) is a real-valued continuous function

being decreasing with respect to the variable Δ
𝐴
.
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Theorem 15. Let 𝐴 ∈ 𝐼V𝐼𝐹𝑆(𝑋); then

𝐸
𝐹 (𝐴) =

1

𝑛 ln 2

𝑛

∑

𝑖=1

{Δ
𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
)

+ (Δ
𝐴
(𝑥
𝑖
) + 1) ln 2

Δ
𝐴
(𝑥
𝑖
) + 1

}

(14)

is an interval-value fuzzy entropy measure.

Proof. For 𝐸
𝐹
(𝐴), in order to be qualified as an interval-

valued fuzzy entropy measure, it must satisfy conditions (a)–
(d) in Definition 14.

(a) When 𝐸
𝐹
(𝐴) = 0, we only have Δ

𝐴
(𝑥
𝑖
) = (1/

2)|𝜇
−

𝐴
(𝑥
𝑖
) − ]−
𝐴
(𝑥
𝑖
)| + (1/2)|𝜇

+

𝐴
(𝑥
𝑖
) − ]+
𝐴
(𝑥
𝑖
)| = 1 ⇒ |𝜇

−

𝐴
(𝑥
𝑖
) −

]−
𝐴
(𝑥
𝑖
)| = 1, |𝜇+

𝐴
(𝑥
𝑖
) − ]+
𝐴
(𝑥
𝑖
)| = 1 ⇒ 𝜇

𝐴
(𝑥
𝑖
) = [1, 1], ]

𝐴
(𝑥
𝑖
) =

[0, 0] or 𝜇
𝐴
(𝑥
𝑖
) = [0, 0], ]

𝐴
(𝑥
𝑖
) = [1, 1] for all 𝑥

𝑖
∈ 𝑋; that

is, 𝐴 is a crisp set. Conversely, when 𝐴 is a crisp set, that is,
Δ
𝐴
(𝑥
𝑖
) = 1, it is easy to verify that 𝐸

𝐹
(𝐴) = 0.

(b) When 𝐸
𝐹
(𝐴) = 1, we only have Δ

𝐴
(𝑥
𝑖
) = (1/

2)|𝜇
−

𝐴
(𝑥
𝑖
) − ]−
𝐴
(𝑥
𝑖
)| + (1/2)|𝜇

+

𝐴
(𝑥
𝑖
) − ]+
𝐴
(𝑥
𝑖
)| = 0 ⇒ 𝜇

−

𝐴
(𝑥
𝑖
) =

]−
𝐴
(𝑥
𝑖
), 𝜇+
𝐴
(𝑥
𝑖
) = ]+

𝐴
(𝑥
𝑖
) for all 𝑥

𝑖
∈ 𝑋; that is, [𝜇−

𝐴
(𝑥
𝑖
),

𝜇
+

𝐴
(𝑥
𝑖
)] = []−

𝐴
(𝑥
𝑖
), ]+
𝐴
(𝑥
𝑖
)]. Conversely, when [𝜇

−

𝐴
(𝑥
𝑖
),

𝜇
+

𝐴
(𝑥
𝑖
)] = []−

𝐴
(𝑥
𝑖
), ]+
𝐴
(𝑥
𝑖
)], that is, Δ

𝐴
(𝑥
𝑖
) = 0, it is easy to

verify that 𝐸
𝐹
(𝐴) = 1.

(c) Since Δ
𝐴
(𝑥) = Δ

𝐴
𝑐(𝑥) for all 𝑥 ∈ 𝑋, 𝐸

𝐹
(𝐴) = 𝐸

𝐹
(𝐴
𝑐
).

(d) From (d) in Theorem 11, we know that condition (d)
in Definition 14 is satisfied.

Based on the above analysis, the interval-valued intu-
itionistic fuzzy entropy measure can be seen as arithmetic
average of the interval-valued intuitionistic entropy measure
and the interval-valued fuzzy entropy measure.

3.3. Interval-Valued Span Entropy. In this section, we will
introduce another entropy of the interval-value span entropy
to measure uncertain information caused by the uncertainty
of membership and nonmembership degree of IvIFS.

Here, we first put forward the axiomatic conditions of the
span entropy.

Definition 16. For an IvIFS 𝐴, the interval-valued span
entropy is a real-valued function 𝐸

𝑆
(𝐴) : IvIFS(𝑋) → [0, 1],

which satisfies the following axiomatic conditions:

(a) 𝐸
𝑆
(𝐴) = 0 iff 𝐴 is IFS;

(b) 𝐸
𝑆
(𝐴) = 1 iff 𝜇+

𝐴
(𝑥) + ]+

𝐴
(𝑥) = 1, 𝜇−

𝐴
(𝑥) = ]−

𝐴
(𝑥) = 0

for all 𝑥 ∈ 𝑋;
(c) 𝐸
𝑆
(𝐴) = 𝐸

𝑆
(𝐴
𝑐
);

(d) let 𝐵 ∈ IvIFS(𝑋), 𝐸
𝑆
(𝐴) ≤ 𝐸

𝑆
(𝐵), if [𝜇−

𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)] ⪰

[𝜇
−

𝐵
(𝑥), 𝜇
+

𝐵
(𝑥)] and []−

𝐴
(𝑥), ]+
𝐴
(𝑥)] ⪰ []−

𝐵
(𝑥), ]+
𝐵
(𝑥)] for

all 𝑥 ∈ 𝑋.

Since the interval-valued span entropy is a magnitude
which allows us to measure the extent of variation for the
interval values of membership degree and nonmembership
degree, this four conditions can be understood as follows: for
an IvIFS 𝐴, one has the following.

(a) The interval-valued span entropy is zero iff the
values ofmembership degree and nonmembership degree are
certain; that is, 𝐴 is IFS.

(b) When the interval-valued span entropy reaches max-
imum, it means that the total span of 𝜇

𝐴
(𝑥), ]
𝐴
(𝑥) is the

largest. Since𝜇+
𝐴
(𝑥)+]+

𝐴
(𝑥) ≤ 1, we can intuitively understand

that the interval-valued span entropy reaches maximum iff
𝜇
+

𝐴
(𝑥) + ]+

𝐴
(𝑥) = 1, 𝜇−

𝐴
(𝑥) = ]−

𝐴
(𝑥) = 0.

(c) As 𝐴𝑐 = {⟨𝑥, []−
𝐴
(𝑥), ]+
𝐴
(𝑥)], [𝜇

−

𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋},

for 𝐴 and 𝐴𝑐, we know that the extent of variation for the
interval values of membership degree and nonmembership
degree is the same.

