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To improve the performance of two-dimensional direction-of-arrival (2D DOA) estimation in sparse array, this paper presents a
Fixed Point Continuation Polynomial Roots (FPC-ROOT) algorithm. Firstly, a signal model for DOA estimation is established
based on matrix completion and it can be proved that the proposed model meets Null Space Property (NSP). Secondly, left and
right singular vectors of received signals matrix are achieved using the matrix completion algorithm. Finally, 2D DOA estimation
can be acquired through solving the polynomial roots. The proposed algorithm can achieve high accuracy of 2D DOA estimation
in sparse array, without solving autocorrelation matrix of received signals and scanning of two-dimensional spectral peak. Besides,
it decreases the number of antennas and lowers computational complexity and meanwhile avoids the angle ambiguity problem.
Computer simulations demonstrate that the proposed FPC-ROOT algorithm can obtain the 2DDOA estimation precisely in sparse
array.

1. Introduction

Two-dimensional direction-of-arrival (2D DOA) [1–4] esti-
mation plays an important role in array signal processing,
and it usually utilizes L-shaped arrays, planar arrays, vector
sensors, and so forth, to estimate the two-dimensional target
angle. Compared with 2D DOA estimation of other arrays
[5, 6], 2D DOA estimation of planar array is asymptotically
unbiased where the target position can be determined pre-
cisely without the problem of angle ambiguity. Moreover, the
phased-array radar in the planar array can utilize waveform
diversity which makes it suitable for multiple targets and
complex environments with enhanced performance of target
recognition and target tracking. However, the planar array
requires a large amount of array elements which results in
tremendous demands of hardware equipment and increases
the complexity and cost of design. Comparatively, the sparse
array needs only a quite smaller number of elements, so it is a
feasible remedy for the abovementioned problems, whereas,
in this case, the problem of substantially rising average side
lobes occurs, which accounts for its uncommon applications
so far. Paper [5] lowers computational complexity of DOA
estimation by introducing a preprocessing transformation

matrix but has poor performance in sparse array. Paper [7]
achieves high-resolution DOA estimation in sparse array;
however, it only works in uniform linear array (ULA).

Matrix completion [8–10] is an extension of compressive
sensing (CS) [11, 12] and has been widely applied to image
processing, remote sensing, and many other engineering
fields [13, 14]. On the basis of low-rank matrix, matrix
completion can recover the full matrix from an incomplete
set of matrix entries with high probability by solving nuclear-
norm optimization. Paper [15] proposed a fixed point and
Bregman iterative methods for matrix rank minimization,
which is a very fast, robust, and powerful algorithm. Paper
[16] introduces a particularly simple yet highly efficient
alternating projection algorithm and this algorithm is able to
recover matrix from the minimum number of measurements
necessary. Paper [17] provides a necessary and sufficient con-
dition that quantifies when this heuristic successfully finds
the minimum rank solution of a linear constraint set. The
sparse received signal can be recovered to the full received
signal by matrix completion, so that matrix completion has
been applied to DOA estimation [14, 18].

This study proposes a Fixed Point Continuation Polyno-
mial Roots (FPC-ROOT) algorithm.The proposed algorithm
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Figure 1: The uniform rectangular array.

establishes a signal model of matrix completion for 2D DOA
estimation based on low-rank property of target in two-
dimensional space domain, which turns out to meet the
Null Space Property (NSP) and ensure the feasibility of
2D DOA estimation via matrix completion. By contrast to
conventional algorithms, the proposed algorithm obtains left
and right singular vectors of received signal matrix directly
from the output of matrix completion algorithm instead of
eigendecomposing autocorrelation matrix of received signal,
for the benefit of lower dimensions. Besides, the proposed
algorithm can avoid scanning of the 2D spectral peak by
solving the polynomial roots, which reduces the computa-
tional complexity. In addition, it can estimate target angle
accurately with less number of array units by adoptingmatrix
completion.

2. Signal Model in Sparse Array

2.1.The SignalModel of 2DDOAEstimation. Suppose that the
uniform rectangular array (URA) [3] is depicted in Figure 1.
𝑀
𝑥
and𝑀

𝑦
are the number of elements in 𝑥-direction and 𝑦-

direction, respectively. The corresponding element spacing is
𝑑
𝑥
and 𝑑

𝑦
.

