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As the most important formal semantic model, labeled transition systems are widely used, which can describe the general
concurrent systems or control systems without disturbance. However, under normal circumstance, transition systems are complex
and difficult to use due to large amount of calculation and the state space explosion problems. In order to overcome these
problems, approximate equivalent labeled transition systems are proposed by means of incomplete low-up matrix decomposition
factorization.This technique can reduce the complexity of computation and calculate under the allowing errors. As for continuous-
time linear systems, we develop a modeling method of approximated transition system based on the approximate solution of
matrix, which provides a facility for approximately formal semantic modeling for linear systems and to effectively analyze errors.
An example of application in the context of linear systems without disturbances is studied.

1. Introduction

Transition system is an important formal model of concur-
rent systems, which is widely used in concurrency theory,
such as petri nets and process algebras. Petri nets can be
used as a graphical tool to simulate the dynamic behavior
and concurrent activities of the systems and also can be
used as a mathematical tool to establish mathematical model
describing the behaviors of the systems. It is a widely
transition system and gives a method to describe Petri net
using classical transition system [1]. Apart from Petri net
theory, there is a process algebra, which is used to describe
and study concurrent or distributed system behavior theory
by algebraic methods. Thus, many process algebraic systems
are proposed. Among them, the first is to propose the
following three process algebra systems: CCS (Calculus of
Communicating Systems) proposed by Milner [2, 3], CSP
(Communicating Sequential Processes) proposed by Hoare
[4], and ACP (Algebra of Communicating Processes) pro-
posed by Baeten andWeijland [5]. In recent years, some new
process calculus systems have been proposed. For example,

probabilistic process algebra [6–12] and stochastic process
algebra [13] are proposed to describe possible or random
information; real-time process algebra [14–17] is proposed to
describe the action time. In the field of process algebra, as
the most important semantic model, the transition system is
widely used, especially labeled transition system [18], which
can describe the general behavior of concurrent systems.

Approximation of transition systems has recently been
introduced as a powerful tool for the approximation of con-
tinuous systems.The notion of simulation is one such formal
notion of abstraction that has been used for reducing the
complexity of finite state systems such as labeled transition
systems. Approximation of purely discrete systems has tra-
ditionally been based on language inclusion and equivalence
with notions such as simulation or bisimulation relations [19].
These concepts have been useful for simplifying problems
such as safety verification or controller synthesis. However,
in the cases that the quality requirements of simulation
or bisimulation are so exacting sometimes it is so difficult
for us to construct finite abstracts with the original system
simulation or bisimulation. Although finite abstract with
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the original system approximate simulation or approximate
bisimulation is easy to construct, these methods can only
ensure that the system approximately satisfies the given range
and is not able to calculate the allowable error of transition
between states. To solve this problem, this paper puts forward
a design method for transition system—approximate simula-
tion method based on ILU.

As a particular class of preconditioners, incomplete fac-
torizations can be thought of as approximating the exact 𝐿𝑈
factorization of a given matrix (e.g., computed via Gaussian
elimination) by disallowing certain filling of this. As opposed
to other PDE-based preconditioners such as multigrid and
domain decomposition, this class of preconditioners is pri-
marily algebraic in nature and can be applied to any matrices
in principle. However, one of the basic methods of precondi-
tioned method is the use of incomplete 𝐿𝑈 decomposition.
The most well known is the incomplete triangular decom-
position ILU0 [20] that has nothing more than zero-element
filling. Since ILU0 unchanged the structure of sparse matrix,
the application of ILU0 is very convenient. However, because
of this, it is so rough approximation of the coefficient matrix
that the effectiveness of ILU0 is limited. To improve the
approximation, filling with nonzero elements is allowed [21,
22]. While the ILU preconditioner works quite well for many
problems, it does not perform well for some PDE problems
[23]. Then, the generalization of this modified ILU (MILU)
preconditioner is proposed by Gustafsson [24]. MILU is to
add the fill-ins abandoned by ILU back to the diagonal type,
which makes up for inaccuracies caused by discarded. And
its accuracy can be calculated. However, mathematically, the
transition between states can be described by matrix, and
then the allowable error of the approximate transition is
needed to be characterized. Furthermore, the allowable error
can be defined by the MILU accuracy.

In the rest of this paper, Section 2 reviews the approximate
simulation relations of transition systems. In Section 3, the
approximate and incomplete factorizations are recalled. In
Section 4, the approximate equivalent of labeled transition
systems is proposed in detail. Section 5 proposes the theory
of the approximate labeled transition systems. In Section 6, a
case is studied. Then Section 7 draws the conclusion.

2. Approximation of Transition Systems

2.1. Labeled Transition Systems. We know that labeled tran-
sition systems allow modeling, in a unified framework,
discrete, continuous, and hybrid systems. The main results
[25] are reviewed here.

Definition 1. A labeled transition system with observation is
a tuple 𝑇 = (𝑄, Σ, → ,𝑄

0
, Π,(⋅)) that consists of

(i) a set 𝑄 of states,
(ii) a set Σ of labels,
(iii) a transition relation →⊆ 𝑄 × Σ × 𝑄,
(iv) a set 𝑄0

⊆ 𝑄 of initial states,
(v) a set Π of observations,
(vi) an observation map(⋅) : 𝑄 → Π.

A state trajectory of 𝑇 is a sequence of transitions,

𝑞
0 𝜎

0

󳨀→ 𝑞
1 𝜎

1

󳨀→ 𝑞
2 𝜎

2

󳨀→ ⋅ ⋅ ⋅ ,

where 𝑞0 ∈ 𝑄0
, 𝑞
𝑖

∈ 𝑄, 𝜎
𝑖−1

∈ Σ, 𝑖 = 1, 2, . . . .
(1)

For a given initial state and sequence of labels, there
may exist several state trajectories of 𝑇. Thus, the systems
we consider are possibly nondeterministic. The associated
external trajectory

𝜋
0 𝜎

0

󳨀→ 𝜋
1 𝜎

1

󳨀→ 𝜋
2 𝜎

2

󳨀→ ⋅ ⋅ ⋅ ,

where 𝜋𝑖 = (𝑞𝑖) , 𝑖 = 0, 1, 2, . . . ,
(2)

describes the evolution of the observations under the dynam-
ics of the labeled transition system.

