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A commonly encountered problem in wireless sensor networks (WSNs) applications is to reconstruct the state of nature, that is,
distributed estimation of a parameter of interest throughWSNs’ observations. However, the distributed estimation in autonomous
clustered WSNs faces a vital problem of sensors’ selfishness. Each sensor autonomously decides whether or not to transmit its
observations to the fusion center (FC) and not be controlled by the fusion center (FC) any more. Thus, to encourage cooperation
within selfish sensors, infinitely and finitely repeated games are firstly modeled to depict sensors’ behaviors. Then, the existences of
Nash equilibriums for infinitely and finitely repeated games are discussed. Finally, simulation results show that the proposed Nash
equilibrium strategies are effective.

1. Introduction

Wireless sensor networks (WSNs) have increasingly attracted
attention due to their wide range of applications, such as
industrial control and monitoring, home automation, mili-
tary surveillance, environment monitoring, and health care.
WSNs usually comprise a large number of small-size and
energy-limited sensor nodes [1–7]. Different from traditional
WSNs with fully cooperated nodes [8], someWSNs consist of
selfish and autonomous nodes. In suchWSNs, the selfishness
nature of nodes that manage to achieve their own aims is
considered to be common. In other words, all the nodes are
not willing to cooperate and accomplish the network task.
However, such noncooperation can deteriorate the network
performances.

Specifically for the traditional distributed estimation
problem [8, 9], nodes are required to cooperate fully and
estimate a scalar parameter under the inherent limitations,
such as limited energy and limited network bandwidth. In
a practical WSN, these limitations impose a constraint on
the design of estimation methods. Generally, the main goal
is to save the total energy while achieving given estimation
performance under these limitations. For example, in recent

literature, the distributed estimation problem in the presence
of attacks is discussed and joint estimation schemes of the
statistical description of the attacks and the parameter to be
estimated are proposed to deal with the attacked observations
[10]. Additionally, a novel distributed estimation method
based on observations prediction is focused on, and the
innovations of sensors’ observations are locally predicted
and transmitted to the fusion center (FC) [11]. These recent
advances usually assume all sensors are selfless and can be
controlled by the FC arbitrarily.

However, in autonomous WSNs with selfishness, nodes
may not be willing to cooperatively estimate a parameter at
the cost of consuming their own limited battery resource.
Therefore, each node autonomously decides whether or not
to transmit its observations to the FC and not be controlled
by the FC any more. Consequently, nodes will not be of
their best interest to transmit their observations to the FC.
It will deteriorate the network estimation accuracy of the
interested parameter and this selfish rejection of transmit-
ting eventually impairs the nodes’ own interest. Hence, to
encourage cooperation within selfish nodes and improve the
final estimation accuracy, it is necessary to design rules and
punishment mechanisms to self-enforce nodes’ behaviors.
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It is noted that such rules and punishment mechanisms
usually are modeled as repeated games, in which the selfish
nodes know when and how to cooperate in order to obtain
potential interests over multiple periods. For example, the
repeated gamemodel has been adopted for packet forwarding
problems in ad hoc networks. In [12, 13], the interactions
of nodes’ forwarding and rejection are modeled as repeated
games. In [12], as a punishment strategy, a generous tit-for-
tat (TFT) is proposed to enforce the nodes to cooperate.
Meanwhile, in [13], three learning algorithms for different
information structures are proposed to achieve the desired
efficient cooperation equilibrium. Additionally, the repeated
game model has been applied to address selfish behavior in
themedia access control (MAC) problem of sensor networks.
For example, in [14], a contention window select game
(CWSG) is defined, and a penalizing mechanism based on
repeated games is proposed to prevent nodes’ noncoopera-
tion.

We propose two simply repeated games instead of the
extensive game [15] tomeet the given estimation performance
requirement. Different from the decentralized method [16–
18], our game-theoretic approach is distributed and eachnode
is selfish. To avoid the selfishness of nodes, a grim trigger
strategy and the tit-for-tat strategy for the infinitely repeated
estimation game are introduced in which each sensor is vol-
untarily cooperative. Meanwhile, multiple subgame-perfect
Nash equilibriums for the finitely repeated estimation game
are discussed to depict the cooperation behaviors.

Our main contributions are shown as follows: (1) the two
kinds of repeated game models for distributed estimation in
WSNs have been formulated: the infinitely repeated estima-
tion game and the finitely repeated estimation game, respec-
tively; (2) their Nash equilibriums and subgame-perfect Nash
equilibriums are simply proposed; and (3) some conclusions
of strategies have been verified to be effective in simulations.