Assume that there are multiple targets in the space. The
number of snapshots is 𝑊 and the number of targets is 𝑘,
where the waveform of the 𝑖th (𝑖 = 1, 2, . . . , 𝑘) target is 𝑠

𝑖
(𝑡)

and 𝑡 = 1, 2, . . . ,𝑊.The target angles are (𝜙
𝑖
, 𝜃
𝑖
), where 𝜙

𝑖
and

𝜃
𝑖
express the elevation and azimuth angles of the 𝑖th target,

respectively. Suppose the uncorrelated narrow-band signals
are received in far field [19]; thus, the received signal of𝑀

𝑥

elements in 𝑥-direction can be written as

𝐿
𝑥
(𝑡) = 𝐴

𝑥
𝑆 (𝑡) + 𝑁

𝑥
(𝑡) , (1)

where 𝑆(𝑡) = diag(𝑠
𝑖
(𝑡)) is a diagonal matrix of 𝑘 × 𝑘

dimensions, the first 𝑘 elements of 𝑠
𝑖
(𝑡) are nonzero which

correspond to 𝑘 targets, and 𝑁
𝑥
(𝑡) is the noise vector of the

array. 𝐴
𝑥
is a𝑀

𝑥
× 𝑘 dimensional steering vector, which can

be given by

𝐴
𝑥
= [𝑎
𝑥
(𝜙
1
, 𝜃
1
) , 𝑎
𝑥
(𝜙
2
, 𝜃
2
) , . . . , 𝑎

𝑥
(𝜙
𝑘
, 𝜃
𝑘
)] . (2)

Assume the wavelength of received signal is 𝜆; then, 𝑎
𝑥
(𝜙
𝑖
, 𝜃
𝑖
)

is

[𝑎
𝑥
(𝜙
𝑖
, 𝜃
𝑖
)]
𝑚
𝑥

= 𝑒
𝑗(2𝜋/𝜆)𝑑

𝑥
sin(𝜃
𝑖
) cos(𝜙

𝑖
)(𝑚
𝑥
−1)

,

𝑚
𝑥
= 1, 2, . . . ,𝑀

𝑥
.

(3)

Similarly, the received signal of𝑀
𝑦
elements in 𝑦-direction

can be represented as

𝐿
𝑦
(𝑡) = 𝐴

𝑦
𝑆 (𝑡) + 𝑁

𝑦
(𝑡) , (4)

where 𝑁
𝑦
(𝑡) is the noise vector of the array. 𝐴

𝑦
is 𝑀
𝑦
× 𝑘

dimensional steering vector, which can be denoted as

𝐴
𝑦
= [𝑎
𝑦
(𝜙
1
, 𝜃
1
) , 𝑎
𝑦
(𝜙
2
, 𝜃
2
) , . . . , 𝑎

𝑦
(𝜙
𝑘
, 𝜃
𝑘
)] , (5)

where 𝑎
𝑦
(𝜙
𝑖
, 𝜃
𝑖
) is defined as

[𝑎
𝑦
(𝜙
𝑖
, 𝜃
𝑖
)]
𝑚
𝑦

= 𝑒
𝑗(2𝜋/𝜆)𝑑

𝑦
sin(𝜃
𝑖
) sin(𝜙

𝑖
)(𝑚
𝑦
−1)

,

𝑚
𝑦
= 1, 2, . . . ,𝑀

𝑦
.

(6)

In conclusion, the received signal model of full array is
demonstrated as

𝑋 (𝑡) = 𝐴
𝑥
𝑆 (𝑡) 𝐴

𝑇

𝑦
+ 𝑁
𝑅
(𝑡) , 𝑡 = 1, . . . , 𝑁. (7)

When the power of noise matrix 𝑁
𝑅
(𝑡) is much smaller

than the signal power, we can get that rank(𝑋(𝑡)) ≤

rank(𝑆(𝑡)) = 𝑘; in other words, matrix 𝑋(𝑡) is low-rank
[10]. And matrix in (7) is consistent with strong incoherence
property [15], so it can be recovered precisely with high
probability via matrix completion.

2.2. Matrix Completion. With regard to the sparsity of sig-
nals, CS can sample signals at far lower sampling frequency
thanNyquist sampling frequency andmeanwhile reconstruct
original signals precisely. In CS, the target to be recovered is
a vector; however, on some practical occasions, it normally
refers to a matrix and is sensitive to data missing, data
corruption, and so on.

Matrix completion is an extension of CS. CS exploits the
sparsity of signals; nevertheless, matrix completion utilizes
the sparsity of matrix singular values, namely, the low-rank
property, and reconstructs full matrix by solving nuclear-
norm optimization.