The set of external trajectories of the labeled system 𝑇 is
called the language of 𝑇 and is denoted by 𝐿(𝑇). The subset
of Π reachable by the external trajectories of 𝑇 is denoted by
Reach(𝑇):

Reach (𝑇) = {𝜋 ∈Π | ∃𝜋
0 𝜎

0

󳨀→ 𝜋
1 𝜎

1

󳨀→ 𝜋
2 𝜎

2

󳨀→ ⋅ ⋅ ⋅

∈ 𝐿 (𝑇) , ∃𝑗 ∈N, 𝜋
𝑗

=𝜋} ,

(3)

where N is the set of positive integers.
An important problem for transition systems is the safety

verification problem which consists in checking whether the
reachable set Reach(𝑇) intersects a set of observations Π

𝑈

associated with unsafe states.

2.2. Approximate Simulation Relations. Exact simulation
relations between two labeled transition systems require that
their observations are (and remain) identical. Approximate
simulation relations are less rigid since they only require that
the observations of both systems are (and remain) arbitrarily
close.

Let 𝑇1 = (𝑄1, Σ1, → 1, 𝑄
0
1, Π1,(⋅)1) and 𝑇2 =

(𝑄2, Σ2, → 2, 𝑄
0
2, Π2,(⋅)2) be two labeled transition systems

with the same set of labels (Σ1 = Σ2 = Σ) and the same set
of observations (Π1 = Π2 = Π) (i.e., 𝑇1 and 𝑇2 are elements
of 𝑇(Σ,Π)). Let us assume that the set of observation Π is a
metric space; 𝑑

Π
denotes the metric of Π.

Definition 2. A metric of a set 𝐴 is a positive function 𝑑 :

𝐴 × 𝐴 → R ∪ +∞, whereR is the set of real numbers, such
that the three following properties hold: for all 𝑥, 𝑦, 𝑧 ∈ 𝐴

(1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),
(3) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

If the second property is replaced by 𝑥 = 𝑦 ⇒ 𝑑(𝑥, 𝑦) =

0 then 𝑑 is called a pseudometric. If the third property is
dropped, then 𝑑 is called a directed metric.
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Definition 3. A relation 𝑆
𝛿
⊆ 𝑄1 × 𝑄2 is a 𝛿-approximate

simulation relation of 𝑇1 by 𝑇2 if for all (𝑞1, 𝑞2) ∈ 𝑆𝛿

(1) 𝑑
Π
((𝑞1)1,(𝑞2)2) ≤ 𝛿,

(2) ∀𝑞1
𝜎

󳨀→1𝑞
󸀠

1, ∃𝑞2
𝜎

󳨀→2𝑞
󸀠

2 such that (𝑞󸀠1, 𝑞
󸀠

2) ∈ 𝑆𝛿.

Note that, in there, → 1 describes a transition relation of
𝑇1, → 2 describes a transition relation of 𝑇2, 𝑞

󸀠

1 represents
the next state of 𝑞1, 𝑞

󸀠

2 represents the next state of 𝑞2, and
𝜎 ∈ Σ. And that, for 𝛿 = 0, we have the usual notion of exact
simulation relation.

Definition 4. 𝑇2 approximately simulates 𝑇1 with the preci-
sion 𝛿 (noted 𝑇1 ⪯𝛿 𝑇2), if there exists 𝑆

𝛿
, a 𝛿-approximate

simulation relation of𝑇1 by𝑇2 such that, for all 𝑞1 ∈ 𝑄
0
1, there

exists 𝑞2 ∈ 𝑄
0
2 such that (𝑞1, 𝑞2) ∈ 𝑆𝛿.

If𝑇2 approximately simulates𝑇1 with the precision 𝛿 then
the language of 𝑇1 is approximated with precision 𝛿 by the
language of 𝑇2.

Theorem 5. If 𝑇1 ⪯𝛿 𝑇2, then for all external trajectories of 𝑇1,

𝜋
0
1
𝜎
0

󳨀→ 𝜋
1
1
𝜎
1

󳨀→ 𝜋
2
1
𝜎
2

󳨀→ ⋅ ⋅ ⋅ , (4)

there exists an external trajectory of 𝑇2 with the same sequence
of labels

𝜋
0
2
𝜎
0

󳨀→ 𝜋
1
2
𝜎
1

󳨀→ 𝜋
2
2
𝜎
2

󳨀→ ⋅ ⋅ ⋅ (5)

such that, for all 𝑖 ∈ N, 𝑑
Π
(𝜋
𝑖

1, 𝜋
𝑖

2) ≤ 𝛿.

In Theorem 5, if 𝑇2 approximately simulates 𝑇1 with
the precision 𝛿, there must exist a state of 𝑇2 approximate
simulation the state of 𝑇1. But it is very difficult for us to
calculate the degree of approximation.

3. Approximate and Incomplete Factorizations

The general problem of finding a preconditioner for a large
sparse linear system 𝐴𝑥 = 𝑏 is to find a matrix 𝑀 (the
preconditioner). However, the matrix 𝑀 should be with the
following properties:

(i) 𝑀 is a nonsingular matrix,
(ii) 𝑀 is a good approximation to 𝐴 in some sense,
(iii) the system 𝑀𝑥 = 𝑏 is much easier to solve than the

original system 𝐴𝑥 = 𝑏,
(iv) the construction of 𝑀 has some memory and CPU

needs protection,
(v) the condition number of the𝑀−1𝐴 is much less than

that of 𝐴, and its minimum singular value becomes
larger.