2. System Model

2.1. Distributed Estimation Problem. Let us consider a dis-
tributed WSN with an FC as shown in Figure 1. This sensor
network consists of𝐾 selfish nodes to observe a physical phe-
nomenon 𝜃 (a scalar parameter of interest), such as temper-
ature and moisture of soil. The nodes are selfish in the sense
that the FC does not dictate to the local nodes any scheduling
policies. Instead, all the local nodes choose their transmission
policy by themselves to selfishly maximize their interest.
Within, the network channel is assumed to be error-free
and can be implemented by orthogonal time/frequency/code
division multiple access (TDMA/FDMA/CDMA).

As shown in Figure 1, where two virtual cluster heads
(CHs) and (𝐾 − 2) cluster nodes (CNs) are grouped into
two clusters via using a distributed clustering algorithm. It is
assumed that each virtual cluster is regarded as a community
of interests and CNs are inclined to be scheduled by their
virtual CHs to maximize their community interests. In other
words, there are two different communities of interests.There
are two jobs for each CH: (1) negotiating with the FC and (2)
scheduling the actions of its CNs including itself.
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Figure 1: Sensor networks with selfish nodes.

It is assumed that the observation of node 𝑘 at time 𝑡 is
described as

𝑥
𝑘

𝑡
= 𝜃 + 𝑛

𝑘

𝑡
, (1)

where 𝑛
𝑘

𝑡
is zero-mean additive white Gaussian noise

(AWGN) with the variance 𝜎
2. Additionally, {𝑛𝑘

𝑡
} are inde-

pendent and identically distributed (i.i.d.) across time and
independent and identically distributed across nodes. Due
to channels’ bandwidth constraint problem, the same one-
bit quantizer with threshold 𝜏 is commonly adopted for each
node.

Here, we review a key result from [16] concerning the
distributed estimation problem in cooperative WSNs. It is
assumed that a set of indicator variables (binary observations)
will be spontaneously transmitted by local nodes and the clas-
sical maximum likelihood estimator (MLE) [16] is adopted
at the FC. According to Proposition 1 in [16], the Cramer-
Rao lower bound (CRLB) varies inversely to parameter 𝐾.
As the benchmark of the estimation variances, the smaller
the CRLB, the better the estimation performance. To meet
the given estimation performance 𝐵(𝜃), a certain number of
nodes 𝐾0 exist, which is the required minimum number of
participants (transmitting observation voluntarily).

The problem in distributed estimation arises because
these selfish nodes have their own authorities to decide
whether to transmit the binary information at each esti-
mation stage. The FC can not make unilateral decisions
and dictate nodes’ behaviors. For example, in [17, 18], the
decentralized power optimization schemes of the observation
flow through solving Karush-Kuhn-Tucker (KKT) systems
are not suitable for the autonomous WSNs any more. It is
naturally assumed that all the nodes selfishly optimize their
own interest, such as maximizing their energy efficiency.

It is worthwhile underlining that interactions among
nodes happen not just once but repeatedly many times.
Different from the extensive form game in [19], this special
class of extensive form games, called repeated games, can
explain why ongoing estimation tasks produce behavior very
different from those observed in the one-time interaction in
[19]. Additionally, it is worth mentioning that the extensive
form game in [19] is assumed that all the nodes are required to
cooperate fully. In other words, the refined Nash equilibrium
in [19] is not suitable for depicting nodes’ selfishness and
autonomy. Meanwhile, due to the punishment mechanisms
in [12, 13], the estimation problem in autonomousWSNs will
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be reformulated as a repeated game to depict the autonomy
and then improve local nodes’ energy efficiency.

2.2. Repeated Game. The repeated game theory is considered
as a formal framework to model a multiplayer sequential
decision making process. The model of repeated games has
two versions: the horizon may be finite or infinite. It is
noted that the results in the above two cases are different.
Thus, in order to apply the model of repeated games in
distributed estimation problems, an appropriate horizon
(finite or infinite horizon) is required to be determined. In
the following, some concepts of a repeated game are firstly
introduced. Then, we formulate the distributed estimation
system into an appropriate repeated game.

