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Uncertainty theory is a branch of mathematics for modeling human uncertainty based on the normality, duality, subadditivity,
and product axioms. This paper studies a discrete-time LQ optimal control with terminal state constraint, whereas the weighting
matrices in the cost function are indefinite and the system states are disturbed by uncertain noises.We first transform the uncertain
LQproblem into an equivalent deterministic LQproblem.Then, themain result given in this paper is the necessary condition for the
constrained indefinite LQ optimal control problem bymeans of the Lagrangianmultiplier method.Moreover, in order to guarantee
the well-posedness of the indefinite LQ problem and the existence of an optimal control, a sufficient condition is presented in the
paper. Finally, a numerical example is presented at the end of the paper.

1. Introduction

The linear quadratic (LQ) optimal control problem has been
pioneered by Kalman [1] for deterministic systems, which is
extended to stochastic systems byWonham [2], and has rapid
development in both theory and application [3]. Usually, it
is an assumption that the control weighting matrix in the
cost is strictly definite. For stochastic LQ optimal control,
it is first revealed in [4] that even if the state and control
weighting matrices are indefinite the corresponding problem
may be still well-posed, which evoked a series of subsequent
researches in continuous time [5] and in discrete-time [6].
In fact, some constraints are of considerable importance in
many physical systems; the system state and control input
are always subject to various constraints, so the constrained
stochastic LQ issue has a concrete application background.
For that reason, some researchers discussed stochastic LQ
optimal problems with indefinite control weights and con-
straints [7, 8].

As is well known, these stochastic optimal control prob-
lems have been well studied by probability theory which is
based on a large number of sample sizes. Sometimes, no
samples are available to estimate the probability distribution.

For such situation, we have to invite some domain experts to
evaluate the belief degree that each event will occur. In order
to rationally deal with belief degrees, uncertainty theory was
established by Liu [9] in 2007 and refined by Liu [10] in 2010.
Nowadays, uncertainty theory has become a new branch of
mathematics for modeling indeterminate phenomena, which
has been well developed and applied in a wide variety of
real problems: option pricing problem [11], facility location
problem [12], inventory problem [13], assignment problem
[14], and production control problem [15].

Based on the uncertainty theory, Zhu [16] proposed
an uncertain optimal control model in 2010 and gave an
equation of optimality as a counterpart of Hamilton-Jacobi-
Bellman equation. After that, some uncertain optimal control
problems have been solved. As such, Sheng and Zhu [17]
investigated an optimistic value model of uncertain optimal
control problem; Yan and Zhu [18] established an uncer-
tain optimal control model for switched systems. Inspired
by the preceding work, we will tackle an indefinite LQ
optimal control with terminal state constraint for discrete-
time uncertain systems, which is a constrained uncertain
optimal control problem. The rest of the paper is organized
as follows. Section 2 collects some preliminary results. In
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Section 3, an indefinite LQ optimal control with terminal
state constraint is discussed. We present a general expression
for the optimal control set in Section 4. A numerical example
is applied in Section 5 to demonstrate the effectiveness of the
model. We conclude the paper in Section 6.

For convenience, throughout the paper, we adopt the
following notations: R𝑛 is the real 𝑛-dimensional Euclidean
space;R𝑚×𝑛 is the set of all𝑚×𝑛matrices;𝑀𝜏 is the transpose
of matrix 𝑀; and tr(𝑀) is the trace of a square matrix 𝑀.
Moreover,𝑀 > 0 (resp.,𝑀 ≥ 0) means that𝑀 = 𝑀

𝜏 and𝑀
is positive (resp., positive semidefinite) definite.

2. Some Preliminaries

In this section, we introduce some useful definitions about
uncertainty theory and Moore-Penrose pseudoinverse of a
matrix.

Let Γ be a nonempty set, and letL be a 𝜎-algebra over Γ.
Each elementΛ inL is called an event. An uncertainmeasure
was defined by Liu [9] via the following three axioms.

Axiom 1 (normality axiom). M{Γ} = 1 for the universal set
Γ.

Axiom 2 (duality axiom). M{Λ} +M{Λ
𝑐

} = 1 for any event
Λ.

Axiom 3 (subadditivity axiom). For every countable
sequence of events Λ

1
, Λ
2
, . . ., we have

M{

∞

⋃

𝑖=1

Λ
𝑖
} ≤

∞

∑

𝑖=1

M {Λ
𝑖
} . (1)

The triplet (Γ,L,M) is called an uncertainty space.
Furthermore, Liu [19] defined a product uncertain measure
by the product axiom.

Axiom 4 (product axiom). Let (Γ
𝑘
,L
𝑘
,M
𝑘
) be uncertainty

spaces for 𝑘 = 1, 2, . . .. Then, the product uncertain measure
M on the product 𝜎-algebra satisfies

M{

∞

∏

𝑘=1

Λ
𝑘
} =

∞

⋀

𝑘=1

M
𝑘
{Λ
𝑘
} , (2)

where Λ
𝑘
are arbitrarily chosen events from L

𝑘
for 𝑘 =

1, 2, . . ., respectively.

An uncertain variable is defined by Liu [9] as a function
𝜉 from an uncertainty space (Γ,L,M) to the set of real
numbers such that {𝜉 ∈ 𝐵} is an event for any Borel set 𝐵.
In addition, an uncertainty distribution of 𝜉 is defined as

Φ (𝑥) = M {𝛾 ∈ Γ | 𝜉 (𝛾) ≤ 𝑥} , (3)
for any real number 𝑥.

Independence is an important concept in uncertainty
theory. The uncertain variables 𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑚
are said to be

independent (Liu [19]) if

M{

𝑚

⋂

𝑖=1

(𝜉
𝑖
∈ 𝐵
𝑖
)} = min

1≤𝑖≤𝑚

M {𝜉
𝑖
∈ 𝐵
𝑖
} (4)

for any Borel sets 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
of real numbers.