(d) The spans of both 𝜇(𝑥) and ](𝑥) are bigger; we
know that the interval values of membership degree and
nonmembership degree are more uncertain; that is, the
interval-valued span entropy is bigger.

Now our goal is to give the specific interval-valued span
entropy measures. To construct the entropy on IFS, Burillo
and Bustince [19] introduced function Φ

𝐷
: 𝐷 → [0, 1],

where 𝐷 = {(𝑥, 𝑦) ∈ [0, 1] × [0, 1] | 𝑥 + 𝑦 ≤ 1}. Meanwhile,
functionΦ

𝐷
satisfies the following conditions:

(a) Φ
𝐷
(𝑥, 𝑦) = 1 iff 𝑥 + 𝑦 = 1;

(b) Φ
𝐷
(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 = 0;

(c) Φ
𝐷
(𝑥, 𝑦) = Φ

𝐷
(𝑦, 𝑥);

(d) if 𝑥 ≤ 𝑥 and 𝑦 ≤ 𝑦, thenΦ
𝐷
(𝑥, 𝑦) ≤ Φ

𝐷
(𝑥

, 𝑦

).

We can verify the following functions are Φ
𝐷
(𝑥, 𝑦) abbrevi-

ated by Φ(𝑥, 𝑦):

(a) Φ(𝑥, 𝑦) = 𝑥 + 𝑦;
(b) Φ(𝑥, 𝑦) = (𝑥 + 𝑦)𝑛, 𝑛 = 2, 3, . . .;
(c) Φ(𝑥, 𝑦) = (𝑥 + 𝑦)𝑒1−(𝑥+𝑦);
(d) Φ(𝑥, 𝑦) = (𝑥 + 𝑦) sin((𝜋/2)(𝑥 + 𝑦)).

Theorem 17. For an IvIFS 𝐴, the real-valued function 𝐸
𝑆
(𝐴) :

IvIFS(𝑋) → [0, 1]

𝐸
𝑆 (𝐴) =

1

𝑛

𝑛

∑

𝑖=1

Φ(Δ𝜇
𝐴
(𝑥
𝑖
) , Δ]
𝐴
(𝑥
𝑖
)) (15)

is an interval-valued span entropy measure, where the function
of Φ satisfies the previous four conditions (a)–(d), Δ𝜇

𝐴
(𝑥
𝑖
) =

𝜇
+

𝐴
(𝑥
𝑖
) − 𝜇

−

𝐴
(𝑥
𝑖
) is the span of membership degree, and

Δ]
𝐴
(𝑥
𝑖
) = ]+
𝐴
(𝑥
𝑖
)−]−
𝐴
(𝑥
𝑖
) is the span of nonmembership degree.

Proof. For 𝐸
𝑆
(𝐴), in order to be qualified as an interval-

valued span entropy measure, it must satisfy conditions (a)–
(d) in Definition 16.

(a) Based on condition (b) ofΦ(𝑥, 𝑦), we know𝐸
𝑆
(𝐴) = 0

iff Φ(Δ𝜇
𝐴
(𝑥
𝑖
), Δ]
𝐴
(𝑥
𝑖
)) = 0 iff Δ𝜇

𝐴
(𝑥
𝑖
) = Δ]

𝐴
(𝑥
𝑖
) = 0 iff

𝜇
+

𝐴
(𝑥
𝑖
) = 𝜇
−

𝐴
(𝑥
𝑖
), ]+
𝐴
(𝑥
𝑖
) = ]−
𝐴
(𝑥
𝑖
) for all 𝑥

𝑖
∈ 𝑋 iff 𝐴 is IFS.

(b) Based on condition (a) of Φ(𝑥, 𝑦), we know 𝐸
𝑆
(𝐴) =

1 iff Φ(Δ𝜇
𝐴
(𝑥
𝑖
), Δ]
𝐴
(𝑥
𝑖
)) = 1 iff Δ𝜇

𝐴
(𝑥
𝑖
) + Δ]

𝐴
(𝑥
𝑖
) = 1 iff

𝜇
+

𝐴
(𝑥
𝑖
) − 𝜇
−

𝐴
(𝑥
𝑖
) + ]+
𝐴
(𝑥
𝑖
) − ]−
𝐴
(𝑥
𝑖
) = 1 iff 𝜇+

𝐴
(𝑥
𝑖
) + ]+
𝐴
(𝑥
𝑖
) = 1

and 𝜇−
𝐴
(𝑥
𝑖
) = ]−
𝐴
(𝑥
𝑖
) = 0 for all 𝑥

𝑖
∈ 𝑋.

(c) One has 𝐴𝑐 = {⟨𝑥, []−
𝐴
(𝑥), ]+
𝐴
(𝑥)], [𝜇

−

𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)]⟩ |

𝑥 ∈ 𝑋}. We know Δ𝜇
𝐴
𝑐(𝑥
𝑖
) = Δ]

𝐴
(𝑥
𝑖
), Δ]
𝐴
𝑐(𝑥
𝑖
) = Δ𝜇

𝐴
(𝑥
𝑖
).

From condition (c) ofΦ(𝑥, 𝑦), we can obtain𝐸
𝑆
(𝐴) = 𝐸

𝑆
(𝐴
𝑐
).
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(d) If [𝜇−
𝐴
(𝑥
𝑖
), 𝜇
+

𝐴
(𝑥
𝑖
)] ⪰ [𝜇

−

𝐵
(𝑥
𝑖
), 𝜇
+

𝐵
(𝑥
𝑖
)] and []−

𝐴
(𝑥
𝑖
),

]+
𝐴
(𝑥
𝑖
)] ⪰ []−

𝐵
(𝑥
𝑖
), ]+
𝐵
(𝑥
𝑖
)], we can obtain Δ𝜇

𝐴
(𝑥
𝑖
) ≤ Δ𝜇

𝐵
(𝑥
𝑖
)

and Δ]
𝐴
(𝑥
𝑖
) ≤ Δ]

𝐵
(𝑥
𝑖
) for all 𝑥

𝑖
∈ 𝑋. From condition (d) of

Φ(𝑥, 𝑦), we know that condition (d) in Definition 16 is suited.
Using the previous function formulas of Φ(𝑥, 𝑦), we

can construct the following interval-valued span entropy
measures:

(a) 𝐸
𝑆
(𝐴) = (1/𝑛)∑

𝑛

𝑖=1
(𝜇
+

𝐴
(𝑥
𝑖
)−𝜇
−

𝐴
(𝑥
𝑖
)+]+
𝐴
(𝑥
𝑖
)−]−
𝐴
(𝑥
𝑖
));

(b) 𝐸
𝑆
(𝐴) = (1/𝑛)∑

𝑛

𝑖=1
(𝜇
+

𝐴
(𝑥
𝑖
)−𝜇
−

𝐴
(𝑥
𝑖
)+]+
𝐴
(𝑥
𝑖
)−]−
𝐴
(𝑥
𝑖
))
𝑛,

𝑛 = 2, 3, . . .;
(c) 𝐸
𝑆
(𝐴) = (1/𝑛)∑

𝑛

𝑖=1
(𝜇
+

𝐴
(𝑥
𝑖
) − 𝜇

−

𝐴
(𝑥
𝑖
) + ]+

𝐴
(𝑥
𝑖
) −

]−
𝐴
(𝑥
𝑖
))𝑒
1−(𝜇
+

𝐴
(𝑥
𝑖
)−𝜇
−

𝐴
(𝑥
𝑖
)+]+
𝐴
(𝑥
𝑖
)−]−
𝐴
(𝑥
𝑖
));

(d) 𝐸
𝑆
(𝐴) = (1/𝑛)∑

𝑛

𝑖=1
(𝜇
+

𝐴
(𝑥
𝑖
) − 𝜇

−

𝐴
(𝑥
𝑖
) + ]+

𝐴
(𝑥
𝑖
) −

]−
𝐴
(𝑥
𝑖
)) sin((𝜋/2)(𝜇+

𝐴
(𝑥
𝑖
) − 𝜇
−

𝐴
(𝑥
𝑖
) + ]+
𝐴
(𝑥
𝑖
) − ]−
𝐴
(𝑥
𝑖
))).

3.4. The Compositive Entropy of IvIFS. We already know
that the proposed interval-valued intuitionistic fuzzy entropy
in Theorem 11 can only express fuzziness and intuitionism
of IvIFS and the interval-valued span entropy can reflect
another kind of uncertain information of IvIFS. Naturally, we
want to propose a sensible entropy of IvIFS which can be con-
cerned with interval-valued intuitionistic entropy, interval-
valued fuzzy entropy, and interval-valued span entropy. First,
we give another type of uncertainty factor.

Definition 18. Let 𝐴 ∈ IvIFS(𝑋), 𝐴 = {⟨𝑥, [𝜇
−

𝐴
(𝑥), 𝜇
+

𝐴
(𝑥)],

[]−
𝐴
(𝑥), ]+
𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋}. The span factor Υ

𝐴
(𝑥) is defined

as

Υ
𝐴 (𝑥) = 𝜇

+

𝐴
(𝑥) − 𝜇

−

𝐴
(𝑥) + ]+

𝐴
(𝑥) − ]−

𝐴
(𝑥) (16)

which can depict the extent of variation for the interval values
of membership degree and nonmembership degree of 𝑥 to𝐴.

Based on intuitionistic factor, fuzzy factor, and span
factor, in the following, we will give the axiomatic definition
of a kind of compositive entropy.

Definition 19. For an IvIFS 𝐴, the compositive entropy of
IvIFS also called interval-valued intuitionistic fuzzy span
entropy is a real-valued function 𝐸(𝐴) = ℎ(Ψ

𝐴
, Δ
𝐴
, Υ
𝐴
) :

IvIFS(𝑋) → [0, 1], which satisfies the following axiomatic
conditions:

(a) 𝐸(𝐴) = 0 iff 𝐴 is a crisp set;

(b) 𝐸(𝐴) = 1 iff 𝜇
𝐴
(𝑥) = [0, 0.5], ]

𝐴
(𝑥) = [0, 0.5] for all

𝑥 ∈ 𝑋;
(c) 𝐸(𝐴) = 𝐸(𝐴𝑐);
(d) 𝐸(𝐴) = ℎ(Ψ

𝐴
, Δ
𝐴
, Υ
𝐴
) is a real-valued continuous

function being increasingwith respect to the variables
Ψ
𝐴
, Υ
𝐴
and decreasing with the variable Δ

𝐴
.

Ψ
𝐴
, Δ
𝐴

are the intuitionistic factor and fuzzy factor in
Definition 6 and Υ

𝐴
(𝑥) is the span factor in Definition 18.

Inspired by equation 𝐸(𝐴) = (1/2)𝐸
𝐼
(𝐴) + (1/2)𝐸

𝐹
(𝐴),

now we will construct a compositive entropy measure.

Theorem 20. Consider 𝐴 ∈ IvIFS(𝑋); then

𝐸 (𝐴) =
2

5
𝐸
𝐼 (𝐴) +

2

5
𝐸
𝐹 (𝐴) +

2

5
𝐸
𝑆 (𝐴) =

2

5𝑛 ln 2

⋅

𝑛

∑

𝑖=1

((Ψ
𝐴
(𝑥
𝑖
) + Υ
𝐴
(𝑥
𝑖
)) ln 2 + Δ

𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
)

+ (Δ
𝐴
(𝑥
𝑖
) + 1) ln 2

Δ
𝐴
(𝑥
𝑖
) + 1

)

(17)

is a compositive entropy measure of IvIFS, which is also called
the interval-valued intuitionistic fuzzy span entropy measure.

Proof. For𝐸(𝐴), in order to be qualified as an interval-valued
intuitionistic fuzzy span entropy measure, it must satisfy
conditions (a)–(d) in Definition 19.

(a) It is easy to verify that 𝐸(𝐴) = 0 iff 𝐸
𝐼
(𝐴) = 𝐸

𝐹
(𝐴) =

𝐸
𝑆
(𝐴) = 0 iff 𝐴 is a crisp set.
(b) Taking Ψ

𝐴
, Δ
𝐴
, and Υ

𝐴
into 𝐸(𝐴), we have

𝐸 (𝐴) =
2

5
𝐸
𝐼 (𝐴) +

2

5
𝐸
𝐹 (𝐴) +

2

5
𝐸
𝑆 (𝐴) =

2

5𝑛 ln 2

⋅

𝑛

∑

𝑖=1

((Ψ
𝐴
(𝑥
𝑖
) + Υ
𝐴
(𝑥
𝑖
)) ln 2 + Δ

𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
)

+ (Δ
𝐴
(𝑥
𝑖
) + 1) ln 2

Δ
𝐴
(𝑥
𝑖
) + 1

) =
2

5𝑛 ln 2

⋅

𝑛

∑

𝑖=1

(
2 + 𝜇
+

𝐴
(𝑥
𝑖
) + ]+
𝐴
(𝑥
𝑖
) − 3𝜇

−

𝐴
(𝑥
𝑖
) − 3]−

𝐴
(𝑥
𝑖
)

2

⋅ ln 2 + Δ
𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
) + (Δ

𝐴
(𝑥
𝑖
) + 1)

⋅ ln 2

Δ
𝐴
(𝑥
𝑖
) + 1

) .

