
Research Article
Practical Soil-Shallow Foundation Model for Nonlinear
Structural Analysis

Moussa Leblouba,1 Salah Al Toubat,1

Muhammad Ekhlasur Rahman,2 and Omer Mugheida3

1Department of Civil & Environmental Engineering, University of Sharjah, P.O. Box 27272, Sharjah, UAE
2Department of Civil & Construction Engineering, Faculty of Engineering and Science, Curtin University Sarawak,
CDT 250, 98009 Miri, Sarawak, Malaysia
3Department of Civil Engineering, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, UAE

Correspondence should be addressed to Moussa Leblouba; mleblouba@sharjah.ac.ae

Received 13 March 2016; Accepted 15 June 2016

Academic Editor: Manuel Pastor

Copyright © 2016 Moussa Leblouba et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy
and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed
to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model
for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three
spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was
verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.

1. Introduction

Several researchers ([1–5], among others) have investigated
extensively the subject of soil-structure interaction (SSI).
Rayhani et al. [6] showed that soil-structure interactionmight
amplify or attenuate the base shear through inertial and
kinematic interactions. Stewart et al. [7] concluded that the
effects of SSI on rigid structures founded on soil are more
significant, when compared to flexible structures. Bobet et
al. [8] showed that the soil-structure system is a function
of the relative rigidity of the structure compared to that of
the ground. SSI is shown to be significant in the presence
of soft soils or when structural mass is very large [9]. As a
consequence, the SSI problem can be excluded from compu-
tations if the soil where the structure is founded is very rigid.
When considering the effect of soil-structure interaction in
base isolated multistoried structures on elastic layered soil,
Spyrakos et al. [10] have found that SSI effects are significant
for squat lightweight buildings on low stiffness soil-stratum.

Although their study dealt with harmonic excitations, it still
gives an insight on the danger of neglecting SSI in the design
of base isolated buildings.

In the seismic resistant design of structures, we are most
interested in the strength reduction factors to account for the
nonlinear behavior that might be experienced by a structure
subjected to an earthquake ground motion. Few researchers
[11, 12] have recently attempted to assess the effect of SSI on
the strength reduction factors. Eser et al. [11] have shown
that the presence of soft soils reduces the strength reduction
factors, which is primarily controlled by the changes in the
structural period and displacement ductility.

Incorporation of SSI requires explicit modelling of soil-
foundation system adequately. For instance, several models
have been proposed depending on the foundation type, its
embedment, and its rigidity ([13–15], among others). The
Federal Emergency Management Agency [16] required that
the foundation stiffness should be determinedwith one of the
following three methods:
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Figure 1: Proposed macroelement model for soil-shallow foundation system.

(i) uncoupled spring model comprising three spring
elements, for shallow foundations that are stiffer than
the supporting soil;

(ii) a finite element formulation of linear (or nonlinear)
foundation behavior using Winkler models, for shal-
low foundations that are less stiff than the supporting
soil;

(iii) decoupled Winkler model, for shallow foundations
that are flexible with respect to the supporting soil.

However, El Ganainy and El Naggar [17] have demonstrated
that the decoupled technique (Beam on a Nonlinear Winkler
Foundation, BNWF) is not capable of predicting accurately
the settlement seen in foundations on soft soils. Although it
can be used to predict the overall deformation behavior of
foundations, the BNWF requires a large number of nonlinear
springs, which is considered as a major drawback [17].

To address some of the above-mentioned issues,
macroelement formulations have been proposed. The first
formulation has been developed by Nova and Montrasio
[18] and later modified and/or extended by other researchers
[19–22] and recently the formulations developed by Gajan et
al. [23] and Shirato et al. [3]. The major advantages of such
models are their simplicity and their ability to capture the
global response of bearing foundations [22, 24, 25]. However,
on one hand, calibrating macroelement parameters pose
a constraint on their adoption for practical applications.
And on the other hand, knowing that most of the available
macroelement models are based on specified bounding
surfaces poses another problem for their capability to cover
a wide range of problems [17].

In a completely different modelling approach, El Shamy
and Zamani [26] proposed a new 3D particle-based tech-
nique using the discrete element method (DEM) to analyze
the seismic performance of soil-foundation-structure sys-
tems. In their model, the soil is idealized as a collection of
spherical particles using DEM; the footing is considered as a
rigid block, whereas the structure ismodelled using a number
of spherical particles in the form of a column, which can be
clamped to simulate a rigid structure or bonded to simulate a
flexible structure of predefined rigidity.