An uncertain variable 𝜉 is called linear (Liu [9]) if it has a
linear uncertainty distribution

Φ (𝑥) =

{
{
{
{
{

{
{
{
{
{

{

0, if 𝑥 ≤ 𝑎,

(𝑥 − 𝑎)

(𝑏 − 𝑎)

, if 𝑎 ≤ 𝑥 ≤ 𝑏,

1, if 𝑥 ≥ 𝑏

(5)

denoted byL(𝑎, 𝑏), where 𝑎 and 𝑏 are real numbers with 𝑎 <

𝑏.
Let 𝜉 be an uncertain variable. Then, the expected value

(Liu [9]) of 𝜉 is defined by

𝐸 [𝜉] = ∫

+∞

0

M {𝜉 ≥ 𝑟} d𝑟 − ∫

0

−∞

M {𝜉 ≤ 𝑟} d𝑟 (6)

provided that at least one of the two integrals is finite.

Remark 1. For numbers 𝑎 and 𝑏, 𝐸[𝑎𝜉 + 𝑏𝜂] = 𝑎𝐸[𝜉] + 𝑏𝐸[𝜂]

if 𝜉 and 𝜂 are independent uncertain variables. Generally
speaking, the expected value operator is not necessarily linear
if the independence is not assumed.

Remark 2. Let

𝜉 = (

𝜉
11

𝜉
12

⋅ ⋅ ⋅ 𝜉
1𝑞

𝜉
21

𝜉
22

⋅ ⋅ ⋅ 𝜉
2𝑞

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝜉
𝑝1

𝜉
𝑝2

⋅ ⋅ ⋅ 𝜉
𝑝𝑞

), (7)

where 𝜉
𝑖𝑗
are uncertain variables for 𝑖 = 1, 2, . . . , 𝑝, 𝑗 =

1, 2, . . . , 𝑞. The expected value of 𝜉 is provided by

𝐸 [𝜉] = (

𝐸[𝜉
11
] 𝐸 [𝜉

12
] ⋅ ⋅ ⋅ 𝐸 [𝜉

1𝑞
]

𝐸 [𝜉
21
] 𝐸 [𝜉

22
] ⋅ ⋅ ⋅ 𝐸 [𝜉

2𝑞
]

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐸 [𝜉
𝑝1
] 𝐸 [𝜉

𝑝2
] ⋅ ⋅ ⋅ 𝐸 [𝜉

𝑝𝑞
]

). (8)

Lemma 3 (Penrose [20]). Let a matrix 𝑀 ∈ R𝑚×𝑛 be given.
Then, there exists a unique matrix𝑀+ ∈ R𝑛×𝑚 such that

𝑀𝑀
+

𝑀 = 𝑀,

𝑀
+

𝑀𝑀
+

= 𝑀
+

,

(𝑀𝑀
+

)

𝜏

= 𝑀𝑀
+

,

(𝑀
+

𝑀)

𝜏

= 𝑀
+

𝑀.

(9)

The matrix 𝑀
+ is called the Moore-Penrose pseudoinverse of

𝑀.

Lemma 4 (Penrose [20]). Let matrices L, M, and N be given
with appropriate sizes. Then, the matrix equation 𝐿𝑋𝑀 = 𝑁

has a solution X if and only if 𝐿𝐿+𝑁𝑀𝑀
+

= 𝑁.Moreover, any
solution to 𝐿𝑋𝑀 = 𝑁 is represented by 𝑋 = 𝐿

+

𝑁𝑀
+

+ 𝑌 −

𝐿
+

𝐿𝑌𝑀𝑀
+, where 𝑌 is a matrix with an appropriate size.
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3. Indefinite LQ Optimal
Control with Constraints

3.1. Problem Statement. Consider the following indefinite LQ
optimal control with terminal state constraint for discrete-
time uncertain systems:

infu𝑘
0≤𝑘≤𝑁−1

𝐽 (x
0
, u)

=

𝑁−1

∑

𝑘=0

𝐸 [x𝜏
𝑘
𝑄
𝑘
x
𝑘
+ u𝜏
𝑘
𝑅
𝑘
u
𝑘
] + 𝐸 [x𝜏

𝑁
𝑄
𝑁
x
𝑁
]

subject to x
𝑘+1

= 𝐴
𝑘
x
𝑘
+ 𝐵
𝑘
u
𝑘
+ 𝜆
𝑘
(𝐴
𝑘
x
𝑘
+ 𝐵
𝑘
u
𝑘
) 𝜉
𝑘
,

𝑘 = 0, 1, . . . , 𝑁 − 1, x (0) = x
0

𝐸 [x𝜏
𝑁
x
𝑁
] = 𝑐,

(10)

where 0 ≤ |𝜆
𝑘
| ≤ 1, state x

𝑘
∈ R𝑛, control input u

𝑘
∈ R𝑚,

𝑘 = 0, 1, . . . , 𝑁 − 1, and x
0
∈ R𝑛 is a given crisp vector.

Denote u = (u
0
, u
1
, . . . , u

𝑁−1
). Moreover, 𝑄

0
, 𝑄
1
, . . . , 𝑄

𝑁

and 𝑅
0
, 𝑅
1
, . . . , 𝑅

𝑁−1
are real symmetric matrices with appro-

priate dimensions. In addition, 𝑐 ≥ 0 is a constant; the
coefficients 𝐴

0
, 𝐴
1
, . . . , 𝐴

𝑁−1
and 𝐵

0
, 𝐵
1
, . . . , 𝐵

𝑁−1
are crisp

matrices having appropriate dimensions determined from
context. Besides, the noises 𝜉

0
, 𝜉
1
, . . . , 𝜉

𝑁−1
are independent

linear uncertain variablesL(−1, 1) with the distribution

Φ (𝑥) =

{
{
{
{

{
{
{
{

{

0, if 𝑥 ≤ −1,

(𝑥 + 1)

2

, if − 1 ≤ 𝑥 ≤ 1,

1, if 𝑥 ≥ 1.

(11)

In this paper, the weighting matrices in the objective
functional are not required to be definite.Therefore, problem

(10) is an indefinite LQ optimal control problem. Next, we
give the following definitions.