That is, we are looking for a nearby problem which
is easier to solve than the given one. The idea is to
look for a matrix 𝑀 such that the original linear system
𝐴𝑥 = 𝑏 is transformed into an equivalent linear system

𝑀
−1
𝐴𝑥 = 𝑀

−1
𝑏. Mathematically, we will solve the precon-

ditioned system 𝑀
−1
𝐴𝑥 = 𝑀

−1
𝑏 (or the symmetric version

(𝑀
−1/2

𝐴𝑀
−1/2

)(𝑀
1/2
𝑥) = 𝑀

−1/2
𝑏 when both 𝐴 and 𝑀 are

symmetric positive definite) by standard iterative methods
(such as the conjugate gradient method), in which only the
actions of 𝐴 and𝑀−1 are needed.

There are several preconditions: matrix splitting pre-
conditioner, polynomial preconditioners, incomplete factor-
ization preconditioners, approximate inverse precondition-
ers, and multilevel preconditioners. Here, we mainly focus
on incomplete factorization preconditioners, which can be
applied to a general purpose. They can be thought of as
modifications of Gaussian Elimination, in which some sparse
mode is required as the decomposition of matrices, such as
making some of the special position of the elements be zero
and also abandoning some absolute value in the process of
decomposition of minor elements in order to ensure that
sparse decomposition.

3.1. Incomplete Low-Up Matrix Decomposition (ILU). The
most common type of incomplete factorization is based on
taking a set 𝑆 of matrix positions and keeping all positions
outside this set equal to zero during the factorization. The
resulting factorization is incomplete in the sense that fill is
suppressed.

Definition 6. A matrix 𝐴, if 𝐴 = 𝐿𝑈, where 𝐿 (𝑈) is the
lower (upper) triangular sparse matrix, is called a complete
decomposition of the matrix 𝐴, that is, 𝐿𝑈 [26].

Definition 7. A matrix 𝐴, if 𝐴 = 𝐿𝑈 + 𝑅, where 𝐿 (𝑈)
is the lower (upper) triangular sparse matrix, is called an
incomplete decomposition of the matrix 𝐴, that is, ILU. Here
𝑅 is called error matrix [27].

Let the allowable fill-in positions be given by the index set
𝑆; that is,

(1) 𝑙
𝑖,𝑗
= 0 if 𝑗 > 𝑖 or (𝑖, 𝑗) ∈ 𝑆; 𝑢

𝑖,𝑗
= 0 if 𝑖 > 𝑗 or (𝑖, 𝑗) ∈ 𝑆.

A commonly used strategy is to define 𝑆 by

(2) 𝑆 = {(𝑖, 𝑗) | 𝑎
𝑖,𝑗

̸= 0}.

That is, the only nonzeros allowed in the 𝐿𝑈 factors are
those for which the corresponding entries in 𝐴 are nonzero.
Let the preconditioner 𝑀 be defined by the product of the
resulting 𝐿𝑈 factors, that is,𝑀 = 𝐿𝑈. If𝑀 becomes a good
preconditioner, itmust be a good approximation to𝐴 in some
measure. 𝐴 typical strategy is to require the entries of 𝑀 to
match those of 𝐴 on the set 𝑆:

(3) 𝑚
𝑖,𝑗
= 𝑎
𝑖,𝑗
if (𝑖, 𝑗) ∈ 𝑆.

Even though conditions (1) and (3) together are sufficient
(for certain classes of matrices) to determine the nonzero
entries of 𝐿 and 𝑈 directly, it is more natural and simpler
to compute these entries based on a simple modification of
the Gaussian elimination algorithm.Matrix𝐴 is decomposed
into 𝐿 and 𝑈 by the incomplete 𝐿𝑈. And the corresponding
entries of 𝐿 and 𝑈 are the same as those obtained by setting
those entries of the full 𝐿𝑈 factors which belong to 𝑆.
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(1) for 𝑟 := 1 Step 𝑖 until 𝑛 − 1 do
(2) 𝑑 := 1/𝑎

𝑟,𝑟
;

(3) for 𝑖 := (𝑟 + 1) Step (1) until 𝑛 do
(4) if (𝑖, 𝑟) ∈ 𝑆 then;
(5) 𝑒 := 𝑑𝑎

𝑖,𝑟
; 𝑎
𝑖,𝑟
:= 𝑒;

(6) for 𝑗 := (𝑟 + 1) Step (1) until 𝑛 do
(7) if (𝑖, 𝑗) ∈ 𝑆 and (𝑟, 𝑗) ∈ 𝑆 then;
(8) 𝑎

𝑖,𝑗
:= 𝑎
𝑖,𝑗
− 𝑒𝑎
𝑟,𝑗
;

(9) end if;
(10) end for (𝑗 − loop);
(11) end if;
(12) end for (𝑖 − loop);
(13) end for (𝑟 − loop);

Algorithm 1: Algorithm ILU.

However, the incomplete 𝐿𝑈 factors of 𝐴, respectively, with
the lower and upper triangular part of the matrix 𝐴, have the
same nonzero structure.

The constructing process of ILU precondition is in the
process of Gaussian elimination by discarding partially filled
elements to get sparse triangular matrixes 𝐿 and 𝑈 such that
𝑀 = 𝐿𝑈. From the decomposition of ILU we can see that the
preconditioners 𝑀 and 𝐴 have the same nonzero structure.
Therefore, the error matrix 𝑅 = 𝐴 − 𝐿𝑈 = 𝐴 − 𝑀 and the
main difference from the usual Gaussian elimination lie in
how to discard fill-ins in the Gaussian elimination.

3.2. Modified Incomplete Low-Up Matrix Decomposition
(MILU). While the ILU preconditioner works quite well for
many problems, it does not perform well for some problems.
We will next describe the generalization of this modified ILU
(MILU) preconditioner to a general matrix 𝐴 [28].