(18)

We want to prove 𝐸(𝐴) = 1 iff 𝜇
𝐴
(𝑥) = [0, 0.5], ]

𝐴
(𝑥) =

[0, 0.5] for all 𝑥 ∈ 𝑋. Sufficient condition is obvious. As for
necessary condition,we can see ((2+𝜇+

𝐴
(𝑥
𝑖
)+]+
𝐴
(𝑥
𝑖
)−3𝜇
−

𝐴
(𝑥
𝑖
)−

3]−
𝐴
(𝑥
𝑖
))/2) ln 2 reaches maximum (3/2) ln 2 when 𝜇+

𝐴
(𝑥
𝑖
) +

]+
𝐴
(𝑥
𝑖
) = 1, 𝜇−

𝐴
(𝑥
𝑖
) = ]−

𝐴
(𝑥
𝑖
) = 0 and Δ

𝐴
(𝑥
𝑖
) lnΔ

𝐴
(𝑥
𝑖
) +

(Δ
𝐴
(𝑥
𝑖
) + 1) ln(2/(Δ

𝐴
(𝑥
𝑖
) + 1)) reaches maximum ln 2 when

Δ
𝐴
(𝑥
𝑖
) = (1/2)|𝜇

−

𝐴
(𝑥
𝑖
) − ]−
𝐴
(𝑥
𝑖
)| + (1/2)|𝜇

+

𝐴
(𝑥
𝑖
) − ]+
𝐴
(𝑥
𝑖
)| = 0.

Ultimately, we have 𝜇
𝐴
(𝑥) = [0, 0.5], ]

𝐴
(𝑥) = [0, 0.5] for all

𝑥 ∈ 𝑋 when 𝐸(𝐴) = 1.
(c) Since 𝐸

𝐼
(𝐴) = 𝐸

𝐼
(𝐴
𝑐
), 𝐸
𝐹
(𝐴) = 𝐸

𝐹
(𝐴
𝑐
), and 𝐸

𝑆
(𝐴) =

𝐸
𝑆
(𝐴
𝑐
), it is easy to verify 𝐸(𝐴) = 𝐸(𝐴𝑐).

(d) Considering the function: 𝑓(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑧) ln 2 +
𝑦 ln𝑦 + (𝑦 + 1)[ln 2 − ln(𝑦 + 1)], where 𝑥, 𝑦, 𝑧 ∈ [0, 1],
similar to the process of proof in Theorem 11(d), we can
verify that𝑓(𝑥, 𝑦, 𝑧) is increasingwith the arguments𝑥, 𝑧 and
decreasing with its argument 𝑦.

Let us now consider an IvIFS 𝐴 in 𝑋 = {𝑥}. Using
the color of each point (Ψ

𝐴
(𝑥), Υ
𝐴
(𝑥), Δ

𝐴
(𝑥)) to represent
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Figure 1: The compositive entropy with Ψ
𝐴
= 0.1, 0.5, 0.9.
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Figure 2: The compositive entropy with Υ
𝐴
= 0.1, 0.5, 0.9.

the value of compositive entropy, Figures 1, 2, and 3 can reflect
the relation between the value of compositive entropy andΨ

𝐴
,

Υ
𝐴
, and Δ

𝐴
.

4. The Application of the Compositive
Entropy Measure

4.1. The Effectiveness of the Compositive Entropy Measure. In
fact, there have been some research results about the entropy
of IvIFS; for example, Zhang et al. [24] defined 𝐸

1
(𝐴), Wei et

al. [25] put forward 𝐸
2
(𝐴), Jin et al. [27] presented 𝐸

3
(𝐴), Ye

[28] gave 𝐸
4
(𝐴), Zhang et al. [26] proposed 𝐸

5
(𝐴), and Qu et

al. [29] showed 𝐸
6
(𝐴), which can be listed as follows:

(a) 𝐸
1
(𝐴) = (1/𝑛)∑

𝑛

𝑖=1
((𝜇
−

𝐴
(𝑥
𝑖
) ∧ ]−

𝐴
(𝑥
𝑖
) + 𝜇

+

𝐴
(𝑥
𝑖
) ∧

]+
𝐴
(𝑥
𝑖
))/(𝜇−
𝐴
(𝑥
𝑖
) ∨ ]−
𝐴
(𝑥
𝑖
) + 𝜇
+

𝐴
(𝑥
𝑖
) ∨ ]+
𝐴
(𝑥
𝑖
)));

(b)𝐸
2
(𝐴) = (1/𝑛)∑

𝑛

𝑖=1
((𝜇
−

𝐴
(𝑥
𝑖
)∧]−
𝐴
(𝑥
𝑖
)+𝜇
+

𝐴
(𝑥
𝑖
)∧]+
𝐴
(𝑥
𝑖
)+

𝜋
−

𝐴
(𝑥
𝑖
) +𝜋
+

𝐴
(𝑥
𝑖
))/(𝜇−
𝐴
(𝑥
𝑖
) ∨ ]−
𝐴
(𝑥
𝑖
) +𝜇
+

𝐴
(𝑥
𝑖
) ∨ ]+
𝐴
(𝑥
𝑖
) +𝜋
−

𝐴
(𝑥
𝑖
) +

𝜋
+

𝐴
(𝑥
𝑖
)));

(c) 𝐸
3
(𝐴) = (1/𝑛)∑

𝑛

𝑖=1
((𝐹
𝑄
(𝜇
𝐴
(𝑥
𝑖
)) ∧ 𝐹

𝑄
(]
𝐴
(𝑥
𝑖
)) + 1 −

𝐹
𝑄
(𝜇
𝐴
(𝑥
𝑖
)) − 𝐹

𝑄
(]
𝐴
(𝑥
𝑖
)))/(𝐹
𝑄
(𝜇
𝐴
(𝑥
𝑖
)) ∨ 𝐹

𝑄
(]
𝐴
(𝑥
𝑖
)) + 1 −

𝐹
𝑄
(𝜇
𝐴
(𝑥
𝑖
)) − 𝐹

𝑄
(]
𝐴
(𝑥
𝑖
)))), where 𝐹

𝑄
(𝜇
𝐴
(𝑥
𝑖
)) = 𝜆𝜇

+

𝐴
(𝑥
𝑖
) +
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Figure 3: The compositive entropy with Δ
𝐴
= 0.1, 0.5, 0.9.