Definition 5. The indefinite LQ problem (10) is called well-
posed if

𝑉 (x
0
) = infu𝑘
0≤𝑘≤𝑁−1

𝐽 (x
0
, u) > −∞, ∀x

0
∈ R𝑛. (12)

Definition 6. A well-posed problem is called solvable, if, for
x
0
∈ R𝑛, there is a control sequence (u∗

0
, u∗
1
, . . . , u∗

𝑁−1
) that

achieves 𝑉(x
0
). In this case, the control (u∗

0
, u∗
1
, . . . , u∗

𝑁−1
) is

called an optimal control sequence.

3.2. An Equivalent Problem. Next, we transform the uncer-
tain LQ optimal control problem (10) into an equivalent
deterministic LQ optimal control problem which is subject
to a matrix difference equation constraint.

Let 𝑋
𝑘
= 𝐸[x

𝑘
x𝜏
𝑘
]. Since state x

𝑘
∈ R𝑛, x

𝑘
x𝜏
𝑘
is 𝑛 × 𝑛

matrix whose elements are uncertain variables, and 𝑋
𝑘
is

a symmetric crisp matrix (𝑘 = 0, 1, . . . , 𝑁). Denote K =

(𝐾
0
, 𝐾
1
, . . . , 𝐾

𝑁−1
), where𝐾

𝑖
arematrices for 𝑖 = 0, 1, . . . , 𝑁−

1.

Theorem 7. If the indefinite LQ problem (10) is solvable by a
feedback control

u
𝑘
= 𝐾
𝑘
x
𝑘
, (13)

where 𝐾
𝑘
are constant crisp matrices, then it is equivalent to

the following deterministic optimal control problem:

min
𝐾𝑘

0≤𝑘≤𝑁−1

𝐽 (𝑋
0
,K) =

𝑁−1

∑

𝑘=0

tr [(𝑄
𝑘
+ 𝐾
𝜏

𝑘
𝑅
𝑘
𝐾
𝑘
)𝑋
𝑘
] + tr [𝑄

𝑁
𝑋
𝑁
]

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋
𝑘+1

= (1 +

1

3

𝜆
2

𝑘
) (𝐴
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐴
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
) ,

𝑋
0
= x
0
x𝜏
0
,

tr [𝑋
𝑁
] = 𝑐,

(14)

for 𝑘 = 0, 1, . . . , 𝑁 − 1.

Proof. Assume that the indefinite LQ problem (10) is solvable
by a feedback control

u
𝑘
= 𝐾
𝑘
x
𝑘
, (15)

for 𝑘 = 0, 1, . . . , 𝑁 − 1. Let 𝑋
𝑘
= 𝐸[x

𝑘
x𝜏
𝑘
] for 𝑘 = 0, 1, . . . , 𝑁.

Then, we have

𝑋
𝑘+1

= 𝐸 [x
𝑘+1

x𝜏
𝑘+1

]

= 𝐸 {[𝐴
𝑘
+ 𝐵
𝑘
𝐾
𝑘
+ 𝜆
𝑘
(𝐴
𝑘
+ 𝐵
𝑘
𝐾
𝑘
) 𝜉
𝑘
]

⋅ x
𝑘
x𝜏
𝑘
[𝐴
𝜏

𝑘
+ 𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
+ 𝜆
𝑘
(𝐴
𝜏

𝑘
+ 𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
) 𝜉
𝑘
]}

= 𝐴
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐴
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘

+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
+ 𝐸 [𝑈

𝑘
𝜉
𝑘
+ 𝑉
𝑘
𝜉
2

𝑘
] ,

(16)

where

𝑈
𝑘
= 2𝜆
𝑘
(𝐴
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐴
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘

+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
)
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𝑉
𝑘
= 𝜆
2

𝑘
(𝐴
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐴
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘

+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
) .

(17)

Then, we obtain that 𝜆
𝑘
𝑈
𝑘
= 2𝑉
𝑘
. Because 𝜉

𝑘
and 𝜉
2

𝑘
are not

independent, we know that

𝐸 [𝑈
𝑘
𝜉
𝑘
+ 𝑉
𝑘
𝜉
2

𝑘
] ̸= 𝑈
𝑘
𝐸 [𝜉
𝑘
] + 𝑉
𝑘
𝐸 [𝜉
2

𝑘
] . (18)

We will deal with (18) as follows.

(i) If 𝑉
𝑘
= 0, we obtain

𝐸 [𝑈
𝑘
𝜉
𝑘
+ 𝑉
𝑘
𝜉
2

𝑘
] = 𝐸 [𝑈

𝑘
𝜉
𝑘
] = 𝑈
𝑘
𝐸 [𝜉
𝑘
] = 0. (19)

(ii) If 𝑉
𝑘

̸= 0, we know that 𝜆
𝑘

̸= 0 and |2/𝜆
𝑘
| ≥ 2.

According to Example 2 in [21], we have

𝐸 [𝑈
𝑘
𝜉
𝑘
+ 𝑉
𝑘
𝜉
2

𝑘
] = 𝐸 [

2

𝜆
𝑘

𝑉
𝑘
𝜉
𝑘
+ 𝑉
𝑘
𝜉
2

𝑘
]

= 𝑉
𝑘
𝐸[

2

𝜆
𝑘

𝜉
𝑘
+ 𝜉
2

𝑘
] =

1

3

𝑉
𝑘
.

(20)

Therefore, we have

𝐸 [𝑈
𝑘
𝜉
𝑘
+ 𝑉
𝑘
𝜉
2

𝑘
] =

1

3

𝑉
𝑘
. (21)

Substituting (21) into (16) produces the following statematrix:

𝑋
𝑘+1

= (1 +

1

3

𝜆
2

𝑘
) (𝐴
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐴
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘

+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
) .

(22)

The associated cost function reduces to

min
𝐾𝑘

0≤𝑘≤𝑁−1

𝐽 (𝑋
0
,K)

= min
𝐾𝑘

0≤𝑘≤𝑁−1

𝑁−1

∑

𝑘=0

tr [(𝑄
𝑘
+ 𝐾
𝜏

𝑘
𝑅
𝑘
𝐾
𝑘
)𝑋
𝑘
]

+ tr [𝑄
𝑁
𝑋
𝑁
] ,

(23)

and the constraint 𝐸[x𝜏
𝑁
x
𝑁
] = 𝑐 becomes tr[𝑋

𝑁
] = 𝑐.