To overcome the difficulties in performing complete non-
linear simulations, Seylabi et al. [27] proposed an equivalent
linearization of nonlinear soil-structure systems considering
both the effect of SSI and the nonlinear behavior of the
structure on equivalent linear parameters. In their model

the structure is modelled as an elastoplastic single-degree-of-
freedom system (SDOF) and the soil beneath the structure is
modelled by a discrete model combining different spring and
dashpot elements.

In this paper, a newmacroelementmodel is developed for
the analysis of the nonlinear response of shallow foundations
under cyclic loading. This model may easily be incorpo-
rated into available structural analysis programs such as
OpenSees [28].The soil-foundation system is simulated using
three spring elements: horizontal and rotational nonlinear
springs and a linear vertical spring. The nonlinear springs
are assigned appropriate nonlinear model of plasticity with
material degrading parameters.

2. Proposed Macroelement Model

The problem being studied here is that of a shallow foun-
dation of any shape embedded in soil and subjected to
simultaneous axial and lateral forces, as shown in Figure 1.
The foundation is considered to be very stiff. The depth of
embedment is 𝐻. The proposed model incorporates three
types of springs:

(i) vertical translational elastic spring with stiffness 𝑘V;
(ii) shear inelastic spring with preyield stiffness 𝑘

𝑠
;

(iii) rotational inelastic spring with preyield stiffness 𝑘
𝜃
.

These equivalent springs represent the foundation-soil sys-
tem. The macroelement model replaces the system soil-
shallow foundation, thus decreasing considerably both the
overall number of degrees of freedom and the computation
effort required to run large models.

2.1. Constitutive Equations. Two material models are consid-
ered in this study, namely, the Bouc-Wen model [29, 30] for
the shear and rotational springs and the linear model for the
vertical spring.

2.1.1. Shear and Rotational Springs

Model Assumptions.The smooth Bouc-Wenmodel of hystere-
sis by Bouc [29] and Wen [30] has found many engineering
applications. For instance, the use of original Bouc-Wen
model and its extensions to soil-structure interaction include
[31–33].

In this study, we considered the Baber and Noori [34]
extension to the original Bouc-Wen model. This version
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includes the degrading behavior observed in many engineer-
ing materials.

The nonlinear behavior of the soil-shallow foundation
system is modelled via the nonlinear shear and nonlinear
rotational springs. A force 𝑓

𝑠
(𝑠) is mobilized at the shear

spring and a moment 𝑓
𝜃
(𝜃) is mobilized at the rotational

spring. In what follows, we use a general force 𝑓(𝑥) to denote
𝑓
𝑠
(𝑠) and𝑓

𝜃
(𝜃), depending onwhich springwe aremodelling.

The constitutive relationship for 𝑓 is expressed in the
Bouc-Wen model as a linear part and a hysteretic part:

𝑓 = 𝛼𝑘𝑥 + (1 − 𝛼) 𝑓
𝑦
𝑧, (1)

where 𝑥 is the deformation; 𝑘 is the preyield stiffness; 𝑓
𝑦

is the mobilized force at the beginning of yielding; 𝛼 is the
post-to-preyield stiffness ratio; and 𝑧 is a hysteretic quantity
controlling the nonlinear behavior. The latter is governed by
the following differential equation with respect to time 𝑡:

𝑧̇ =

𝐴𝑥̇ − [𝛽 |𝑥̇| 𝑧 |𝑧|
𝑛−1

+ 𝛾𝑥̇ |𝑧|
𝜂

] ]
𝜂

. (2)

Equation (2) represents the Baber andNoori [34] formulation
of the rate of hysteretic deformation, which accommodates
degradation. In (2) 𝛽, 𝛾, and 𝑛 are parameters that control the
shape and transition from elastic to inelastic regions of the
hysteretic loop, while𝐴, ], and 𝜂 are variables that control the
stiffness degradation and material deterioration. Note that
the yield deformation of the spring (𝑥

𝑦
) does not appear in

(2), unlike the original Bouc-Wenmodel. In fact, the adoption
of the Baber-Noori [34] formulation in calculating forces is
easy by considering that 𝛽 and 𝛾 are expressed as