The stage game 𝐺 is the basic component of a repeated
game and can be represented by the three elements
⟨N, (𝐴 𝑖), (𝑢𝑖)⟩. Within, N, 𝐴 𝑖, and 𝑢𝑖 denote the total
number of players, a finite action space, and a payoff function
for player 𝑖, respectively. Additionally, 𝐺𝑇 denotes the same
stage game for 𝑇 periods. If 𝑇 approaches infinite, the game
is called infinite repeated game. The infinitely repeated game
is formally defined following [20]. Within, the notation 𝑎

𝑡 is
the action profile in period 𝑡 and 𝛿

𝑡 is the discount factor 𝛿

raised to the power 𝑡. It is assumed that the same 𝛿 is adopted
for all the players.

Definition 1. The infinitely repeated game of 𝐺∞ for the dis-
count factor 𝛿 is the extensive game with perfect information
and simultaneous moves in which

(i) the set of players is 𝑁,
(ii) the set of terminal histories is the set of infinite

sequences (𝑎1, 𝑎2, . . .) of action profiles in 𝐺
∞,

(iii) the player function assigns the set of all players to
every proper subhistory of every terminal history,

(iv) the set of actions available to player 𝑖 after any history
is 𝐴 𝑖,

(v) each player 𝑖 evaluates each terminal history
(𝑎
1
, 𝑎
2
, . . .) according to its discounted average

(1 − 𝛿)∑
∞

𝑡=1
𝛿
𝑡−1

𝑢𝑖(𝑎
𝑡
).

The formal description of finite repeated games is very
similar to the definition of infinite repeated games and can
be defined as the following.

Definition 2. For any positive integer 𝑇, the 𝑇-period finitely
repeated game of 𝐺

𝑇 is the extensive game with perfect
information and simultaneous moves that satisfies all the
conditions of Definition 1 when the symbol ∞ is replaced by
𝑇. Meanwhile, it is assumed that the preferences is the mean
payoff ∑

𝑇

𝑡=1
𝑢𝑖(𝑎
𝑡
)/𝑇.

3. Repeated Estimation Game

It is noted that the CRLB varies inversely to the parameter
𝐾 and depends also on these parameters in the distributed
estimation problem, such as 𝜃, 𝜏, and 𝜎 [16]. In other words,

the estimation performance of the MLE depends on the
parameters like 𝐾, 𝜃, 𝜏, and 𝜎, and so forth. The energy of
selfish nodes is supplied by battery once exhausted and they
can not charge up. Therefore, parameter 𝐾 varies with the
times of estimation task. Additionally, it is usually assumed
that the physical phenomenon is stable and the same MLE is
adopted at each stage of the multiple estimation tasks.

To improve and maintain the performance of the MLE as
long as possible, 𝐾 selfish nodes should live as long as possi-
ble. However, the cooperation problem among selfish nodes
in sequential estimation tasks has not been introduced in
the traditional estimation methods. Meanwhile, the repeated
games can deal with the problem of nodes’ survival, in which
the selfish nodes know when and how to cooperate in order
to evenly keep the selfish nodes alive over many periods [20].
Thus, the following repeated estimation game is introduced
to explore the impact of nodes’ selfishness on the estimation
performance.

3.1. Stage Game. To be concrete, in the case of the estimation
problem, we need to review several notions, namely, a stage
game, the game history, and the strategy of a player.The stage
game usually consists of a set of players, a set of actions, and
a payoff function for each player. Thus, the set of players for
the stage game is {1, 2} (i.e., the two virtual clusters shown in
Section 2.1). Additionally, the actions for clusters are assumed
to be {𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑜𝑛}, where strategy 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑜𝑛

denotes that there are no nodes that will transmit their
observations in the cluster at the current. Instead, strategy
𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 denotes that there are a number of nodes 𝐾1

(𝐾1 ∈ (0, 𝐾0]) that transmit their observations in cluster 1

and 𝐾2 (𝐾2 ∈ (0, 𝐾0]) that transmit their observations in
cluster 2. 𝐾1 and 𝐾2 can be expressed as

(𝐾1, 𝐾2) =

{{{{{{{

{{{{{{{

{

(⌈
𝐾0

2
⌉ ,𝐾0 − ⌈

𝐾0

2
⌉) , 𝑎

𝑡
= (𝐶, 𝐶) ;

(𝐾0, 0) , 𝑎
𝑡
= (𝐶,𝐷) ;

(0, 𝐾0) , 𝑎
𝑡
= (𝐷, 𝐶) ;

(0, 0) , 𝑎
𝑡
= (𝐷,𝐷) .