Suppose𝑀 ∈ 𝑅
𝑛×𝑛 is an original low-rank matrix, where

rank(𝑀) = 𝑟, 𝑟 ≪ 𝑛. Matrix completion refers to recovering
the whole elements of matrix𝑀 from its partial elements. Let
the available entries of matrix be {𝑀

𝑖𝑗
, (𝑖, 𝑗) ∈ Ω}, where Ω

is a random sampled subset of the whole elements; then, the
matrix completion can be denoted as [10]

min ‖𝑋‖
∗
,

s.t. 𝑋
𝑖𝑗
= 𝑀
𝑖𝑗
, (𝑖, 𝑗) ∈ Ω,

(8)

where matrix 𝑋 is the estimated value of matrix 𝑀; ‖𝑋‖
∗

represents the nuclear norm of the matrix𝑋.
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2.3. The Sparse Array Model. We sample elements fromURA
at random. Let the number of sampled elements be 𝑚 with
the corresponding element positions unchanged and the
unsampled units removed; thus, a new sparse array is set
up. To recover matrix precisely via matrix completion, the
required number of samples is𝑚 ≥ 𝑟(𝑛

1
+ 𝑛
2
− 𝑟) [10], while

𝑛
1
, 𝑛
2
are the numbers of rows and columns of thematrix, and

𝑟 is the rank of thematrix. Suppose the received signal matrix
in sparse array is𝑋

𝑠
(𝑡); then,𝑋

𝑠
(𝑡) is related to𝑋(𝑡) by

𝑋
𝑠
(𝑡)
𝑖𝑗
= 𝑋 (𝑡)

𝑖𝑗
, (𝑖, 𝑗) ∈ Ω,

𝑋
𝑠
(𝑡)
𝑖𝑗
= 0, (𝑖, 𝑗) ∉ Ω,

(9)

whereΩ is the set of element positions in sparse array.

3. The Proposed Algorithm

3.1.The SignalModel for 2D-DOAEstimation Based onMatrix
Completion. According to (7), the received signalmatrix𝑋(𝑡)
in URA is low-rank. Regard𝑋

𝑅
(𝑡) as the recovered matrix by

matrix completion, so it can be deduced that

min 󵄩󵄩󵄩󵄩𝑋𝑅 (𝑡)
󵄩󵄩󵄩󵄩∗

s.t. 𝑋
𝑅
(𝑡)
𝑖𝑗
= 𝑋
𝑠
(𝑡)
𝑖𝑗
, (𝑖, 𝑗) ∈ Ω.

(10)

If a signalmodelmeetsNSP, the rankminimization of this
model is equivalent to its nuclear-normminimization [13]. So
we introduce the projection 𝑃

Ω
as follows:

𝑃
Ω
(𝑀) =

{

{

{

𝑀
𝑖𝑗
, (𝑖, 𝑗) ∈ Ω

0, (𝑖, 𝑗) ∉ Ω.

(11)

From (11), we can see that (10) can be expressed as

min 󵄩󵄩󵄩󵄩𝑋𝑅 (𝑡)
󵄩󵄩󵄩󵄩∗
,

s.t. 𝑃
Ω
(𝑋
𝑅
(𝑡)) = 𝑃

Ω
(𝑋
𝑠
(𝑡)) ,

(12)

where 𝑋
𝑅
(𝑡) is the estimated matrix. The null space of

projection 𝑃
Ω
is

Null (𝑃
Ω
) = {𝑀 ∈ 𝑅

𝑛
1
×𝑛
2 : 𝑃
Ω
(𝑀) = 0} . (13)

According to NSP, we are unable to recover a matrix if it
belongs to the null space of projection 𝑃

Ω
. From (4), we can

get that

[𝑎
𝑥
(𝜙
𝑖
, 𝜃
𝑖
)]
𝑚
𝑥

= 𝑒
𝑗(2𝜋/𝜆)𝑑

𝑥
sin(𝜃
𝑖
) cos(𝜙

𝑖
)(𝑚
𝑥
−1)

̸= 0,

𝑚
𝑥
= 1, 2, . . . ,𝑀

𝑥
.