Remark 8. Obviously, if problem (10) has a linear feedback
optimal control solutionu∗

𝑘
= 𝐾
∗

𝑘
x
𝑘
(𝑘 = 0, 1, . . . , 𝑁−1), then

𝐾
∗

𝑘
(𝑘 = 0, 1, . . . , 𝑁 − 1) is the optimal solution of problem

(14).

3.3. A Necessary Condition for State Feedback Control. In this
subsection, a necessary condition for the optimal linear state
feedback control with deterministic gains to the indefinite LQ
problem (10) is obtained by applying the deterministic matrix
maximum principle [22].

Theorem 9. If the indefinite LQ problem (10) is solvable by a
feedback control

u
𝑘
= 𝐾
𝑘
x
𝑘
, (24)

where𝐾
𝑘
are constant crisp matrices, then there exist symmet-

ric matrices𝐻
𝑘
and a nonnegative 𝛾 ∈ R1 solving the following

constrained difference equation:

𝐻
𝑘
= 𝑄
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘

−𝑀
𝜏

𝑘
𝐿
+

𝑘
𝑀
𝑘
,

𝐿
𝑘
𝐿
+

𝑘
𝑀
𝑘
−𝑀
𝑘
= 0,

𝐿
𝑘
= 𝑅
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
≥ 0,

𝑀
𝑘
= (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
,

𝐻
𝑁
= 𝑄
𝑁
+ 𝛾𝐼,

(25)

for 𝑘 = 0, 1, . . . , 𝑁 − 1. Moreover,

𝐾
𝑘
= −𝐿
+

𝑘
𝑀
𝑘
+ 𝑌
𝑘
− 𝐿
+

𝑘
𝐿
𝑘
𝑌
𝑘

(26)

with 𝑌
𝑘
∈ R𝑚×𝑛, 𝑘 = 0, 1, . . . , 𝑁 − 1, being any given crisp

matrices.

Proof. Assume that the indefinite LQ problem (10) is solvable
by

u
𝑘
= 𝐾
𝑘
x
𝑘
, (27)

where the matrices 𝐾
𝑘
(𝑘 = 0, 1, . . . , 𝑁 − 1) are viewed as

the control to be determined. It is obvious that 𝐾
𝑘
is also

the optimal solution of problem (14) which is deterministic
LQ optimal control problem. Hence, we can apply the matrix
Lagrangian multiplier method to solve problem (14).

Let matrices 𝐻
𝑘+1

(𝑘 = 0, 1, . . . , 𝑁 − 1) be the Lagrange
multipliers of h

𝑘+1
(𝑋
𝑘
, 𝐾
𝑘
) (𝑘 = 0, 1, . . . , 𝑁 − 1), and let

𝛾 ∈ R1 be the Lagrange multiplier of 𝑔(𝑋
𝑁
) = 0. Then, the

Lagrange function is formed as

L = 𝐽 (𝑋
0
,K) +

𝑁−1

∑

𝑘=0

tr [𝐻
𝑘+1

h
𝑘+1

(𝑋
𝑘
, 𝐾
𝑘
)]

+ 𝛾𝑔 (𝑋
𝑁
) ,

(28)

where

𝐽 (𝑋
0
,K) =

𝑁−1

∑

𝑘=0

tr [(𝑄
𝑘
+ 𝐾
𝜏

𝑘
𝑅
𝑘
𝐾
𝑘
)𝑋
𝑘
] + tr [𝑄

𝑁
𝑋
𝑁
]

h
𝑘+1

(𝑋
𝑘
, 𝐾
𝑘
) = (1 +

1

3

𝜆
2

𝑘
) (𝐴
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐴
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘

+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
) − 𝑋
𝑘+1

,

𝑔 (𝑋
𝑁
) = tr [𝑋

𝑁
] − 𝑐.

(29)
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According to the first-order necessary conditions for optimal-
ity [22], we have

𝜕L

𝜕𝐾
𝑘

= 0 (𝑘 = 0, 1, . . . , 𝑁 − 1) , (30)

𝐻
𝑘
=

𝜕L

𝜕𝑋
𝑘

(𝑘 = 0, 1, . . . , 𝑁 − 1) , (31)

𝐻
𝑁
= 𝑄
𝑁
+ 𝛾𝐼. (32)

Based on the partial rule of gradient matrices [22], (30)
can be transformed into

[𝑅
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
]𝐾
𝑘

+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
= 0.

(33)

Let

𝐿
𝑘
= 𝑅
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
,

𝑀
𝑘
= (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
.

(34)

Then, (33) can be rewritten as 𝐿
𝑘
𝐾
𝑘
+ 𝑀
𝑘
= 0. Applying

Lemma 4, we have 𝐿
𝑘
𝐿
+

𝑘
𝑀
𝑘
= 𝑀
𝑘
, and

𝐾
𝑘
= −𝐿
+

𝑘
𝑀
𝑘
+ 𝑌
𝑘
− 𝐿
+

𝑘
𝐿
𝑘
𝑌
𝑘
, 𝑌
𝑘
∈ R𝑚×𝑛. (35)

For (31), according to

𝐻
𝑘
=

𝜕L

𝜕𝑋
𝑘

(𝑘 = 0, 1, . . . , 𝑁 − 1) , (36)

we have

𝐻
𝑘
= 𝑄
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘

+ 𝐾
𝜏

𝑘
[𝑅
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
]𝐾
𝑘

+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
𝐾
𝑘

+ (1 +

1

3

𝜆
2

𝑘
)𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
.