(1 − 𝜆)𝜇
−

𝐴
(𝑥
𝑖
), 𝐹
𝑄
(]
𝐴
(𝑥
𝑖
)) = 𝜆]+

𝐴
(𝑥
𝑖
) + (1 − 𝜆)]−

𝐴
(𝑥
𝑖
). 𝜆 is the

attitudinal character of BUM function 𝑄 with 𝜆 ∈ [0, 1];
(d) 𝐸
4
(𝐴) = (1/𝑛(√2 − 1))∑

𝑛

𝑖=1
{sin((𝜋 × [1 + 𝜇−

𝐴
(𝑥
𝑖
) +

𝑝Δ𝜇
𝐴
(𝑥
𝑖
) − ]−
𝐴
(𝑥
𝑖
) − 𝑞Δ]

𝐴
(𝑥
𝑖
)])/4) + sin((𝜋 × [1 − 𝜇−

𝐴
(𝑥
𝑖
) −

𝑝Δ𝜇
𝐴
(𝑥
𝑖
) + ]−
𝐴
(𝑥
𝑖
) + 𝑞Δ]

𝐴
(𝑥
𝑖
)])/4) − 1}, where 𝑝, 𝑞 ∈ [0, 1]

and here we choose 𝑝 = 𝑞 = 0.5;
(e)𝐸
5
(𝐴) = (1/𝑛)∑

𝑛

𝑖=1
(1−(𝜇

𝐴
(𝑥
𝑖
)+]
𝐴
(𝑥
𝑖
)))𝑒
1−(𝜇
𝐴
(𝑥
𝑖
)+]
𝐴
(𝑥
𝑖
)),

where 𝜇
𝐴
(𝑥
𝑖
) = 𝜇

−

𝐴
(𝑥
𝑖
) + 𝜏Δ𝜇

𝐴
(𝑥
𝑖
), ]
𝐴
(𝑥
𝑖
) = ]−

𝐴
(𝑥
𝑖
) +

𝜏Δ]
𝐴
(𝑥
𝑖
), 𝜏 ∈ [0, 1]. Here we choose 𝜏 = 0.5;

(f) 𝐸
6
(𝐴) = (1/𝑛)∑

𝑛

𝑖=1
{(𝜋
−

𝐴
(𝑥
𝑖
) + 𝜋
+

𝐴
(𝑥
𝑖
))/2 + ([𝜋

+

𝐴
(𝑥
𝑖
)]
2
−

[𝜋
−

𝐴
(𝑥
𝑖
)]
2
)/4 + ([𝜇

+

𝐴
(𝑥
𝑖
)]
2
− [𝜇
−

𝐴
(𝑥
𝑖
)]
2
)/4 + ([]+

𝐴
(𝑥
𝑖
)]
2
−

[]−
𝐴
(𝑥
𝑖
)]
2
)/4}.

We will compare these entropy measures with our pro-
posed entropy measures, including the interval-valued intu-
itionistic fuzzy entropy measure 𝐸(𝐴) and the compositive
entropy measure 𝐸(𝐴), by an example.

Example 21. Consider 𝐴, 𝐵, 𝐶,𝐷 ∈ IvIFS(𝑋), 𝑋 = {𝑥}. For
short, we denote 𝐴 = ⟨𝜇

𝐴
(𝑥), ]
𝐴
(𝑥), 𝜋
𝐴
(𝑥)⟩ = ⟨[0, 0.5], [0,

0.5], [0, 1]⟩, 𝐵 = ⟨𝜇
𝐵
(𝑥), ]
𝐵
(𝑥), 𝜋
𝐵
(𝑥)⟩ = ⟨[0.2, 0.3], [0.2, 0.3],

[0.4, 0.6]⟩, 𝐶 = ⟨𝜇
𝐶
(𝑥), ]
𝐶
(𝑥), 𝜋
𝐶
(𝑥)⟩ = ⟨[0.4, 0.5], [0.4, 0.5],

[0, 0.2]⟩, and𝐷 = ⟨𝜇
𝐷
(𝑥), ]
𝐷
(𝑥), 𝜋
𝐷
(𝑥)⟩ = ⟨[0.4, 0.5], [0, 0.1],

[0.4, 0.6]⟩. Based on intuitionistic factor, fuzzy factor, and
span factor of IvIFS, we can analyze the uncertain rela-
tionships of 𝐴, 𝐵, and 𝐶 as follows: comparing 𝐴 with 𝐵,
intuitionistic factor and fuzzy factor of 𝐴, 𝐵 are the same,
but span factor of 𝐴 has a greater impact on uncertainty
than 𝐵, so we have 𝐸(𝐴) > 𝐸(𝐵). For 𝐵 and 𝐶, fuzzy factor
and span factor of 𝐵 and 𝐶 are the same, but intuitionistic
factor of 𝐵 has a greater impact on uncertainty than 𝐶, so we
have 𝐸(𝐵) > 𝐸(𝐶). Analogously, for 𝐶 and 𝐷, considering
fuzzy factor, we have 𝐸(𝐶) > 𝐸(𝐷). So we have the relation
𝐸(𝐴) > 𝐸(𝐵) > 𝐸(𝐶) > 𝐸(𝐷).

According to entropy formulas above, we can obtain
calculation results presented in Table 1.

Based on the results of Table 1, we can see only 𝐸 meets
the relation 𝐸(𝐴) > 𝐸(𝐵) > 𝐸(𝐶) > 𝐸(𝐷). In addition,
four entropy values of 𝐴, 𝐵, 𝐶, and 𝐷 only calculated by
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Table 1: The comparison of different entropy measures.