(14)

In (7), the arbitrary elements of𝐴
𝑥
and 𝐴

𝑦
are both nonzero

and the first 𝑘 elements in 𝑠
𝑖
(𝑡) are nonzero, so the diagonal

elements of 𝑘 × 𝑘 dimensional diagonal matrix are nonzero.
Arbitrary elements of 𝑋(𝑡) are nonzero based on matrix
multiplication property. Therefore, it can be concluded that
whichever sampling operator is selected, there is always
𝑃
Ω
(𝑋(𝑡)) ̸= 0; in other words, 𝑃

Ω
(𝑋(𝑡)) ∉ Null(𝑃

Ω
), which

meets the Null Space Property.

3.2. The FPC-ROOT Algorithm. Suppose svd(𝑋
𝑅
(𝑡)) = 𝑈Σ𝑉

and matrices 𝑈 and 𝑉 are the left and right singular value
matrix of 𝑋

𝑅
(𝑡). FPC-ROOT algorithm can obtain 𝑈 and 𝑉

directly bymatrix completion based on the low-rankproperty
of 𝑋(𝑡) and realizes 2D DOA estimation by computing the
polynomial roots.

Firstly, to solve problem (12), we achieve the left and
right singular value matrices 𝑈 and 𝑉 of estimated value
𝑋
𝑅
(𝑡) in full array by FPC algorithm. And then, we solve the

autocorrelation matrix of received signal𝑋(𝑡) in full array, so
the eigendecomposition of the autocorrelation matrix is

𝑅
𝑋
= 𝑋 (𝑡)𝑋 (𝑡)

𝐻

= 𝐴
𝑥
𝑆 (𝑡) 𝐴

𝑇

𝑦
𝐴
∗

𝑦
𝑆 (𝑡)
∗

𝐴
𝐻

𝑥
+ 𝑁
𝑚1

= 𝐴
𝑥
𝑅
𝑚1
𝐴
𝐻

𝑥
+ 𝑁
𝑚1
= 𝑈
𝑆
Σ
𝑆
𝑈
𝐻

𝑆
+ 𝑈
𝑁
Σ
𝑁
𝑈
𝐻

𝑁
,

(15)

where 𝑡 = 1, . . . ,𝑊, 𝑋(𝑡)𝐻 is the conjugate transpose matrix
of 𝑋(𝑡), 𝑈

𝑆
is the signal subspace, 𝑈

𝑁
is the noise subspace,

and 𝑅
𝑚1

is

𝑅
𝑚1
= 𝑆 (𝑡) 𝐴

𝑇

𝑦
𝐴
∗

𝑦
𝑆 (𝑡)
∗

. (16)

And𝑁
𝑚1

in (15) can be expressed as

𝑁
𝑚1
= 𝐴
𝑥
𝑆 (𝑡) 𝐴

𝑇

𝑦
𝑁
𝑅
(𝑡)
𝐻

+ 𝑁
𝑅
(𝑡) 𝐴
∗

𝑦
𝑆 (𝑡)
∗

𝐴
𝐻

𝑥

+ 𝑁
𝑅
(𝑡)𝑁
𝑅
(𝑡)
𝐻

.

(17)

It is obvious that the spanned subspaces of 𝐴
𝑥
and 𝑈

𝑆
are

identical.We solve the conjugate transpose of autocorrelation
matrix 𝑅

𝑋
and then it can be concluded that

𝑅
𝐻

𝑋
= 𝑋 (𝑡)

𝐻

𝑋 (𝑡) = 𝐴
∗

𝑦
𝑆 (𝑡)
∗

𝐴
𝐻

𝑥
𝐴
𝑥
𝑆 (𝑡) 𝐴

𝑇

𝑦
+ 𝑁
𝑚2

= 𝐴
∗

𝑦
𝑅
𝑚2
𝐴
𝑇

𝑦
+ 𝑁
𝑚2
= 𝑉
𝑆
Σ
𝑆
𝑉
𝐻

𝑆
+ 𝑉
𝑁
Σ
𝑁
𝑉
𝐻

𝑁
,

(18)

where 𝑡 = 1, . . . , 𝑁, and similarly 𝑅
𝑚2

is

𝑅
𝑚2
= 𝑆 (𝑡)

∗

𝐴
𝐻

𝑥
𝐴
𝑥
𝑆 (𝑡) (19)

𝑁
𝑚2

can be expressed as

𝑁
𝑚2
= 𝐴
∗

𝑦
𝑆 (𝑡)
∗

𝐴
𝐻

𝑥
𝑁
𝑅
(𝑡) + 𝑁

𝑅
(𝑡)
𝐻

𝐴
𝑥
𝑆 (𝑡) 𝐴

𝑇

𝑦

+ 𝑁
𝑅
(𝑡)
𝐻

𝑁
𝑅
(𝑡) .