(37)

Substituting (35) into (37), we obtain

𝐻
𝑘
= 𝑄
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
−𝑀
𝜏

𝑘
𝐿
+

𝑘
𝑀
𝑘
. (38)

Consider the objective functional

𝐽 (x
0
, u) =

𝑁−1

∑

𝑘=0

𝐸 [x𝜏
𝑘
𝑄
𝑘
x
𝑘
+ u𝜏
𝑘
𝑅
𝑘
u
𝑘
] + 𝐸 [x𝜏

𝑁
𝑄
𝑁
x
𝑁
]

=

𝑁−1

∑

𝑘=0

𝐸 {[x𝜏
𝑘
𝑄
𝑘
x
𝑘
+ u𝜏
𝑘
𝑅
𝑘
u
𝑘
] + 𝐸 [x𝜏

𝑘+1
𝐻
𝑘+1

x
𝑘+1

]

− 𝐸 [x𝜏
𝑘
𝐻
𝑘
x
𝑘
]} + 𝐸 [x𝜏

𝑁
𝑄
𝑁
x
𝑁
] − 𝐸 [x𝜏

𝑁
𝐻
𝑁
x
𝑁
]

+ x𝜏
0
𝐻
0
x
0
=

𝑁−1

∑

𝑘=0

{tr [(𝑄
𝑘
+ 𝐾
𝜏

𝑘
𝑅
𝑘
𝐾
𝑘
)𝑋
𝑘
]

+ tr [𝐻
𝑘+1

𝑋
𝑘+1

] − tr [𝐻
𝑘
𝑋
𝑘
]} + tr [(𝑄

𝑁
− 𝐻
𝑁
)

⋅ 𝑋
𝑁
] + x𝜏
0
𝐻
0
x
0
.

(39)

Since 𝑋
𝑘+1

= (1 + (1/3)𝜆
2

𝑘
)(𝐴
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐴
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
+

𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
), the objective functional can be

rewritten as

𝐽 (𝑋
0
,K) =

𝑁−1

∑

𝑘=0

{tr [(𝑄
𝑘
+ 𝐾
𝜏

𝑘
𝑅
𝑘
𝐾
𝑘
) + (1 +

1

3

𝜆
2

𝑘
)

⋅ (𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
+ 𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
+ 𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
𝐾
𝑘

+ 𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
𝐾
𝑘
) − 𝐻
𝑘
]𝑋
𝑘
} + tr [(𝑄

𝑁
− 𝐻
𝑁
)

⋅ 𝑋
𝑁
] + x𝜏
0
H
0
x
0
=

𝑁−1

∑

𝑘=0

tr {[𝑄
𝑘

+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
− 𝐻
𝑘
] + (1 +

1

3

𝜆
2

𝑘
)

⋅ 𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
𝐾
𝑘

+ 𝐾
𝜏

𝑘
[𝑅
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
]𝐾
𝑘
}𝑋
𝑘

+ tr [(𝑄
𝑁
− 𝐻
𝑁
)𝑋
𝑁
] + x𝜏
0
𝐻
0
x
0

=

𝑁−1

∑

𝑘=0

tr [𝑀𝜏
𝑘
𝐿
+

𝑘
𝑀
𝑘
+ 𝐾
𝜏

𝑘
𝑀
𝑘
+𝑀
𝜏

𝑘
𝐾
𝑘
+ 𝐾
𝜏

𝑘
𝐿
𝑘
𝐾
𝑘
]

⋅ 𝑋
𝑘
+ tr [(𝑄

𝑁
− 𝐻
𝑁
)𝑋
𝑁
] + x𝜏
0
𝐻
0
x
0
.

(40)

By applying (32) andLemma3, a completion of square implies

𝐽 (𝑋
0
,K)

=

𝑁−1

∑

𝑘=0

tr [(𝐾
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
)

𝜏

𝐿
𝑘
(𝐾
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
)𝑋
𝑘
] − 𝑐𝛾

+ x𝜏
0
𝐻
0
x
0
.

(41)

We assert that 𝐿
𝑘
(𝑘 = 0, 1, . . . , 𝑁 − 1) must satisfy

𝐿
𝑘
= 𝑅
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
≥ 0. (42)
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If it is not so, there is an 𝐿
𝑝
for 𝑝 ∈ {0, 1, . . . , 𝑁 − 1} with

a negative eigenvalue 𝜆. Denote the unitary eigenvector with
respect to 𝜆 as k

𝜆
(i.e., k𝜏

𝜆
k
𝜆
= 1 and 𝐿

𝑝
k
𝜆
= 𝜆k
𝜆
). Let 𝛿 ̸= 0

be an arbitrary scalar and construct a control sequence ũ =

(ũ
1
, ũ
2
, . . . , ũ

𝑁−1
) as follows:

ũ
𝑘
=

{

{

{

−𝐿
+

𝑘
𝑀
𝑘
x
𝑘
, 𝑘 ̸= 𝑝,

𝛿 |𝜆|
−1/2 k
𝜆
− 𝐿
+

𝑘
𝑀
𝑘
x
𝑘
, 𝑘 = 𝑝.

(43)

The associated cost functional becomes

𝐽 (x
0
, ũ)

=

𝑁−1

∑

𝑘=0

tr [(�̃�
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
)

𝜏

𝐿
𝑘
(�̃�
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
)𝑋
𝑘
]

− 𝑐𝛾 + x𝜏
0
𝐻
0
x
0

=

𝑁−1

∑

𝑘=0

𝐸 [(ũ
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
x
𝑘
)

𝜏

𝐿
𝑘
(ũ
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
x
𝑘
)]

− 𝑐𝛾 + x𝜏
0
𝐻
0
x
0

= [

𝛿

|𝜆|
1/2

k
𝜆
]

𝜏

𝐿
𝑝
[

𝛿

|𝜆|
1/2

k
𝜆
] − 𝑐𝛾 + x𝜏

0
𝐻
0
x
0

= −𝛿
2

− 𝑐𝛾 + x𝜏
0
𝐻
0
x
0
.

(44)

Let 𝛿 → ∞. Then, 𝐽(x
0
, ũ) → −∞, which contradicts the

well-posedness of problem (10).

3.4. Special Cases. We have obtained that 𝐿
𝑘

≥ 0 in the
constrained difference equation (25) of Theorem 9. The
following corollaries are special cases of the above result if we
have 𝐿

𝑘
> 0 and 𝐿

𝑘
= 0.

Corollary 10. The indefinite LQ problem (10) is uniquely
solvable if and only if 𝐿

𝑘
> 0 for 𝑘 = 0, 1, . . . , 𝑁 − 1. Moreover,

the unique optimal control is given by

u
𝑘
= −𝐿
−1

𝑘
𝑀
𝑘
x
𝑘
, 𝑘 = 0, 1, . . . , 𝑁 − 1. (45)

Proof. By using Theorem 9, we immediately obtain the
corollary.