𝛽 =
𝛽
󸀠

𝑥
𝜂

𝑦

,

𝛾 =
𝛾
󸀠

𝑥
𝜂

𝑦

(3)

inwhich𝛽󸀠 and 𝛾󸀠 can take values as in the original Bouc-Wen
model of hysteresis. In this case, 𝑧 is a dimensional quantity
and is bounded between −𝑥

𝑦
and +𝑥

𝑦
. The evolution of

material degradation is governed by the following equations
[34]:

𝐴 = 𝐴
0
− 𝛿
𝐴
𝑒, (4a)

] = 1 − 𝛿]𝑒, (4b)

𝜂 = 1 + 𝛿
𝜂
𝑒, (4c)

where 𝑒 is defined by the following rate equation:

̇𝑒 = (1 − 𝛼) 𝑓
𝑦
𝑥̇𝑧. (5)

And 𝛿
𝐴
, 𝛿], and 𝛿

𝜂
are the parameters that control the

degradation.

Incremental Response Equations. The tangent of 𝑓(𝑥) (i.e.,
𝜕𝑓(𝑥)/𝜕𝑥) is computed using (1):

𝜕𝑓 (𝑥)

𝜕𝑥
= 𝛼𝑘 + (1 − 𝛼) 𝑓

𝑦

𝜕𝑧

𝜕𝑥
. (6)

Note that this is the continuum tangent and not the algo-
rithmically consistent tangent. It is clear from (6) that the
derivative of 𝑧 with respect to 𝑥 is needed. To get it, (2) can
be rewritten as

𝑧̇ =
𝐴𝑥̇ − 𝑥̇ |𝑧|

𝑛

[𝛽 sgn (𝑥̇𝑧) + 𝛾] ]
𝜂

=
𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑡
. (7)

Hence,

𝜕𝑧

𝜕𝑥
=
𝐴 − |𝑧|

𝜂

[𝛽 sgn (𝑥̇𝑧) + 𝛾] ]
𝜂

. (8)

From this point, we will derive incremental response equa-
tions to obtain computer implementable equations. In what
follows, the same procedure developed by Haukaas and Der
Kiureghian [35] is used. The force at time 𝑡𝑖+1 is obtained as

𝑓
𝑖+1

= 𝛼𝑘𝑥
𝑖+1

+ (1 − 𝛼) 𝑓
𝑦
𝑧
𝑖+1

. (9)

The variable 𝑧 is next discretized by a Backward-Euler
solution scheme:

𝑧
𝑖+1

= 𝑧
𝑖+1

+ Δ𝑡

𝐴
𝑖+1

−
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑖+1
󵄨󵄨󵄨󵄨󵄨

𝑛

[𝛽 sgn (((𝑥𝑖+1 − 𝑥𝑖) /Δ𝑡) 𝑧𝑖+1) + 𝛾] ]𝑖+1

𝜂𝑖+1
(
𝑥
𝑖+1

− 𝑥
𝑖

Δ𝑡
) . (10)

It is seen that Δ𝑡 cancels from the equation, yielding a
nonlinear equation in 𝑧

𝑖+1. A Newton scheme of the form
𝑥
𝑖+1

= 𝑥
𝑖

− 𝑓(𝑥
𝑚

)/𝑓
󸀠

(𝑥
𝑚

) to solve the general nonlinear
equation of the form 𝑓(𝑥) = 0 is employed to solve for 𝑧𝑖+1 in
(10) [35].

The equations describing the degradation behavior are
described as follows:

𝐴
𝑖+1

= 𝐴
0
− 𝛿
𝐴
𝑒
𝑖+1

, (11a)

]𝑖+1 = 1 − 𝛿]𝑒
𝑖+1

, (11b)

𝜂
𝑖+1

= 1 + 𝛿
𝜂
𝑒
𝑖+1

, (11c)

where 𝑒𝑖+1 is found by discretization of the rate equation in
(5) using the Backward-Euler solution scheme:

𝑒
𝑖+1

= 𝑒
𝑖+1

+ Δ𝑡 (1 − 𝛼) 𝑓
𝑦
(
𝑥
𝑖+1

− 𝑥
𝑖

Δ𝑡
) 𝑧
𝑖+1

, (12)
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Figure 2: Undeformed and deformed configurations of the proposed macroelement model.

where Δ𝑡 again cancels. Note that 𝑧𝑖, 𝑥𝑖, and 𝑒𝑖 are history
variables that must be stored at each converged step.