(20)

So the space spanned by 𝐴∗
𝑦
is the same as the space spanned

by 𝑉
𝑆
.

Based on singular value decomposition, it is easy to know
that left and right singular value matrices𝑈 and𝑉 are related
to the eigendecomposition of autocorrelation matrix 𝑅

𝑋
by

𝑈 = 𝑈
𝑆
+ 𝑈
𝑁
,

𝑉 = 𝑉
𝑆
+ 𝑉
𝑁
.

(21)

So the left and right singular vectors of received signal
matrix can be obtained directly from the output of matrix
completion algorithm instead of eigendecomposing autocor-
relationmatrix of received signal and the computational com-
plexity of the proposed algorithm obtained a corresponding
reduction.
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Consider a polynomial as

𝑓 (𝑧) = 𝑢
𝐻

𝑙
𝑝 (𝑧) (𝑙 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑁) , (22)

where 𝑢
𝑙
is the 𝑙th eigenvector of matrix 𝑅

𝑋
and 𝑝(𝑧) =

[1, 𝑧, . . . , 𝑧
𝑁−1

]
𝑇. It can be deduced that the corresponding

ROOT-MUSIC polynomial is

𝑓
𝑥
(𝑧) = 𝑧

𝑁−1

𝑝
𝑇

(𝑧
−1

)𝑈
𝑁
𝑈
𝐻

𝑁
𝑝 (𝑧) . (23)

By solving the polynomial roots, the proposed algorithm
can avoid scanning of the 2D spectral peak. Taking use of the
orthogonality of signal subspace, the above equation can be
converted to

𝑃
𝑥
(𝑧) = 𝑧

𝑁−1

𝑝
𝑇

(𝑧
−1

) (𝐼 − 𝑈
𝑆
𝑈
𝐻

𝑆
) 𝑝 (𝑧) . (24)

The dimensionality of 𝑈
𝑆
is smaller than 𝑈

𝑁
; hence, the

proposed algorithm effectively reduced the computational
complexity by reducing the dimension of the subspace
matrix. Then, the vector corresponding to the roots of
polynomial is

𝑧
𝑥
= [exp(

𝑗2𝜋𝑑
𝑥
cos𝜙
1
sin 𝜃
1

𝜆
) , . . . ,

exp(
𝑗2𝜋𝑑
𝑥
cos𝜙
𝑘
sin 𝜃
𝑘

𝜆
)] .

(25)

Thus,

𝑟
𝑥
= [cos𝜙

1
sin 𝜃
1
, . . . , cos𝜙

𝑘
sin 𝜃
𝑘
] . (26)

Similarly, it can be obtained that

𝑟
𝑦
= [sin𝜙

1
sin 𝜃
1
, . . . , sin𝜙

𝑘
sin 𝜃
𝑘
] . (27)

Hence, the estimated angles of targets are

[𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑘
] = arcsin√𝑟2

𝑥
+ 𝑟2
𝑦

[𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
] = arctan(

𝑟
𝑥

𝑟
𝑦

) .

(28)

In summary, the proposed FPC-ROOT algorithm in this
paper can be programmed as follows.

Fixed Point Continuation Polynomial
Roots (FPC-ROOT) Algorithm

Initialize. Given 𝑋
𝑠
(𝑡), the projection 𝑃

Ω
is corre-

sponding to element positions in the sparse array:

(1) Solve (12) to get left and right singular value
matrices 𝑈

𝑆
and 𝑉

𝑆
.

(2) Construct the polynomial roots (24).
(3) Solve (24) to get

𝑟
𝑥
= [cos𝜙

1
sin 𝜃
1
, . . . , cos𝜙

𝑘
sin 𝜃
𝑘
] ,

𝑟
𝑦
= [sin𝜙

1
sin 𝜃
1
, . . . , sin𝜙

𝑘
sin 𝜃
𝑘
] .

(29)

(4) Determine the targets angles

[𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑘
] = arcsin√𝑟2

𝑥
+ 𝑟2
𝑦
,

[𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑘
] = arctan(

𝑟
𝑥

𝑟
𝑦

) .

(30)

End.