𝐸
1

𝐸
2

𝐸
3

𝐸
4

𝐸
5

𝐸
6

𝐸 𝐸

𝐴 1 1 1 1 0.8244 0.875 0.75 1

𝐵 1 1 1 1 0.8244 0.575 0.75 0.68

𝐶 1 1 1 1 0.1105 0.155 0.75 0.52

𝐷 0.1111 0.5789
5 + 𝜆

9 + 𝜆
0.8329 0.8244 0.575 0.3458 0.3566

𝐸 are different, which means only 𝐸 can distinguish 𝐴, 𝐵,
𝐶, and 𝐷 well. Although it is possible that two or more
IvIFSs have the same entropy, the proposed entropy measure
is more precise and detailed than other entropy measures for
presenting the degree of the uncertain information under the
new framework of Definition 19.

4.2. The Application of the Compositive Entropy Measure to
Decision-Making. Since the compositive entropy measure
𝐸(𝐴) not only has theoretical advantage, which is taking three
kinds of entropymeasures into account, but also has practical
excellent effect, now we will show the application onmultiple
attributes’ decision-making with unknown information of
criteria weights for alternatives.

Let 𝐶 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
} be a set of criteria and let 𝐴 =

{𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} be a set of alternatives which consists of 𝑚

noninferior alternatives (an alternative is noninferior if there
exists no other alternative which can yield an improvement in
one attribute, without causing a degradation in another).The
evaluation value of criteria on an alternative𝐴

𝑖
is represented

by the following IvIFS:

𝐴
𝑖
= {⟨𝐶

𝑗
, [𝜇
−

𝐴
𝑖

(𝐶
𝑗
) , 𝜇
+

𝐴
𝑖

(𝐶
𝑗
)] ,

[]−
𝐴
𝑖

(𝐶
𝑗
) , ]+
𝐴
𝑖

(𝐶
𝑗
)]⟩ | 𝐶

𝑗
∈ 𝐶} ,

(19)

where𝜇+
𝐴
𝑖

(𝐶
𝑗
)+]+
𝐴
𝑖

(𝐶
𝑗
) ≤ 1,𝜇−

𝐴
𝑖

(𝐶
𝑗
), ]−
𝐴
𝑖

(𝐶
𝑗
) ≥ 0, 𝑖 = 1, 2, . . .,

𝑚, 𝑗 = 1, 2, . . . , 𝑛. For convenience, we denote ⟨[𝜇−
𝐴
𝑖

(𝐶
𝑗
),

𝜇
+

𝐴
𝑖

(𝐶
𝑗
)], []−
𝐴
𝑖

(𝐶
𝑗
), ]+
𝐴
𝑖

(𝐶
𝑗
)]⟩ = ⟨[𝜇

−

𝑖𝑗
, 𝜇
+

𝑖𝑗
], []−
𝑖𝑗
, ]+
𝑖𝑗
]⟩ = 𝑟

𝑖𝑗
, 𝑖 =

1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛. Then the decision matrix is 𝑅 =

(𝑟
𝑖𝑗
)
𝑚×𝑛

. Assume that 𝑊 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
) is the weight

vector on attribute vector𝐶 = (𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
), where∑𝑛

1
𝜔
𝑖
=

1 and 𝜔
𝑖
∈ [0, 1]. In what follows, we only discuss the

case where the weight vector of attributes 𝑊 is completely
unknown.

According to the entropy theory [34], if the entropy value
for a criterion is smaller across alternatives, it should provide
decision-makers with the useful information. Therefore, the
criterion should be assigned a bigger weight; otherwise, such
a criterionwill be judged unimportant by the decision-maker.
In other words, such a criterion should be evaluated as a very
small weight. Nowwe can establish an exactmodel of entropy
weights [34]:

𝜔
𝑗
=

1 − 𝐸 (𝐶
𝑗
)

𝑛 − ∑
𝑛

𝑖=1
𝐸 (𝐶
𝑖
)

, (20)

where ∑𝑛
1
𝜔
𝑖
= 1 and 𝜔

𝑖
∈ [0, 1] and 𝐸(𝐶

𝑗
) is calculated by

𝐸 (𝐶
𝑗
) =

1

𝑚

𝑚

∑

𝑖=1

𝐸 (𝑟
𝑖𝑗
) , (21)

where 𝐸(𝑟
𝑖𝑗
) is the compositive entropy of the IvIFS 𝑟

𝑖𝑗
in

(17).
In multiple attributes’ decision-making environment, the

concept of positive point has been used to identify the best
alternative. Although the positive alternative does not exist
in real world, it does provide a useful theoretical evaluating
standard for all the criteria. Here we define the positive
alternative 𝐴+ = {⟨𝐶

𝑗
, [1, 1], [0, 0]⟩ | 𝐶

𝑗
∈ 𝐶}. Then based

on the correlation coefficient equation (1) between IvIFSs and
the weight vector 𝑊 on attribute vector, we can define the
weighted correlation coefficient 𝐾

𝑊
(𝐴
𝑖
, 𝐴
+
), 𝑖 = 1, 2, . . . , 𝑚,

between an alternative 𝐴
𝑖
and the positive alternative 𝐴+ as

follows:

𝐾
𝑊
(𝐴
𝑖
, 𝐴
+
) =

𝐶
𝑊
(𝐴
𝑖
, 𝐴
+
)

√𝐸
𝑊
(𝐴
𝑖
) 𝐸
𝑊 (𝐴
+
)

=

(1/2)∑
𝑛

𝑗=1
𝜔
𝑗
(𝜇
−

𝑖𝑗
+ 𝜇
+

𝑖𝑗
)

√(1/2)∑
𝑛

𝑗=1
𝜔
𝑗
[(𝜇
−

𝑖𝑗
)
2

+ (𝜇
+

𝑖𝑗
)
2

+ (]−
𝑖𝑗
)
2

+ (]+
𝑖𝑗
)
2

+ (𝜋
−

𝑖𝑗
)
2

+ (𝜋
+

𝑖𝑗
)
2

]

. (22)

We can check that the weighted correlation coefficient
𝐾
𝑊
(𝐴
𝑖
, 𝐴
+
) has the following properties:

(a) 0 ≤ 𝐾
𝑊
(𝐴
𝑖
, 𝐴
+
) ≤ 1;

(b) 𝐾
𝑊
(𝐴
𝑖
, 𝐴
+
) = 𝐾
𝑊
(𝐴
+
, 𝐴
𝑖
);

(c) 𝐾
𝑊
(𝐴
𝑖
, 𝐴
+
) = 1 iff 𝐴

𝑖
= 𝐴
+.

The larger the value of weighted correlation coefficient
𝐾
𝑊
(𝐴
𝑖
, 𝐴
+
), the better the alternative 𝐴

𝑖
, as the alterna-

tive 𝐴
𝑖
is closer to the ideal alternative 𝐴+. Therefore, all

the alternatives can be ranked according to the value of the
weighted correlation coefficients so that the best alternative
can be selected.