For the complete implementable procedure to obtain
𝑓
𝑖+1 and the algorithmically consistent tangent 𝜕𝑓𝑖+1/𝜕𝑥𝑖+1

(referred to here as the Local Newton Routine), the reader
is referred to [35].

2.1.2. Vertical Spring. The vertical force 𝑓V mobilized in the
vertical translational spring is given by

𝑓V = 𝑘V𝑉 (13)

in which 𝑘V is the elastic vertical stiffness of the soil-
foundation system and 𝑉 is the vertical displacement of the
spring. Note that an appropriate constitutive model could be
assigned to the vertical spring; however, in this paper, the
spring is considered linear elastic, but the effect of axial loads
is present on the soil-shallow foundation global behavior.

2.2. Equilibrium Equations and Model Implementation. The
macroelement model described in the previous subsections
is used to simulate the soil-shallow foundation interaction.

Initially, we assume that the shear and rotational springs
are linear; then we replace them by the general forces 𝑓

𝑠
(𝑠)

and 𝑓
𝜃
(𝜃), respectively. The total potential energy Π of the

model with reference to Figure 2 is expressed as follows:

Π =
1

2
𝑘
𝜃
𝜃
2

+
1

2
𝑘
𝑠
𝑠
2

+
1

2
𝑘VV
2

− 𝑃𝑉 − 𝐹𝑈, (14)

where 𝑈 and 𝑉 are the foundation’s top horizontal and
vertical displacements, respectively, and are dependent on the
depth of embedment𝐻 and the spring’s displacements:

𝑈 = (𝐻 − V) sin (𝜃) + 𝑠 cos (𝜃) , (15a)

𝑉 = 𝐻 (1 − cos (𝜃)) + 𝑠 sin (𝜃) + V cos (𝜃) . (15b)

In (15b), 𝑉, positive in case of compression, is the sum
of the vertical component of the displacement originating
from the axial flexibility of the soil and the additional
vertical displacement that happens in the laterally deformed
configuration shown in Figure 2.

The above kinematic equations (see (15a), (15b)), which
relate the total displacement 𝑈 and the vertical displacement
𝑉 to the internal displacements 𝑠, V, and 𝜃, assume large
displacements and large rotations.

Considering the model subjected to the axial load 𝑃

with the resulting horizontal displacement 𝑈, the vector of
unknowns is then x = ⟨𝑠, V, 𝜃, 𝐹⟩𝑇. Using Castigliano’s second
theory by imposing the stationary of Π with respect to 𝑠, V,
and 𝜃 yields the following governing equations:

𝑔
1
= 𝑘
𝑠
𝑠 − 𝐹 cos (𝜃) − 𝑃 cos (𝜃) = 0, (16a)

𝑔
2
= 𝑘VV + 𝐹 sin (𝜃) − 𝑃 cos (𝜃) = 0, (16b)

𝑔
3
= 𝑘
𝜃
𝜃 − 𝑃 [(𝐻 − V) sin (𝜃) + 𝑠 cos (𝜃)]

− 𝐹 [(𝐻 − V) cos (𝜃) − 𝑠 sin (𝜃)] = 0.
(16c)

The following equation should also be considered to permit
the displacement-controlled cyclic analysis by imposing the
top lateral displacement 𝑈:

𝑔
4
= 𝑈 − [(𝐻 − V) sin (𝜃) + 𝑠 cos (𝜃)] = 0. (16d)

However, when the lateral force-controlled cyclic response is
desired, 𝐹 is to be imposed. Hence, the system of governing
equations to be solved is reduced to the three equilibrium
equations (see (16a), (16b), and (16c)).The lateral and vertical
displacements (𝑈, 𝑉) may be calculated at the end of the
analysis using the kinematic equations (see (15a), (15b)).