3.3. Dimensionality Reduction. In normal 2D-DOA estima-
tion, DOA estimation is achieved through autocorrelation
matrix of a vector which is transformed from the signal
matrix. Suppose the signal matrix is 𝑀

𝑥
× 𝑀
𝑦
, so the

dimension of the transformed vector is𝑀
𝑥
𝑀
𝑦
× 1; then, the

dimension of the autocorrelation matrix is𝑀
𝑥
𝑀
𝑦
× 𝑀
𝑥
𝑀
𝑦
.

In the proposed method, we obtain left and right singular
vector directly from the signal matrix, avoiding solving the
autocorrelationmatrix, greatly reducing the dimension of the
target matrix.

4. Simulations

In this section, several simulations for 2D DOA estimation
are conducted to demonstrate the feasibility and effectiveness
of the proposed algorithm in sparse array. In these experi-
ments, we sample 1200 elements from full array at random to
formulate a sparse array. The full array is an URA of 64 × 64
elements, where the total number of elements is 𝑚 = 4096
and the corresponding element spacing in 𝑥-direction and 𝑦-
direction is 𝑑

𝑥
= 𝑑
𝑦
= 𝜆/2.

In the first examples, 2D DOA estimation of sparse array
is shown. Let three targets be in the space domain, whose
elevation and azimuth angles of 2D-DOA are (10∘, 15∘),
(20
∘

, 25
∘

), and (30∘, 35∘), respectively, and input signal-to-
noise ratio (SNR) is 20 dB. Let the number of snapshots be
50. Suppose the received signals are narrow-band in far field
and the signal sources are uncorrelated; then, 100 experiment
results of 2D-DOA estimation by FPC-ROOT algorithm are
depicted in Figure 2. The proposed algorithm samples 1200
elements to construct a sparse array; in other words, 70%
units are removed from full array. From Figure 2, it can be
seen that the targets’ angles can be achieved precisely by the
proposed algorithm in sparse array.

In the second experiment, recovery errors by matrix
completion in sparse array with different SNR are examined.
We recover a full matrix from a sparse matrix using FPC
algorithm. Suppose the full matrix is 𝑀 and the recovered
matrix is 𝑋; then, the measurement criterion of recovery
errors by matrix completion is ‖𝑀 − 𝑋‖

2
/‖𝑀‖
2
. Figure 3

illustrates the variation of recovery errors by matrix comple-
tion with different SNR when the numbers of sparse array
elements are 900, 1200, and 1500, respectively. It can be
deduced easily from this experiment that recovery errors by
FPC algorithm are inversely proportional to SNR. The larger
the SNR is, the more similar the matrix 𝑀 is to low-rank
matrix. Simultaneously, the more elements the sparse array
has, the closer the recovered signals are to the full array and
the smaller the corresponding recovery errors are.
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Figure 2: 2D DOA estimation via FPC-ROOT algorithm.
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Figure 3: Recovery errors by matrix completion with different
elements and SNR.

In the third experiment, root mean square error (RMSE)
of 2D DOA estimation based on matrix completion is dis-
cussed. When 500 Monte Carlo simulations are performed,
Figure 4 exhibits RMSE with different SNR via various
algorithms. When the SNR is high, the recovery of matrix
completion has a high precision, so the RMSE of DOA
estimation is decreased. And it is evident that the proposed
algorithmhas higher accuracy for both elevation and azimuth
angles estimation than 2D-MUSIC algorithms.

In the last experiment, RMSE by FPC-ROOT algorithm
with different SNR and elements is demonstrated. Let the
number of snapshots be 50 and let 500 Monte Carlo experi-
ments be implemented. Figure 5 shows RMSE by FPC-ROOT
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Figure 4: RMSE of 2D DOA estimation based on matrix comple-
tion.
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Figure 5: RMSE versus SNR with different elements by FPC-ROOT
algorithm.

algorithmwhen SNR and the number of elements vary. As the
recovery errors by FPC algorithm are inversely proportional
to SNR, the RMSE of DOA estimation is decreased at high
SNR. From this simulation, it can be concluded that the esti-
mation accuracy by FPC-ROOT algorithm is proportional to
the number of elements.
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5. Conclusion

In this paper, a FPC-ROOT algorithm is proposed based on
matrix completion, which can achieve high accuracy of 2D
DOA estimation with reduced antenna units. The proposed
algorithm obtains left and right singular vectors of received
signal by the output of matrix completion algorithm directly
instead of eigendecomposing the autocorrelation matrix of
received signal, for the benefit of lower dimensions. Besides,
by computing polynomial roots, the proposed algorithm can
avoid the scanning of two-dimensional spectral peak, which
cuts down the computational complexity.
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