The basic idea is that in condition (3), for ILU, the
condition𝑚

𝑖,𝑖
= 𝑎
𝑖,𝑖
is removed and a new row sum condition

is added. That is, (3) is replaced by

(4) ∑𝑛
𝑗=1𝑚𝑖,𝑗 = ∑

𝑛

𝑗=1 𝑎𝑖,𝑗 ∀𝑖 and 𝑚𝑖,𝑗 = 𝑎
𝑖,𝑗

if 𝑖 ̸= 𝑗 and
(𝑖, 𝑗) ∈ 𝑆.

Again, for certain classes of matrices, conditions (4) and
(1) are sufficient to determine the𝐿𝑈 factors inMILUdirectly.
However, in practice it is easier to compute these 𝐿𝑈 factors
by a modification of the ILU algorithm: instead of dropping
the disallowed fill-ins in the ILU algorithm, these terms are
added to the diagonal of the same row. Furthermore, the idea
of MILU is to make up for inaccuracies caused by discarded
by using fill-ins plus backup to cover the diagonal type.

Incomplete factorization preconditioners can be por-
trayed accuracy and stability. Here, accuracy refers to the
degree of preconditioner 𝑀 and matrix 𝐴 can be measured
by the size of ‖𝑀 − 𝐴‖

𝐹
. And stability refers to the degree of

preconditioner𝑀 and the unit matrix 𝐸 can be measured by
the size of ‖𝐸 − 𝑀

−1
𝐴‖
𝐹
(for the left preconditioner). Below

we give algorithm ILU and algorithmMILU [29].
From the analysis of Algorithms 1 and 2, the difference

between algorithm ILU andMILU is that certain fill-ins given
up in algorithm ILU are back to the main diagonal.

(1) for 𝑟 := 1 Step (1) until 𝑛 − 1 do
(2) 𝑑 := 1/𝑎

𝑟,𝑟
;

(3) for 𝑖 := (𝑟 + 1) Step (1) until 𝑛 do
(4) if (𝑖, 𝑟) ∈ 𝑆 then;
(5) 𝑒 := 𝑑𝑎

𝑖,𝑟
; 𝑎
𝑖,𝑟
:= 𝑒;

(6) for 𝑗 := (𝑟 + 1) Step (1) until 𝑛 do
(7) if (𝑟, 𝑗) ∈ 𝑆 then;
(8) if (𝑖, 𝑗) ∈ 𝑆 then;
(9) 𝑎

𝑖,𝑗
:= 𝑎
𝑖,𝑗
− 𝑒𝑎
𝑟,𝑗
;

(10) else;
(11) 𝑎

𝑖,𝑖
:= 𝑎
𝑖,𝑖
− 𝑒𝑎
𝑟,𝑗
;

(12) end if;
(13) end if;
(14) end for (𝑗 − loop)
(15) end if;
(16) end for (𝑖 − loop);
(17) end for (𝑟 − loop);

Algorithm 2: Algorithm MILU.

4. Equivalent Labeled Transition Systems

In labeled transition systems, we can assume that Σ is a finite
set of labels; a label𝜎 ∈ Σ describes an action. →⊆ 𝑄×Σ×𝑄 is
a transition relation, where𝑄 is a set of states. Each transition
→ is a tuple ⟨𝑞, 𝜎, 𝑞󸀠⟩, where 𝑞 and 𝑞󸀠 represent the pre- and
poststates of the transition, respectively. A state trajectory of
labeled transition systems is a sequence of transitions:

𝑞
0 𝜎

0

󳨀→ 𝑞
1 𝜎

1

󳨀→ 𝑞
2 𝜎

2

󳨀→ ⋅ ⋅ ⋅ , (6)

where 𝑞0 ∈ 𝑄0 is the initial state and 𝑄0
⊆ 𝑄 is the initial set

of states.
For a given initial state and sequence of labels, there

may be several state trajectories of labeled transition systems.
Thus, the systems we consider are possibly nondeterministic.

Here, we mainly consider the set Σ of labels. Let label 𝜎 ∈
Σ has the following form:

𝑥̇1 = 𝑎11 (𝑡) 𝑥1 + 𝑎12 (𝑡) 𝑥2 + ⋅ ⋅ ⋅ + 𝑎1𝑛 (𝑡) 𝑥𝑛

𝑥̇2 = 𝑎21 (𝑡) 𝑥1 + 𝑎22 (𝑡) 𝑥2 + ⋅ ⋅ ⋅ + 𝑎2𝑛 (𝑡) 𝑥𝑛

.

.

.

𝑥̇
𝑛
= 𝑎
𝑛1 (𝑡) 𝑥1 + 𝑎𝑛2 (𝑡) 𝑥2 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑛 (𝑡) 𝑥𝑛.

(7)

It can be abbreviated as 𝑥̇ = 𝐴(𝑡)𝑥, where 𝑥̇ =

(𝑥̇1 𝑥̇2 ⋅ ⋅ ⋅ 𝑥̇
𝑛
)
𝑇, 𝑥 = (𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥

𝑛
)
𝑇, and

𝐴 (𝑡) =(

𝑎11 (𝑡) 𝑎12 (t) ⋅ ⋅ ⋅ 𝑎1𝑛 (𝑡)

𝑎21 (𝑡) 𝑎22 (𝑡) ⋅ ⋅ ⋅ 𝑎2𝑛 (𝑡)

.

.

.
.
.
.

.

.

.
.
.
.

𝑎
𝑛1 (𝑡) 𝑎

𝑛2 (𝑡) ⋅ ⋅ ⋅ 𝑎
𝑛𝑛
(𝑡)

) . (8)
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We can obtain the preconditioner𝑀(𝑡) of matrix 𝐴(𝑡) by
means of ILU. We assume the preconditioner𝑀(𝑡) is

𝑀(𝑡) =(

𝑏11 (𝑡) 𝑏12 (𝑡) ⋅ ⋅ ⋅ 𝑏1𝑛 (𝑡)

𝑏21 (𝑡) 𝑏22 (𝑡) ⋅ ⋅ ⋅ 𝑏2𝑛 (𝑡)

.