Considering the case of lateral displacement-controlled
analysis, (16a), (16b), (16c), and (16d) are rewritten in the
following form:

g =

{{{{{

{{{{{

{

𝑔
1

𝑔
2

𝑔
3

𝑔
4

}}}}}

}}}}}

}

=

{{{{{

{{{{{

{

𝑓
𝑠
(𝑠) − 𝐹 cos (𝜃) − 𝑃 sin (𝜃)

𝑘VV + 𝐹 sin (𝜃) − 𝑃 cos (𝜃)
𝑓
𝜃
(𝜃) − 𝑃 [(𝐻 − V) sin (𝜃) + 𝑠 cos (𝜃)] − 𝐹 [(𝐻 − V) cos (𝜃) − 𝑠 sin (𝜃)]

𝑈 − [(𝐻 − V) sin (𝜃) + 𝑠 cos (𝜃)]

}}}}}

}}}}}

}

. (17)



Mathematical Problems in Engineering 5

Table 1: TRISEE: parameters of the numerical model (units: kN, m).

Phase Shear spring Rotational spring Vertical
spring

𝑘/10
3

𝑓
𝑦

𝛼 (%) 𝑘/10
3

𝑓
𝑦

𝛼 (%) 𝑘V/10
3

HD
I 132.2 12.5 60 58.6 10 60 120
III 70 99 9 35 111 2 80

LD
I 54 3.8 47 25.4 3.8 4 65
III 35 40.4 1 8 33.3 1 27

Note that the resultant moment 𝑀 (𝑀 = 𝐹(𝐻 − 𝑉) +

𝑃𝑈) found by the equilibrium of the macroelement in the
deformed configuration needs also to be applied at the top
of the foundation. Also note that in (17), the terms 𝑘

𝑠
𝑠 and

𝑘
𝜃
𝜃 were replaced by the general forces 𝑓

𝑠
(𝑠) and 𝑓

𝜃
(𝜃),

respectively. These forces are assigned the constitutive model
𝑓(𝑥) developed in Section 2.1.1.

The system g(x) can be solved using Newton’s method
following the pseudocode provided below (referred to here
as the Global Newton Routine):

Previous converged solution x = ⟨𝑠, V, 𝜃, 𝐹⟩𝑇

(1) While (‖g(x)‖ < tolerance)
(2) Update𝑓

𝑠
,𝑓
𝜃
, 𝜕𝑓
𝑠
/𝜕𝑠, and 𝜕𝑓

𝜃
/𝜕𝜃using the Local

Newton Routine
(3) Compute g(x)
(4) Compute the Jacobian matrix J(x)
(5) 𝑑x = J(x)−1g(x)
(6) x = 𝑥 + 𝑑x

end

where the Jacobianmatrix J(x) is defined as 𝐽
𝑖𝑗
= 𝜕𝑔
𝑖
/𝜕𝑥
𝑗
.The

tangents 𝜕𝑓
𝑠
/𝜕𝑠 and 𝜕𝑓

𝜃
/𝜕𝜃 required in the Jacobian matrix

should be algorithmically consistent tangents (Section 2.1.1).
From the current estimation of the top lateral displace-

ment 𝑈 and axial load 𝑃, the code returns the vector x =

⟨𝑠, V, 𝜃, 𝐹⟩𝑇 that satisfies equilibrium and kinematics (see
(17)). In each global Newton iteration the current values of
𝑓
𝑠
,𝑓
𝜃
, 𝜕𝑓
𝑠
/𝜕𝑠, and 𝜕𝑓

𝜃
/𝜕𝜃 based on the current values of 𝑠 and

𝜃 are updated using the Local Newton Routine (Section 2.1.1).
The above pseudocode (Global Newton Routine) along

with the Local Newton Routine (that implements the Bouc-
Wen-Baber-Noori model of hysteresis) has been imple-
mented numerically in MATLAB (Mathworks, Inc.).

3. Verification with Experimental Results

To verify the validity of the proposedmacroelementmodel in
predicting the cyclic behavior of the soil-shallow foundation
system, its predictions are compared with experimental
results. In the framework of the TRISEE Project (3D Site
Effects and Soil-Foundation Interaction in Earthquake and

Vibration Risk Evaluation) a program of large-scale 1 gmodel
has been tested to investigate the response of soil-shallow
foundation under cyclic and dynamic loads. The experiment
was carried out at ELSA (European Laboratory for Structural
Assessment) in Ispra, Italy; test results are reported in many
references ([36], among others).

The TRISEE experiment consists of three phases; only
Phases I and III are considered in the comparison because
the proposedmacroelementmodel is restricted to 2D loading
conditions only. However, the model may be extended to
include the 3D case.