Corollary 11. If 𝐿
𝑘
= 0 for 𝑘 = 0, 1, . . . , 𝑁 − 1, then any

admissible control of the indefinite LQ problem (10) is optimal
and the constrained difference equation (25) reduces to the
following linear system:

𝐻
𝑘
= 𝑄
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
,

𝑅
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
= 0,

𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
= 0,

𝐻
𝑁
= 𝑄
𝑁
+ 𝛾𝐼,

(46)

for 𝑘 = 0, 1, . . . , 𝑁 − 1.

Proof. Letting 𝐿
𝑘
= 0 in (25), it is easy to obtain the linear

system (46). Letting 𝐿
𝑘
= 0 in (41), (41) is simplified as

𝐽 (x
0
, u) = −𝑐𝛾 + x𝜏

0
𝐻
0
x
0
, (47)

which implies that 𝑉(x
0
) = −𝑐𝛾 + x𝜏

0
𝐻
0
x
0
for any admissible

control. Then, any admissible control of the indefinite LQ
problem (10) is optimal.

3.5. Well-Posedness of the Indefinite LQ Problem. In the
following, it is shown that the solvability of the constrained
difference equation (25) is sufficient for the well-posedness
of the indefinite LQ problem and the existence of an optimal
control. Moreover, any optimal control can be represented
explicitly as a linear state feedback by the solution of (25).

Theorem 12. The indefinite LQ problem (10) is well-posed if
there exist symmetric matrices 𝐻

𝑘
and 𝛾 ∈ R1 satisfying

the constrained difference equation (25). Moreover, the optimal
control is given by

u
𝑘
= − [𝑅

𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
]

+

⋅ [(1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
] x
𝑘
,

𝑘 = 0, 1, . . . , 𝑁 − 1.

(48)

Furthermore, the optimal cost of the indefinite LQ problem (10)
is

𝑉 (x
0
) = x𝜏
0
𝐻
0
x
0
− 𝑐𝛾. (49)

Proof. Let𝐻
𝑘
and 𝛾 ∈ R1 satisfy (25). Then,

𝐽 (x
0
, u) =

𝑁−1

∑

𝑘=0

𝐸 [x𝜏
𝑘
𝑄
𝑘
x
𝑘
+ u𝜏
𝑘
𝑅
𝑘
u
𝑘
] + 𝐸 [x𝜏

𝑁
𝑄
𝑁
x
𝑁
]

=

𝑁−1

∑

𝑘=0

{𝐸 [x𝜏
𝑘
𝑄
𝑘
x
𝑘
+ u𝜏
𝑘
𝑅
𝑘
u
𝑘
] + 𝐸 [x𝜏

𝑘+1
𝐻
𝑘+1

x
𝑘+1

]

− 𝐸 [x𝜏
𝑘
𝐻
𝑘
x
𝑘
]} + 𝐸 [x𝜏

𝑁
𝑄
𝑁
x
𝑁
] − 𝐸 [x𝜏

𝑁
𝐻
𝑁
x
𝑁
]

+ x𝜏
0
𝐻
0
x
0
=

𝑁−1

∑

𝑘=0

{tr [(𝑄
𝑘
+ 𝐾
𝜏

𝑘
𝑅
𝑘
𝐾
𝑘
)𝑋
𝑘
]

+ tr [𝐻
𝑘+1

𝑋
𝑘+1

] − tr [𝐻
𝑘
𝑋
𝑘
]} + tr [(𝑄

𝑁
− 𝐻
𝑁
)

⋅ 𝑋
𝑁
] + x𝜏
0
𝐻
0
x
0

=

𝑁−1

∑

𝑘=0

tr {[𝑄
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
− 𝐻
𝑘
]
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+ (1 +

1

3

𝜆
2

𝑘
)𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘

+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
𝐾
𝑘

+ 𝐾
𝜏

𝑘
[𝑅
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
]𝐾
𝑘
}𝑋
𝑘

+ tr [(𝑄
𝑁
− 𝐻
𝑁
)𝑋
𝑁
] + x𝜏
0
𝐻
0
x
0

=

𝑁−1

∑

𝑘=0

tr [𝑀𝜏
𝑘
𝐿
+

𝑘
𝑀
𝑘
+ 𝐾
𝜏

𝑘
𝑀
𝑘
+𝑀
𝜏

𝑘
𝐾
𝑘
+ 𝐾
𝜏

𝑘
𝐿
𝑘
𝐾
𝑘
]

⋅ 𝑋
𝑘
+ tr [(𝑄

𝑁
− 𝐻
𝑁
)𝑋
𝑁
] + x𝜏
0
𝐻
0
x
0
.

(50)

By applying Lemma 3, a completion of square implies

𝐽 (𝑋
0
,K)

=

𝑁−1

∑

𝑘=0

tr [(𝐾
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
)

𝜏

𝐿
𝑘
(𝐾
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
)𝑋
𝑘
]

+ tr [(𝑄
𝑁
− 𝐻
𝑁
)𝑋
𝑁
] + x𝜏
0
𝐻
0
x
0
.

(51)

Since 𝐿
𝑘
≥ 0, from (51), we can easily deduce that the cost

function of problem (10) is bounded from below by

𝑉 (x
0
) = tr [(𝑄

𝑁
− 𝐻
𝑁
)𝑋
𝑁
] + x𝜏
0
𝐻
0
x
0
> −∞,

∀x
0
∈ R𝑛.

(52)

Hence, the indefinite LQ problem (10) is well-posed. It is clear
that it is solvable by the feedback control

u
𝑘
= −𝐾
𝑘
x
𝑘
= −𝐿
+

𝑘
𝑀
𝑘
x
𝑘
, 𝑘 = 0, 1, . . . , 𝑁 − 1. (53)

Furthermore, by using tr[𝑋
𝑁
] = 𝑐 and 𝐻

𝑁
= 𝑄
𝑁
+ 𝛾𝐼

which we have obtained in Theorems 7 and 9, (52) indicates
that the optimal value of problem (10) equals

𝑉 (x
0
) = x𝜏
0
𝐻
0
x
0
− 𝑐𝛾. (54)

4. General Expression for the Optimal
Control Set

In this part, we will present a general expression for the
optimal control set based on the solution to (25).