.

.
.
.
.

.

.

.
.
.
.

𝑏
𝑛1 (𝑡) 𝑏

𝑛2 (𝑡) ⋅ ⋅ ⋅ 𝑏
𝑛𝑛
(𝑡)

) . (9)

According to Section 3, we can know that the equivalent
equation of 𝑥̇ = 𝐴(𝑡)𝑥 is 𝑀−1(𝑡)𝐴(𝑡)𝑥 = 𝑀

−1
(𝑡)𝑥̇. Let

𝜎
󸀠 be symbol of 𝑀−1(𝑡)𝐴(𝑡)𝑥 = 𝑀

−1
(𝑡)𝑥̇. That is, 𝜎󸀠 :

𝑀
−1
(𝑡)𝐴(𝑡)𝑥 = 𝑀

−1
(𝑡)𝑥̇. So label 𝜎 and label 𝜎󸀠 are

equivalent.

Definition 8. Label 𝜎󸀠 : 𝑀
−1
(𝑡)𝐴(𝑡)𝑥 = 𝑀

−1
(𝑡)𝑥̇ is the

equivalent label of label 𝜎 : 𝑥̇ = 𝐴(𝑡)𝑥, where 𝑥 and 𝑥̇ are
the pre- and poststate values of the transition, if matrix𝑀(𝑡)

is the preconditioner matrix of matrix 𝐴(𝑡).
The labeled transition system can only be used for

symbolic reasoning. Two labels are equivalent if they have
the same form, syntax, and semantics. Here, Definition 8
gives the equivalent of two labels. It has the characteristic that
labels’ equations are equivalent instead of having the same
form, syntax, and semantics.

For all labels 𝜎
𝑖
∈ Σ, 𝑖 ∈ N, where N is the set of

positive integers, 𝜎
𝑖
: 𝑥̇ = 𝐴

𝑖
(𝑡)𝑥; its equivalent label is

𝜎
󸀠

𝑖
: 𝑀
−1
𝑖
(𝑡)𝐴
𝑖
(𝑡)𝑥 = 𝑀

−1
𝑖
(𝑡)𝑥̇, where matrix 𝑀

𝑖
(𝑡) is the

preconditioner matrix of matrix 𝐴
𝑖
(𝑡). Let Σ󸀠 = {𝜎

󸀠

𝑖
| 𝑖 ∈ N}.

Definition 9. Set Σ = {𝜎
𝑖
| 𝑖 ∈ N} of labels and set Σ󸀠 = {𝜎

󸀠

𝑖
|

𝑖 ∈ N} are equivalent if ∀𝜎
𝑖
∈ Σ; there exists 𝑗 ∈ Nmaking 𝜎

𝑖

and 𝜎
𝑗
equivalent.

A labeled transition system with observation is a tuple
𝑇 = (𝑄, Σ,→ ,𝑄0

, Π,(⋅)). Let𝑇󸀠 = (𝑄, Σ
󸀠

, → ,𝑄
0
, Π,(⋅)).

Definition 10. Labeled transition system with observation
𝑇 and labeled transition system with observation 𝑇

󸀠 are
equivalent if set Σ of labels and set Σ󸀠 of labels are equivalent.
One labeled transition system is called equivalent system of
another labeled transition system.

Here, we only study labels of labeled transition systems.

5. Approximate Labeled Transition System

In general, we know that a labeled transition system with
observations is used to prescribe control systems. In this
section, our goal is to study 𝑥̇ = 𝐴𝑥 (the transition
relationship between states).

The purpose of this paper is to characterize approximate
similar transition systems that are generated by continuous-
time linear systems, which are conceptually similar to the
transition systems generated by discrete-time systems. We
begin with studying continuous-time linear systems whose
dynamics are closer to transition systems due to the existence

of an atomic time step [30]. Consider a continuous-time
linear system without disturbances

𝐶 : 𝑥̇ = 𝐴𝑥, (10)

where with time 𝑡 ∈ R
+
, state 𝑥(𝑡) ∈ R𝑛 and matrix 𝐴 of

approximate dimension, given an initial condition 𝑥0.

Definition 11. Consider continuous-time system 𝐶 given by
𝑥̇ = 𝐴𝑥 and observation set Π = 𝐵

𝑝. The transition system
𝑇
𝑟
+

𝐶
= (𝑄, Σ, → ,Π,(⋅)) generated by 𝐶 and Π consists of
(i) state space 𝑄 = R𝑛,
(ii) label Σ = R

+
,

(iii) transition relation →⊆ 𝑄 × R
+
× 𝑄 defined as 𝑥 𝑡󳨀→

𝑥
󸀠

⇔ ∃𝑢
[0,𝑡] with 𝑥

󸀠

= Φ
𝐶
(𝑡, 𝑥, 𝑢

[0,𝑡]),
(iv) observation Π = 𝐵

𝑝,
(v) observation map(⋅) : 𝑄 → Π.
Usually, the linear systems are presented by ordinary

differential equations, partial differential equations, and dif-
ference equations.

For 𝑡 ∈ R+, the transition relation is given by 𝑞 𝑡󳨀→ 𝑞
󸀠 if

and only if there exists a function 𝑥(⋅) such that 𝑥(0) = 𝑞,
𝑥(𝑡) = 𝑞

󸀠, and for almost all 𝑠 ∈ [0, 𝑡], 𝑥̇(𝑠) ∈ 𝐹(𝑥(𝑠)), where
𝐹 is a valued map.