The decision procedure for the proposed method can be
summarized as follows.

Step 1. Calculate the weight vector 𝑊 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)

on attribute vector by using (20) and (21) from the decision
matrix 𝑅 = (𝑟

𝑖𝑗
)
𝑚×𝑛

.
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Step 2. Calculate the weighted correlation coefficient
𝐾
𝑊
(𝐴
𝑖
, 𝐴
+
) by using (22).

Step 3. Rank the alternatives according to the obtained
correlation coefficients, and then obtain the best choice.

Example 22. Assume that a fund manager in a wealth
management firm is assessing four potential investment

opportunities; that is, the set of alternatives is 𝐴(𝐴
1
, 𝐴
2
,

𝐴
3
, 𝐴
4
). The firm mandates that the fund manager has to

evaluate each investment against four criteria: risk (𝐶
1
),

growth (𝐶
2
), sociopolitical issues (𝐶

3
), and environmental

impacts (𝐶
4
). In addition, the fund manager is only com-

fortable with providing his/her assessment of each alternative
on each criterion as an IvIFS and the decision matrix is as
follows:

[
[
[
[
[

[

([0.4, 0.5] , [0.3, 0.4]) ([0.4, 0.6] , [0.2, 0.4]) ([0.3, 0.4] , [0.4, 0.5]) ([0.5, 0.6] , [0.1, 0.3])

([0.5, 0.6] , [0.2, 0.3]) ([0.6, 0.7] , [0.2, 0.3]) ([0.5, 0.6] , [0.3, 0.4]) ([0.4, 0.7] , [0.1, 0.2])

([0.3, 0.5] , [0.3, 0.4]) ([0.1, 0.3] , [0.5, 0.6]) ([0.2, 0.5] , [0.4, 0.5]) ([0.2, 0.3] , [0.4, 0.6])

([0.2, 0.5] , [0.3, 0.4]) ([0.4, 0.7] , [0.1, 0.2]) ([0.4, 0.5] , [0.3, 0.5]) ([0.5, 0.8] , [0.1, 0.2])

]
]
]
]
]

]

. (23)

Each element of this matrix is an IvIFS, representing the
fund managers assessment as to what degree an alternative
is and is not an excellent investment as per criterion. For
instance, the top-left cell, ([0.4, 0.5], [0.3, 0.4]), reflects the
fund managers belief that alternative 𝐴

1
is an excellent

investment from a risk perspective (𝐶
1
) with a margin of 40–

50% and 𝐴
1
is not an excellent choice given its risk profile

(𝐶
1
) with a chance between 30% and 40%. The proposed

method is applied to solve this problem according to the
following computational procedure.

Step 1. We can calculate the entropy weights of criteria by
using (20) and (21) from the decision matrix as follows:

𝜔
1
= 0.2266,

𝜔
2
= 0.2722,

𝜔
3
= 0.2333,

𝜔
4
= 0.2679.

(24)

Step 2. Calculate the weighted correlation coefficient
𝐾
𝑊
(𝐴
𝑖
, 𝐴
+
) by using (22) as follows:

𝐾
𝑊
(𝐴
1
, 𝐴
+
) = 0.7273,

𝐾
𝑊
(𝐴
2
, 𝐴
+
) = 0.8441,

𝐾
𝑊
(𝐴
3
, 𝐴
+
) = 0.4553,

𝐾
𝑊
(𝐴
4
, 𝐴
+
) = 0.7438.

(25)

Step 3. From the weighted correlation coefficients between
the alternatives and the positive alternative, the ranking order
is 𝐴
2
⪰ 𝐴
4
⪰ 𝐴
1
⪰ 𝐴
3
. And the alternative 𝐴

2
is the best

choice.

Wei [35] and Zhang et al. [26] have introduced two kinds
of efficient methods for multiple attribute decision-making
with completely unknown attribute weights. By applying
Wei’s method [35] to Example 22, the ranking order of all
the alternatives is 𝐴

2
⪰ 𝐴
4
⪰ 𝐴
1
⪰ 𝐴
3
, and the most

desirable alternative is𝐴
2
. By applying the method proposed

by Zhang et al. [26] to Example 22, the ranking order of all the
alternatives is 𝐴

2
⪰ 𝐴
4
⪰ 𝐴
1
⪰ 𝐴
3
, and the most desirable

alternative is 𝐴
2
. We can see that all results are uniform.

4.3. The Application of the Compositive Entropy Measure to
Pattern Recognition. First, we present a similarity measure
of IvIFS via the relationship between similarity measure and
entropy of IvIFS. Hu and Li [36] give transformationmethods
from entropy to similarity of IvIFS. Utilizing the compositive
entropymeasure above, we propose a new similarity measure
which can be used for pattern recognition.

For 𝐴, 𝐵 ∈ IvIFS(𝑋), we define 𝑓(𝐴, 𝐵) ∈ IvIFS(𝑋) as
follows:

𝜇
𝑓(𝐴,𝐵) (𝑥) = [𝜇

−

𝑓(𝐴,𝐵)
(𝑥) , 𝜇

+

𝑓(𝐴,𝐵)
(𝑥)] ,

]
𝑓 (𝐴, 𝐵) (𝑥) = []

−

𝑓(𝐴,𝐵)
(𝑥) , ]+

𝑓(𝐴,𝐵)
(𝑥)] ,

∀𝑥 ∈ 𝑋,

(26)

where

𝜇
−

𝑓(𝐴,𝐵)
(𝑥)

=
1 + [

𝜇
−

𝐴
(𝑥) − 𝜇

−

𝐵
(𝑥)
 ∨

]
+

𝐴
(𝑥) − ]+

𝐵
(𝑥)
]
3

2
,

𝜇
+

𝑓(𝐴,𝐵)
(𝑥)

=
1 + [

𝜇
−

𝐴
(𝑥) − 𝜇

−

𝐵
(𝑥)
 ∨

]
+

𝐴
(𝑥) − ]+

𝐵
(𝑥)
]
2

2
,

]−
𝑓(𝐴,𝐵)

(𝑥)

=
1 − [

𝜇
−

𝐴
(𝑥) − 𝜇

−

𝐵
(𝑥)
 ∨

]
+

𝐴
(𝑥) − ]+

𝐵
(𝑥)
]
2

2
,

]+
𝑓(𝐴,𝐵)

(𝑥)

=
1 − [

𝜇
−

𝐴
(𝑥) − 𝜇

−

𝐵
(𝑥)
 ∨

]
+

𝐴
(𝑥) − ]+

𝐵
(𝑥)
]

2
.