Theorem 13. Assume that 𝐻
𝑘
(𝑘 = 0, 1, . . . , 𝑁 − 1) and

𝛾 ≥ 0 ∈ R1 solves the constrained difference equation (25).
A sufficient and necessary condition that u

𝑘
is in the set of all

optimal feedback controls for indefinite LQ problem (10) is that

u
𝑘
= − (𝐿

+

𝑘
𝑀
𝑘
+ 𝑌
𝑘
− 𝐿
+

𝑘
𝐿
𝑘
𝑌
𝑘
) x
𝑘
+ 𝑍
𝑘
− 𝐿
+

𝑘
𝑀
𝑘
𝑍
𝑘
,

𝑘 = 0, 1, . . . , 𝑁 − 1,

(55)

where 𝑌
𝑘
∈ R𝑚×𝑛 and 𝑍

𝑘
∈ R𝑚 are arbitrary variables with

appropriate size.

Proof.

Sufficiency. According to the same calculation as in Theo-
rem 9, we have

𝐽 (x
0
, u) =

𝑁−1

∑

𝑘=0

𝐸 [x𝜏
𝑘
𝑄
𝑘
x
𝑘
+ u𝜏
𝑘
𝑅
𝑘
u
𝑘
] + 𝐸 [x𝜏

𝑁
𝑄
𝑁
x
𝑁
]

=

𝑁−1

∑

𝑘=0

tr {[𝑄
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
− 𝐻
𝑘
]

+ (1 +

1

3

𝜆
2

𝑘
)𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)

⋅ 𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
𝐾
𝑘
+ 𝐾
𝜏

𝑘
[𝑅
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
]

⋅ 𝐾
𝑘
}𝑋
𝑘
− 𝑐𝛾 + x𝜏

0
𝐻
0
x
0
=

𝑁−1

∑

𝑘=0

𝐸 [x𝜏
𝑘
(𝑀
𝜏

𝑘
𝐿
+

𝑘
𝑀
𝑘

+ 𝐾
𝜏

𝑘
𝑀
𝑘
+𝑀
𝜏

𝑘
𝐾
𝑘
+ 𝐾
𝜏

𝑘
𝐿
𝑘
𝐾
𝑘
) x
𝑘
] − 𝑐𝛾 + x𝜏

0
𝐻
0
x
0

=

𝑁−1

∑

𝑘=0

𝐸 [x𝜏
𝑘
𝑀
𝜏

𝑘
𝐿
+

𝑘
𝑀
𝑘
x
𝑘
+ 2x𝜏
𝑘
𝑀
𝜏

𝑘
u
𝑘
+ u𝜏
𝑘
𝐿
𝑘
u
𝑘
]

− 𝑐𝛾 + x𝜏
0
𝐻
0
x
0
.

(56)

By denoting 𝑇1
𝑘
= −(𝑌

𝑘
−𝐿
+

𝑘
𝐿
𝑘
𝑌
𝑘
) and 𝑇2

𝑘
= −(𝑍

𝑘
−𝐿
+

𝑘
𝐿
𝑘
𝑍
𝑘
),

we obtain

𝐿
𝑘
𝑇
1

𝑘
= 0,

𝐿
𝑘
𝑇
2

𝑘
= 0.

(57)

According to (56) and (57), we obtain

𝐽 (x
0
, u) =

𝑁−1

∑

𝑘=0

𝐸 [u
𝑘
+ (𝐿
+

𝑘
𝑀
𝑘
+ 𝑇
1

𝑘
) x
𝑘
+ 𝑇
2

𝑘
]

𝜏

⋅ 𝐿
𝑘
[u
𝑘
+ (𝐿
+

𝑘
𝑀
𝑘
+ 𝑇
1

𝑘
) x
𝑘
+ 𝑇
2

𝑘
] − 𝑐𝛾 + x𝜏

0
𝐻
0
x
0
.

(58)

As 𝐿
𝑘
≥ 0, we know that the control u

𝑘
= −[(𝐿

+

𝑘
𝑀
𝑘
+𝑇
1

𝑘
)x
𝑘
+

𝑇
2

𝑘
] minimizes 𝐽(x

0
, u) with the optimal value −𝑐𝛾 + x𝜏

0
𝐻
0
x
0

for 𝑘 = 0, 1, . . . , 𝑁 − 1.

Necessity. If any control sequence ũ = (ũ
1
, ũ
2
, . . . , ũ

𝑁−1
)

which minimizes the cost function 𝐽(x
0
, u), then we have

𝐽 (x
0
, ũ)

=

𝑁−1

∑

𝑘=0

𝐸 [(ũ
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
x
𝑘
)

𝜏

𝐿
𝑘
(ũ
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
x
𝑘
)] − 𝑐𝛾

+ x𝜏
0
𝐻
0
x
0
,

(59)

for 𝑘 = 0, 1, . . . , 𝑁 − 1.The above equality implies that
𝑁−1

∑

𝑘=0

𝐸 [(ũ
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
x
𝑘
)

𝜏

𝐿
𝑘
(ũ
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
x
𝑘
)] = 0,

𝑘 = 0, 1, . . . , 𝑁 − 1.

(60)
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Since 𝐿
𝑘
≥ 0, we get the following equivalent condition:

𝐿
𝑘
(ũ
𝑘
+ 𝐿
+

𝑘
𝑀
𝑘
x
𝑘
) = 0, 𝑘 = 0, 1, . . . , 𝑁 − 1. (61)

We see that ũ
𝑘
solves the following equation:

𝐿
𝑘
ũ
𝑘
+ 𝐿
𝑘
𝐿
+

𝑘
𝑀
𝑘
x
𝑘
= 0, 𝑘 = 0, 1, . . . , 𝑁 − 1. (62)

By using Lemma 3 with 𝐿 = 𝐿
𝑘
,𝑀 = 𝐼,𝑁 = −𝐿

𝑘
𝐿
+

𝑘
𝑀
𝑘
x
𝑘
, it

is easy to verify that

𝐿𝐿
+

𝑁𝑀𝑀
+

= 𝑁. (63)

Then, we obtain the solution of (62) with

ũ
𝑘
= −𝐿
+

𝑘
𝑀
𝑘
x
𝑘
+ 𝑍
𝑘
− 𝐿
+

𝑘
𝐿
𝑘
𝑍
𝑘
,

𝑍
𝑘
∈ R𝑚, 𝑘 = 0, 1, . . . , 𝑁 − 1.