5.1. Approximate Similar States. Consider the following
continuous-time linear system of state 𝑞 translated to another
state 𝑞

󸀠 without disturbances, where the continuous-time
linear system is a nondeterministic continuous system. That
is, 𝑞 𝜎󳨀→1𝑞

󸀠:

𝑥̇1 = 𝑎11 (𝑡) 𝑥1 + 𝑎12 (𝑡) 𝑥2 + ⋅ ⋅ ⋅ + 𝑎1𝑛 (𝑡) 𝑥𝑛

𝑥̇2 = 𝑎21 (𝑡) 𝑥1 + 𝑎22 (𝑡) 𝑥2 + ⋅ ⋅ ⋅ + 𝑎2𝑛 (𝑡) 𝑥𝑛

.

.

.

𝑥̇
𝑛
= 𝑎
𝑛1 (𝑡) 𝑥1 + 𝑎𝑛2 (𝑡) 𝑥2 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑛 (𝑡) 𝑥𝑛

(11)

and state value of the initial state 𝑞 is 𝑥(0) = (𝑏1 𝑏2 ⋅ ⋅ ⋅ 𝑏
𝑛
),

𝑡 ∈ [0, 𝑡0].
The state is observed through the variable 𝜋1(𝑡) = 𝑥1(𝑡)

and the transition relation is expressed as → 1.
We know that the equation is the linear differential

equations. We introduce the following mark:

𝐴 (𝑡) =(

𝑎11 (𝑡) 𝑎12 (𝑡) ⋅ ⋅ ⋅ 𝑎1𝑛 (𝑡)

𝑎21 (𝑡) 𝑎22 (𝑡) ⋅ ⋅ ⋅ 𝑎2𝑛 (𝑡)

.

.

.
.
.
.

.

.

.
.
.
.

𝑎
𝑛1 (𝑡) 𝑎

𝑛2 (𝑡) ⋅ ⋅ ⋅ 𝑎
𝑛𝑛
(𝑡)

) , (12)

where 𝐴(𝑡) is an 𝑛 by 𝑛 matrix. The above equations can be
expressed as

𝑥̇ = 𝐴 (𝑡) 𝑥, (13)

where 𝑥 = (𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥
𝑛
)
𝑇, 𝑥̇ = (𝑥̇1 𝑥̇2 ⋅ ⋅ ⋅ 𝑥̇

𝑛
)
𝑇.
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However, 𝐴(𝑡) is a large sparse matrix for most mathe-
matical models of practical problems in the real world, so it is
very difficult for us to obtain the solution of the equation 𝑥̇ =
𝐴(𝑡)𝑥.Thenwe use ILU to calculate the approximate solution.
The preconditioner𝑀 = 𝐿𝑈, where 𝐿 is a triangular matrix
and 𝑈 is an upper triangular matrix. Hence, the original
linear system 𝑥̇ = 𝐴(𝑡)𝑥 is transformed into an equivalent
linear system 𝑀

−1
𝐴𝑥 = 𝑀

−1
𝑥̇ (or the symmetric version

(𝑀
−1/2

𝐴𝑀
−1/2

)(𝑀
1/2
𝑥) = 𝑀

−1/2
𝑥̇ when both 𝐴 and 𝑀 are

symmetric positive definite). Because system 𝑥̇ = 𝐴(𝑡)𝑥 is a
portrait of the transition process from the state 𝑞 to another
state 𝑞󸀠, the elements of 𝐴(𝑡) present the dynamic changes
from state 𝑞 to another state 𝑞󸀠. The preconditioner𝑀 is the
approximate dynamic changed from the state 𝑞 to another
state 𝑞󸀠. Hence,𝐴−𝑀, an error matrix, has the meaning that
state 𝑞 can be translated into another state 𝑞󸀠 in the error, and
its degree of approximation is ‖𝑀 − 𝐴‖

𝐹
. Then we can define

the approximate distance between the two states.

Proposition 12. 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖
𝐹
is the distance between 𝑥

and 𝑦, where 𝑥, 𝑦 ∈ 𝑋 and𝑋 is a linear space.

Proof. In fact, for the norm axioms, ∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑑(𝑥, 𝑦) =
‖𝑥 − 𝑦‖

𝐹
≥ 0, and 𝑑(𝑥, 𝑦) = 0 if and only if ‖𝑥 − 𝑦‖

𝐹
= 0; that

is, 𝑥 = 𝑦.
What is more,

𝑑 (𝑥, 𝑦) =
󵄩󵄩󵄩󵄩𝑥 −𝑦

󵄩󵄩󵄩󵄩𝐹
=
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩𝐹
= 𝑑 (𝑦, 𝑥) ,

𝑑 (𝑥, 𝑦) =
󵄩󵄩󵄩󵄩𝑥 −𝑦

󵄩󵄩󵄩󵄩𝐹
=
󵄩󵄩󵄩󵄩𝑥 − 𝑧 + 𝑧 −𝑦

󵄩󵄩󵄩󵄩𝐹

≤ ‖𝑥− 𝑧‖
𝐹
+
󵄩󵄩󵄩󵄩𝑧 − 𝑦

󵄩󵄩󵄩󵄩𝐹
= 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦) .

(14)

Definition 13. ∀𝑞, 𝑞󸀠 ∈ 𝑄, the approximate distance between
𝑞 and 𝑞󸀠 is

𝑑
𝑄
(𝑞, 𝑞
󸀠

) = ‖𝑀−𝐴‖
𝐹
. (15)

Let us assume that 𝑞1, 𝑞2, 𝑞3 are elements of 𝑄 and the
state trajectory is

𝑞1
𝜎1
󳨀→ 𝑞2

𝜎2
󳨀→ 𝑞3. (16)

The mathematical relationship of 𝑞1
𝜎1
󳨀→ 𝑞2, 𝑞2

𝜎2
󳨀→ 𝑞3

is respective 𝑥̇ = 𝐴1(𝑡)𝑥, 𝑧̇ = 𝐴2(𝑡)𝑧. This system is a
continuous transition, so a transition from state 𝑞1 to state
𝑞3 can be expressed as 𝑞1

𝜎2𝜎1
󳨀󳨀󳨀→ 𝑞3. This can be represented by

using Figure 1. A line with an arrow indicates state transition,
where the end of a line without arrow points to the prestate
and the end of a line with arrow points to the poststate, a label
marks on the line.