The experimental setup consists of a square steel shallow
foundation (1m × 1m) mounted inside a stiff concrete
caisson (4.6m × 4.6m × 3m) filled with Ticino sand. The
embedment of the foundation was about 1m, with a steel
framework placed around the foundation to retain the sand.
Two different soil relative densities have been used,𝐷

𝑟
= 85%

and𝐷
𝑟
= 45%, representing high (HD) and low density (LD)

soil conditions, respectively.
The HD and LD specimens were loaded vertically by

300 kN and 100 kN, respectively. The static safety factor
was about 5 in both tests. In the HD test, the load was
applied at 0.9m above the foundation and in the LD test at
0.935m. In Phase I, a series of unidirectional force-controlled
small amplitude cycles was applied to identify the signifi-
cance of nonlinear soil behavior. In Phase III, displacement-
controlled, unidirectional, increasing amplitude cycles were
imposed to the top of the foundation. For further information
on experimental setup and results refer to [36].

The new macroelement model is used to simulate the
foundation. The parameters of the numerical model are
presented in Table 1. These parameters have been calibrated
using experimental moment-rotation and horizontal force-
horizontal displacement curves. Parameters for the Bouc-
Wen-Baber-Noori model of hysteresis are given in Tables 2
and 3, for HD and LD tests, respectively.The parameters were
again calibrated with experimental results.

Figures 3–6 compare the experimental and the numerical
hysteretic horizontal force-horizontal displacement curves
and moment-rotation curves for Phases I and III. The
numerical model reproduces correctly the overall behavior
of the foundation, verifying the ability of the proposed
macroelement model to simulate the cyclic behavior of
shallow foundations.
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Table 2: Parameters of the Bouc-Wen-Baber-Noori model, HD test.

Phase Shear spring Rotational spring
𝐴 𝛽

󸀠

𝛾
󸀠

𝑛 𝛿
𝐴

𝛿V 𝛿
𝜂

𝐴 𝛽
󸀠

𝛾
󸀠

𝑛 𝛿
𝐴

𝛿V 𝛿
𝜂

I 1 0.5 0.5 1 0 −0.01 0 1 0.5 0.5 1 0 −0.01 0
III 1 0.5 0.5 0.7 0 0 0.1 1 0.1 0.9 0.7 0 0 0.1

Table 3: Parameters of the Bouc-Wen-Baber-Noori model, LD test.

Phase Shear spring Rotational spring
𝐴 𝛽

󸀠

𝛾
󸀠

𝑛 𝛿
𝐴

𝛿V 𝛿
𝜂

𝐴 𝛽
󸀠

𝛾
󸀠

𝑛 𝛿
𝐴

𝛿V 𝛿
𝜂

I 1 0.5 0.5 1 0 −0.01 0 1 0.5 0.5 1 0 −0.01 0
III 1 0.5 0.5 0.3 0 −0.01 0.1 1 0.33 0.67 0.2 0 −0.01 0.1

×10−4

×10−4
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Figure 3: Comparison of experimental and numerical results: HD test, Phase I.

The uplift is important for the HD Phase III test, and this
can be observed from the S shaped moment-rotation curve
(see Figure 5). For the LD sand, only plasticity is developed
and the uplift is not present.

4. Foundation Stiffness Matrix

In the previous section, large rotations have been considered
in formulating the macroelement model. However, assuming
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Figure 4: Comparison of experimental and numerical results: LD test, Phase I.

that small rotations permits the construction of the founda-
tion stiffness matrix. In this case, (17) can be rewritten as

g =

{{{{{

{{{{{

{

𝑔
1

𝑔
2

𝑔
3

𝑔
4

}}}}}

}}}}}

}

=

{{{{{

{{{{{

{

𝑓
𝑠
(𝑠) − 𝐹 − 𝑃𝜃

𝑘VV − 𝑃

𝑓
𝜃
(𝜃) − 𝑃 (𝐻𝜃 + 𝑠) − 𝐹𝐻

𝑈 −𝐻𝜃 − 𝑠

}}}}}

}}}}}

}

. (18)

Ryan et al. [37, 38] studied the stability of bearing isolators
and constructed the lead-rubber bearing stiffness matrix
relating a change in the isolator forces to the change in
displacements. Following the same idea, the foundation
matrix k