(64)

As in (35), the optimal control can be represented by

u
𝑘
= − (𝐿

+

𝑘
𝑀
𝑘
+ 𝑌
𝑘
− 𝐿
+

𝑘
𝐿
𝑘
𝑌
𝑘
) x
𝑘
+ 𝑍
𝑘
− 𝐿
+

𝑘
𝑀
𝑘
𝑍
𝑘
,

𝑘 = 0, 1, . . . , 𝑁 − 1.

(65)

5. Numerical Example

In this section, application of Theorem 9 to solve constraint
optimal control problem is illustrated. We present a two-
dimensional indefinite LQ problem with terminal state con-
straint for discrete-time uncertain systems. A set of specific
parameters of the coefficients are given as follows:

x
0
= (

0

1

) ,

𝑐 = 2.0408,

𝑁 = 2,

𝐴
0
= (

1 0

1 1

) ,

𝐴
1
= (

2 0

0 1

) ,

𝐵
0
= (

2

1

) ,

𝐵
1
= (

1

0

) ,

𝜆
0
= −

√3

2

,

𝜆
1
=

√3

2

.

(66)

The state weights and the control weights are as follows:

𝑄
0
= (

−1 0

0 1

) ,

𝑄
1
= (

−1 0

0 −1

) ,

𝑄
2
= (

0 0

0 0

) ,

𝑅
0
= −1,

𝑅
1
= −2.

(67)

Note that, in this example, the state weight 𝑄
0
is negative

semidefinite, 𝑄
1
is negative definite, and 𝑄

2
is positive

semidefinite and the control weights 𝑅
0
and 𝑅

1
are negative

definite.
In order to find the optimal controls and optimal cost

value of this example, we have to solve the following equa-
tions:

𝐻
𝑘
= 𝑄
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐴
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
−𝑀
𝜏

𝑘
𝐿
+

𝑘
𝑀
𝑘
,

𝐿
𝑘
𝐿
+

𝑘
𝑀
𝑘
−𝑀
𝑘
= 0,

𝐿
𝑘
= 𝑅
𝑘
+ (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐵
𝑘
≥ 0,

𝑀
𝑘
= (1 +

1

3

𝜆
2

𝑘
)𝐵
𝜏

𝑘
𝐻
𝑘+1

𝐴
𝑘
, 𝑘 = 0, 1,

𝐻
2
= 𝑄
2
+ 𝛾𝐼,

𝑋
𝑘+1

= (1 +

1

3

𝜆
2

𝑘
) (𝐴
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐴
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘

+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐴
𝜏

𝑘
+ 𝐵
𝑘
𝐾
𝑘
𝑋
𝑘
𝐾
𝜏

𝑘
𝐵
𝜏

𝑘
) ,

𝑘 = 0, 1, 𝑋
0
= x
0
x𝜏
0
.

(68)

Firstly, we have

𝑋
0
= x
0
x𝜏
0
= (

0 0

0 1

) . (69)

Then, we get 𝛾 = 2 by solving (68), and we obtain

𝐻
2
= 𝑄
2
+ 𝛾𝐼 = 𝛾(

1 0

0 1

) = (

2 0

0 2

) . (70)

Secondly, by applying Theorem 9, we obtain the optimal
feedback control and optimal cost value as follows.
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For 𝑘 = 1, we obtain

𝐿
1
= 𝑅
1
+ (1 +

1

3

𝜆
2

1
)𝐵
𝜏

1
𝐻
2
𝐵
1
= 0.5 > 0,

𝑀
1
= (1 +

1

3

𝜆
2

1
)𝐵
𝜏

1
𝐻
2
𝐴
1
= (5, 0) ,

𝐻
1
= 𝑄
1
+ (1 +

1

3

𝜆
2

1
)𝐴
𝜏

1
𝐻
2
𝐴
1
−𝑀
𝜏

1
𝐿
+

1
𝑀
1

= (

−41 0

0 1.5

) .

(71)

The optimal feedback control is u
1
= 𝐾
1
x
1
, where

𝐾
1
= −𝐿
+

1
𝑀
1
= (−10, 0) . (72)

For 𝑘 = 0, we obtain

𝐿
0
= 𝑅
0
+ (1 +

1

3

𝜆
2

0
)𝐵
𝜏

0
𝐻
1
𝐵
0
= 0.875 > 0,

𝑀
0
= (1 +

1

3

𝜆
2

0
)𝐵
𝜏

0
𝐻
1
𝐴
0
= (1.875, 1.875) ,

𝐻
0
= 𝑄
0
+ (1 +

1

3

𝜆
2

0
)𝐴
𝜏

0
𝐻
1
𝐴
0
−𝑀
𝜏

0
𝐿
+

0
𝑀
0

= (

−54.3929 −2.1429

−2.1429 −1.1429

) .

(73)

The optimal feedback control is u
0
= 𝐾
0
x
0
, where

𝐾
0
= −𝐿
+

0
𝑀
0
= (−2.1429, −2.1429) . (74)

Finally, the optimal cost value is

𝑉 (x
0
) = x𝜏
0
𝐻
0
x
0
− 𝑐𝛾 = −5.2245. (75)

6. Conclusion

We have considered the indefinite LQ optimal control with
terminal state constraint involving state and control depen-
dent uncertain noises. We first transform the uncertain LQ
optimal control problem into a deterministic LQ optimal
control problem. Bymeans of thematrixmaximumprinciple,
we have presented a necessary condition for the existence of
optimal linear state feedback control. Besides, we have proved
the well-posedness of the indefinite LQ constraint problem
by applying the technique of completing squares. For further
work, we will consider discrete-time indefinite LQ optimal
control model with inequality constraint.
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