Call 𝑑
𝑄
(𝑞, 𝑞
󸀠

) = ‖𝑀−𝐴‖
𝐹
as the degree of approximation

of state 𝑞 translated into state 𝑞󸀠. Furthermore, because 𝑥(0) =
𝑞, 𝑥(𝑡0) = 𝑞

󸀠, the solution 𝑦 of the equivalent linear system
𝑀
−1
𝐴𝑥 = 𝑀

−1
𝑥̇ is the approximate solution of the original

q1

q1

q2

q2

q3

q3

𝜎1

𝜎1

𝜎2

𝜎2

𝜎2𝜎1

Figure 1: Continuous transition of states.

linear system 𝑥̇ = 𝐴(𝑡)𝑥, where 𝑡 ∈ [0, 𝑡0], 𝑦(0) = 𝑞, 𝑦(𝑡0) =
𝑝
󸀠. The mathematical relationship of 𝑞 𝜎󳨀→ 𝑝

󸀠 is

̇𝑦 = 𝐴 (𝑡) 𝑦, (17)

where 𝑦 = (𝑦1 𝑦2 ⋅ ⋅ ⋅ 𝑦
𝑛
)
𝑇, ̇𝑦 = ( ̇𝑦1 ̇𝑦2 ⋅ ⋅ ⋅ ̇𝑦

𝑛
)
𝑇, and state

value of initial state 𝑦(0) = (𝑏1 𝑏2 ⋅ ⋅ ⋅ 𝑏
𝑛
).

The state is observed through the variable 𝜋2(𝑡) = 𝑦1(𝑡)
and the transition relation is expressed as → 2. Therefore,
the accuracy between the exact solution 𝑥 and approximate
solution 𝑦 of the linear systems is 𝛿 = ‖𝑀 − 𝐴‖

𝐹
. That is,

𝛿 = lim
𝑡→+∞

‖𝑥 − 𝑦‖
𝐹
= ‖𝑀 − 𝐴‖

𝐹
. And 𝑑

Π
(𝜋1(𝑡), 𝜋2(𝑡)) =

‖𝑥1(𝑡) − 𝑦1(𝑡)‖𝐹 ≤ ‖𝑥 − 𝑦‖
𝐹
= 𝛿.

Theorem 14. Let 𝑦 be the approximate solution of 𝑥̇ = 𝐴(𝑡)𝑥;
then ̇𝑦 = 𝐴(𝑡)𝑦 simulates approximately 𝑥̇ = 𝐴(𝑡)𝑥 with
precision lim

𝑡→+∞
‖𝐴(𝑡)‖

𝐹
‖𝑀 − 𝐴‖

𝐹
.

Proof.

lim
𝑡→+∞

󵄩󵄩󵄩󵄩𝑥̇ −
̇𝑦
󵄩󵄩󵄩󵄩𝐹

= lim
𝑡→+∞

󵄩󵄩󵄩󵄩𝐴 (𝑡) 𝑥 −𝐴 (𝑡) 𝑦
󵄩󵄩󵄩󵄩𝐹

= lim
𝑡→+∞

󵄩󵄩󵄩󵄩𝐴 (𝑡) (𝑥 − 𝑦)
󵄩󵄩󵄩󵄩𝐹

≤ lim
𝑡→+∞

‖𝐴 (𝑡)‖
𝐹

󵄩󵄩󵄩󵄩𝑥 −𝑦
󵄩󵄩󵄩󵄩𝐹

≤ lim
𝑡→+∞

‖𝐴 (𝑡)‖
𝐹

lim
𝑡→+∞

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝐹

= lim
𝑡→+∞

‖𝐴 (𝑡)‖
𝐹
‖𝑀−𝐴‖

𝐹
.

(18)

So ̇𝑦 = 𝐴(𝑡)𝑦 simulates approximately 𝑥̇ = 𝐴(𝑡)𝑥. And
therefore, we can say the state 𝑝󸀠 simulates approximately the
state 𝑞󸀠.

Here, approximate simulation of states is controlled by
labels, where labels are special. Furthermore, the degree of
approximate similar states can be obtained by the approxi-
mate solution of labels’ mathematical models.

5.2. Approximate Similar Linear Systems. We have given an
approximate simulation method for a state. Now we consider
approximate simulation of linear systems.
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Let the transition system generated by 𝐶 and Π be
expressed as 𝑇𝑟+

𝐶
= (𝑄, Σ, → ,Π,(⋅)). Furthermore, for any

state in𝑄we have given its approximate state; that is,∀𝑞
𝑖
∈ 𝑄,

𝑖 = 1, 2, . . . , 𝑞
𝑖
is approximately simulated by state 𝑞󸀠

𝑖
bymeans

of ILU, and the equivalent label of label 𝜎
𝑖
: 𝑥̇ = 𝐴

𝑖
(𝑡)𝑥

is 𝜎󸀠
𝑖
: 𝑀
−1
𝑖
(𝑡)𝐴
𝑖
(𝑡)𝑥 = 𝑀

−1
𝑖
(𝑡)𝑥̇, where matrix 𝑀

𝑖
(𝑡) is the

preconditioner of matrix 𝐴
𝑖
(𝑡). Let 𝑄󸀠 = {𝑞

󸀠

𝑖
| 𝑖 = 1, 2, . . .},

Σ
󸀠

= {𝜎
󸀠

𝑖
| 𝑖 = 1, 2, . . .}, and then 𝑇󸀠 = (𝑄

󸀠

, Σ
󸀠

, → ,Π,(⋅)).

Definition 15. 𝑇
󸀠 approximately simulates 𝑇, if there exists

𝑞
󸀠

𝑖
and 𝜎

󸀠

𝑖
, 𝑖 = 1, 2, . . ., where state 𝑞󸀠

𝑖
is an approximate

simulation state of state 𝑞
𝑖
; label 𝜎󸀠

𝑖
is the equivalent label of

label 𝜎
𝑖
. One labeled transition system is called approximate

system of another labeled transition system.