𝑓
, relating a change in foundation forces 𝑑f

𝑓
=

⟨𝑑𝐹, 𝑑𝑃⟩
𝑇 to the change in displacements 𝑑U

𝑓
= ⟨𝑑𝑈, 𝑑𝑉⟩

𝑇,
is derived in three steps:

(1) Differentiate the equations of equilibrium (in (18): 𝑔
1
,

𝑔
2
and 𝑔

3
) resulting in

keq𝑑V = Γ𝑑F
𝑓

(19)

in which 𝑑V = ⟨𝑑𝑠, 𝑑𝑉, 𝑑𝜃⟩
𝑇 and thematrices keq and

Γ are given by

keq =
[
[
[
[
[
[

[

𝜕𝑓 (𝑠)

𝜕𝑠
0 −𝑃

0 𝑘V 0

−𝑃
𝜕𝑓
𝜃

𝜕𝜃
−𝑃𝐻

]
]
]
]
]
]

]

,

Γ =
[
[

[

1 𝜃

0 1

𝐻 𝐻𝜃 + 𝑠

]
]

]

.

(20)

(2) Differentiate the equations of kinematics (see (15a)
and (15b)):

𝑑U
𝑓
= Γ
𝑇

𝑑V. (21)

(3) Substitute 𝑑V from (19) into (21):

𝑑U
𝑓
= (Γ
𝑇 feq Γ) 𝑑F𝑓, (22)
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Figure 5: Comparison of experimental and numerical results: HD test, Phase III.

where feq = k−1eq . The resultant flexibility matrix, f
𝑓
=

Γ
𝑇feqΓ, relates the displacement increment 𝑑U

𝑓
to

the force increment 𝑑F
𝑓
and is given by

f
𝑓
=

[
[
[
[
[

[

𝜕𝑓
𝜃
/𝜕𝜃 + 𝑃𝐻 + (𝜕𝑓

𝑠
/𝜕𝑠)𝐻

2

(𝜕𝑓
𝑠
/𝜕𝑠) (𝜕𝑓

𝜃
/𝜕𝜃 − 𝑃𝐻) − 𝑃2

((𝜕𝑓
𝑠
/𝜕𝑠)𝐻 + 𝑃) (𝐻𝜃 + 𝑠)

(𝜕𝑓
𝑠
/𝜕𝑠) (𝜕𝑓

𝜃
/𝜕𝜃 − 𝑃𝐻) − 𝑃2

((𝜕𝑓
𝑠
/𝜕𝑠)𝐻 + 𝑃) (𝐻𝜃 + 𝑠)

(𝜕𝑓
𝑠
/𝜕𝑠) (𝜕𝑓

𝜃
/𝜕𝜃 − 𝑃𝐻) − 𝑃2

(𝜕𝑓
𝑠
/𝜕𝑠) (𝐻𝜃 + 𝑠)

2

+ 𝑃𝐻𝜃
2

+ 2𝑃𝑠𝜃

(𝜕𝑓
𝑠
/𝜕𝑠) (𝜕𝑓

𝜃
/𝜕𝜃 − 𝑃𝐻) − 𝑃2

+
1

𝑘V

]
]
]
]
]

]

. (23)

Then foundation stiffness matrix k
𝑓
is the inverse of the

flexibility matrix, f
𝑓
. The stiffness matrix is computed after

calculation of displacements and computation of forces to
satisfy the governing equations (see (17)). In a structural
analysis program, the routine to compute the foundation
stiffness matrix may be incorporated into existing structural
analysis software and used for analysis of structures on
shallow foundations.

5. Conclusions

A practical macroelement model is presented in this paper to
simulate the response of soil-shallow foundation systems.The
proposedmodel was verified against experimental test results
of large-scale model foundations subjected to small and large
loading cycles. A summary of the main points presented in
this paper is given below:
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Figure 6: Comparison of experimental and numerical results: LD test, Phase III.

(1) The proposedmacroelementmodel can simulate with
a good accuracy the lateral response and rocking of
shallow foundations under quasistatic cyclic loadings.

(2) The uplift could be simulated adequately using well-
chosen parameters of the Bouc-Wen-Baber-Noori
model of hysteresis.

(3) The soil squeeze-out phenomenon observed by El
Ganainy and ElNaggar [17] can be included by proper
choice of degradation parameters of the Baber-Noori
model.

(4) The proposed model does not take into consideration
full coupling between the different springs. Never-
theless, the model represents a first step for future
improvements.
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