(27)
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Theorem 23 (see [36]). Let 𝐸 be an entropy on 𝐼V𝐼𝐹𝑆(𝑋).
Then𝐸

𝑓
(𝐴, 𝐵) = 𝐸(𝑓(𝐴, 𝐵)) : 𝐼V𝐼𝐹𝑆(𝑋)×𝐼V𝐼𝐹𝑆(𝑋) → [0, 1]

is a similarity measure on IvIFS(𝑋).
Based on the compositive entropy measure of formula (17),

we have following similarity measure of 𝐴, 𝐵 on 𝐼V𝐼𝐹𝑆(𝑋):

𝐸
𝑓 (𝐴, 𝐵) = 𝐸 (𝑓 (𝐴, 𝐵)) =

2

5𝑛 ln 2

𝑛

∑

𝑖=1

((𝑀
2

𝑖
−
𝑀
𝑖

4
)

⋅ ln 2 + (
𝑀
𝑖

4
+
𝑀
2

𝑖

2
+
𝑀
3

𝑖

4
)

⋅ ln(
𝑀
𝑖

4
+
𝑀
2

𝑖

2
+
𝑀
3

𝑖

4
)

+ (
𝑀
𝑖

4
+
𝑀
2

𝑖

2
+
𝑀
3

𝑖

4
+ 1)

⋅ ln 2

𝑀
𝑖
/4 +𝑀

2

𝑖
/2 +𝑀

3

𝑖
/4 + 1

) ,

(28)

where𝑀
𝑖
= |𝜇
−

𝐴
(𝑥
𝑖
)−𝜇
−

𝐵
(𝑥
𝑖
)|∨|]+
𝐴
(𝑥
𝑖
)−]+
𝐵
(𝑥
𝑖
)|, 𝑖 = 1, 2, . . . , 𝑛.

Example 24. Let us consider the following pattern recog-
nition problem as discussed in [37]. Assume 𝑅

1
, 𝑅
2
, 𝑅
3
, 𝑅
4
,

and 𝑅
5
are given five known patterns, which correspond to

five decision alternatives 𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑑
4
, and 𝑑

5
, respectively.

The patterns are denoted by the following IvIFSs in 𝑋 =

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
}:

𝑅
1
= {(𝑥
1
, [0.4, 0.5] , [0.3, 0.4]) ,

(𝑥
2
, [0.4, 0.6] , [0.2, 0.4]) , (𝑥3, [0.3, 0.4] , [0.4, 0.5]) ,

(𝑥
4
, [0.5, 0.6] , [0.1, 0.3])} ,

𝑅
2
= {(𝑥
1
, [0.5, 0.6] , [0.2, 0.3]) ,

(𝑥
2
, [0.6, 0.7] , [0.2, 0.3]) , (𝑥3, [0.5, 0.6] , [0.3, 0.4]) ,

(𝑥
4
, [0.4, 0.7] , [0.1, 0.2])} ,

𝑅
3
= {(𝑥
1
, [0.3, 0.5] , [0.3, 0.4]) ,

(𝑥
2
, [0.1, 0.3] , [0.5, 0.6]) , (𝑥3, [0.2, 0.5] , [0.4, 0.5]) ,

(𝑥
4
, [0.2, 0.3] , [0.4, 0.6])} ,

𝑅
4
= {(𝑥
1
, [0.2, 0.5] , [0.3, 0.4]) ,

(𝑥
2
, [0.4, 0.7] , [0.1, 0.2]) , (𝑥3, [0.4, 0.5] , [0.3, 0.5]) ,

(𝑥
4
, [0.5, 0.8] , [0.1, 0.2])} ,

𝑅
5
= {(𝑥
1
, [0.3, 0.4] , [0.1, 0.3]) ,

(𝑥
2
, [0.7, 0.8] , [0.1, 0.2]) , (𝑥3, [0.5, 0.6] , [0.2, 0.4]) ,

(𝑥
4
, [0.6, 0.7] , [0.1, 0.2])} .

(29)

Given an unknown sample,

𝑟
+
= {(𝑥
1
, [0.5, 0.6] , [0.1, 0.3]) ,

(𝑥
2
, [0.7, 0.8] , [0.1, 0.2]) , (𝑥3, [0.5, 0.6] , [0.2, 0.4]) ,

(𝑥
4
, [0.6, 0.7] , [0.1, 0.2])} .

(30)

From formula (28), we can compute the degree of similarity
between 𝑅

𝑖
and 𝑟+ as follows:

𝐸
𝑓
(𝑅
1
, 𝑟
+
) = 0.3753,

𝐸
𝑓
(𝑅
2
, 𝑟
+
) = 0.3866,

𝐸
𝑓
(𝑅
3
, 𝑟
+
) = 0.2395,

𝐸
𝑓
(𝑅
4
, 𝑟
+
) = 0.2944,

𝐸
𝑓
(𝑅
5
, 𝑟
+
) = 0.4344.

(31)

Our aim is to classify pattern 𝑟
+ to one of the deci-

sion alternatives 𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑑
4
, and 𝑑

5
. Since 𝐸

𝑓
(𝑅
5
, 𝑟
+
) =

Max
1≤𝑖≤5

𝐸
𝑓
(𝑅
𝑖
, 𝑟
+
), then the pattern 𝑟+ should be classified to

𝑅
5
according to the principle ofmaximumsimilarity. Itmeans

that the decision alternative 𝑑
5
is the optimal alternative

which is the closest alterative to positive ideal solution. This
result is in agreement with the one obtained in [37].

5. Conclusions

In this paper, we propose some kinds of entropy to measure
the uncertain information of IvIFS. Firstly, we investigate the
interval-valued intuitionistic fuzzy entropy by introducing
the interval-valued intuitionistic fuzzy cross-entropy. Then
we put forward three kinds of entropy of IvIFS, including
interval-valued intuitionistic entropy, interval-valued fuzzy
entropy, and interval-valued span entropy. Based on the
three kinds of entropy, the compositive entropy of IvIFS is
established. Furthermore, a measure formula of compositive
entropy is proposed. At last, we compare the compositive
entropy measure with other entropy measures and show
the applications on multiple attributes’ decision-making and
pattern recognition. And the results are feasible.
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