Theorem 16. The precision of the 𝑇󸀠 approximate simulation
𝑇 is

𝛿 = max
𝑖

( lim
𝑡→+∞

󵄩󵄩󵄩󵄩𝐴 𝑖 (𝑡)
󵄩󵄩󵄩󵄩𝐹

󵄩󵄩󵄩󵄩𝑀𝑖 −𝐴 𝑖
󵄩󵄩󵄩󵄩𝐹
) ,

𝑖 = 1, 2, . . . .
(19)

According to Theorem 14, we know that a state 𝑞
󸀠

can simulate approximately the state 𝑞 with the precision
lim
𝑡→+∞

‖𝐴(𝑡)‖
𝐹
‖𝑀 − 𝐴‖

𝐹
. Thus, for each 𝑞

𝑖
∈ 𝑄,

∃𝑞
󸀠

𝑖
∈ 𝑄
󸀠 simulates approximately state 𝑞

𝑖
with the precision

lim
𝑡→+∞

‖𝐴
𝑖
(𝑡)‖
𝐹
‖𝑀
𝑖
− 𝐴
𝑖
‖
𝐹
. This means that each element

of set 𝑄 has its approximate element with corresponding
percision. But the set 𝑄󸀠 generally approximates to the set 𝑄
with some other precision. Fortunately, we know that in this
situation the precision between the set 𝑄 and the set 𝑄󸀠 can
be defined by themaximumpercision of their elments. So the
precision between set 𝑄󸀠 of approximate states and set 𝑄 of
states is

𝛿 = max
𝑖

( lim
𝑡→+∞

󵄩󵄩󵄩󵄩𝐴 𝑖 (𝑡)
󵄩󵄩󵄩󵄩𝐹

󵄩󵄩󵄩󵄩𝑀𝑖 −𝐴 𝑖
󵄩󵄩󵄩󵄩𝐹
) ,

𝑖 = 1, 2, . . . .
(20)

But because the precision of the 𝑇󸀠 approximate simulation
𝑇 is caused by set 𝑄󸀠 of approximate state, Theorem 16 is
reasonable.

6. A Case Study

Now let us show the approximate theorem by taking example
of some of the computations by considering linear systems
without disturbances. Consider the linear systems 𝑥̇ = 𝐴𝑥,
where

(

𝑥̇1

𝑥̇2

𝑥̇3

) = (

1 2 1
1 −1 1
2 0 1

)(

𝑥1

𝑥2

𝑥3

) (21)

and the initial state is 𝑥(0) = (1 0 0).

The linear system is approximately simulated bymeans of
ILU. Firstly, we let

𝐴 = (

1 2 1
1 −1 1
2 0 1

), (22)

where 𝐴 is the matrix of the equations. The 𝐿𝑈 factors of 𝐴
are

𝐿
󸀠

= (

1 0 0
1 1 0

2 4
3

1
),

𝑈
󸀠

= (

1 2 1
0 −3 0
0 0 −1

).

(23)

In terms of Algorithm 1, the ILU algorithm gives

𝐿 = (

1 0 0
1 1 0
2 0 1

),

𝑈 = (

1 2 1
0 −3 0
0 0 −1

),

(24)

which is different from setting the (3, 2) element of the 𝐿𝑈
factors to zero.

Now, we use the method of ILU to solve the problem.The
preconditioner

𝑀 = 𝐿𝑈 = (

1 0 0
1 1 0
2 0 1

)(

1 2 1
0 −3 0
0 0 −1

)

= (

1 2 1
1 −1 1
2 4 1

).

(25)

Then, mathematically, the equivalent system of the orig-
inal linear system 𝑥̇ = 𝐴𝑥 is the preconditioned system
𝑀
−1
𝑥̇ = 𝑀

−1
𝐴𝑥. That is,

(

1 2 1
1 −1 1
2 4 1

)

−1

(

𝑥̇1

𝑥̇2

𝑥̇3

)

= (

1 2 1
1 −1 1
2 4 1

)

−1

(

1 2 1
1 −1 1
2 0 1

)(

𝑥1

𝑥2

𝑥3

).

(26)
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In the example, we use ILU method to approximate
simulation states, and the precise of approximate simulation
states can be calculated. That is,

𝑀−𝐴 = (

1 2 1
1 −1 1
2 4 1

)−(

1 2 1
1 −1 1
2 0 1

) = (

0 0 0
0 0 0
0 4 0

),

‖𝑀−𝐴‖
𝐹

= √(02 + 02 + 02) + (02 + 02 + 02) + (02 + 42 + 02)

= 4,

‖𝐴‖
𝐹

= √(12 + 22 + 12) + (12 + (−1)2 + 12) + (22 + 02 + 12)

= √14.

(27)

So the precision of approximate simulation states is 𝛿 =

‖𝐴‖
𝐹
‖𝑀−𝐴‖

𝐹
= 4√14 ≈ 14.9666,where the precision retains

four significant numbers after the decimal point. If we want
to use MILU to solve the problem of approximate simulation
states, we just deal with 𝐴, that is, using Algorithm 2 to
decomposition 𝐴.

7. Conclusions

In this paper, we extend the notion of approximate simu-
lation relations. The semantic analysis of equivalent labeled
transition systems is developed by equivalent labels. And an
effective characterization of approximate simulation relations
of states based on ILU is also developed, where error about
the state set approximate is controlled. Furthermore, the
technique can be used to approximately simulate labeled
transition systems generated by continuous-time system.
Finally, a case study of application in the context of linear
systems without disturbances is shown.

The approximate simulation relation is a key performance
consideration of systems. Our future work will focus on
these two items in two steps: firstly, developing methods
to approximate simulation linear systems with disturbances;
secondly, solving the nonlinear systems.
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