(2)

Assume all these nodes are rational and aim at maximiz-
ing the cluster’s interest. Thus, the set of players is the two
clusters and the clusters’ strategies space can be defined as
{𝐶,𝐷}. Within, {𝐶} is “Cooperation” and {𝐷} is “Defection.”
As shown in (2), if both clusters choose the “𝐶” strategy,
there are a number of nodes ⌈𝐾0/2⌉ that transmit their
observations in cluster 1 and there are a number of nodes
𝐾2 = 𝐾0 − ⌈𝐾0/2⌉ that transmit their observations in
cluster 2. If both clusters choose the “𝐷” strategy, there
are no nodes that transmit observations in the network. If
one of the clusters chooses the “𝐷” strategy and the other
cluster chooses the “𝐶” strategy, then there are no nodes that
transmit observations in the cluster with “𝐷” and there are
𝐾0 nodes that transmit observations in the cluster with “𝐶.”

According to results in Section 2.1, a certain number of
nodes 𝐾0 transmitting their observations voluntarily exist.
Thus, if one of clusters chooses strategy “𝐶,” there are a
total of nodes 𝐾0 that transmit their observations to the FC



4 International Journal of Distributed Sensor Networks

(C, C) (D,D)

(., D)

Figure 2: A grim trigger strategy for a repeated estimation game.

and the given estimation performance will be satisfied.Then,
the interest of the cluster with strategy “𝐶” is improved
instead of nothing.

Players’ payoff function can be given as

𝑢𝑘 (𝑎
𝑡
) =

{{{{{{{

{{{{{{{

{

𝛼, 𝑎
𝑡
= (𝐶, 𝐶) ;

𝛽, 𝑎
𝑡

𝑘
= 𝐶, 𝑎

𝑡

𝑗
| (𝑗 ̸= 𝑘) = 𝐷;

𝛾, 𝑎
𝑡

𝑘
= 𝐷, 𝑎

𝑡

𝑗
| (𝑗 ̸= 𝑘) = 𝐶;

𝜌, 𝑎
𝑡
= (𝐷,𝐷) .

(3)

It is noted that the payoff function 𝑢(⋅) represents a player’s
preference. For example, if strategy (𝐶, 𝐶) is adopted, its
estimation performance is satisfied. While strategy (𝐷,𝐷) is
adopted, its estimation performance is not satisfied. Thus,
𝑢𝑘(𝐶, 𝐶) = 𝛼 > 𝜌 = 𝑢𝑘(𝐷,𝐷) for every player if and only
if players prefer strategy (𝐶, 𝐶) to strategy (𝐷,𝐷). Similarly,
if strategy (𝐶,𝐷) is adopted, the 1st player’s estimation
performance is also satisfied at the cost of consuming itsmore
residual energy (𝐾1 = 𝐾0 sensors transmit their observations
in cluster 1 instead of 𝐾1 = ⌈𝐾0/2⌉). Thus, the payoff of
player 1 (also the 1st player) becomes less because it meets
the performance requirement at the cost of consuming more
residual energy (𝐾2 = 𝐾0−𝐾1), but the payoff of player 2 (also
the 2nd player) becomes the greatest because it meets the
performance requirement without consuming any residual
energy. In other words, 𝛾 > 𝛼 > 𝛽 > 𝜌.

3.2. Infinitely Repeated Game. It is well known that a strategy
of a player in infinitely repeated games should specify an
action of the player for every sequence of outcomes. For the
case of the estimation problem, a grim trigger strategy is
defined as follows: 𝑠𝑘(𝜙) = 𝐶 and

𝑠𝑘 (𝑎
1
, . . . , 𝑎

𝑡
) =

{

{

{

𝐶, if 𝑎
𝜏

𝑗
= 𝐶 for 𝜏 = 1, . . . , 𝑡;

𝐷, otherwise,
(4)

where 𝑠𝑘(𝜙) = 𝐶 denotes the player 𝑘 chooses 𝐶 at the start
of the game and 𝑠𝑘(𝑎

1
, . . . , 𝑎

𝑡
) = 𝐶 denotes the player 𝑘

chooses 𝐶 after any history in which every previous action
of player 𝑗 was 𝐶. The grim trigger strategy (labeled as Grim)
is illustrated as Figure 2.

Another strategy (the tit-for-tat strategy, labeled as TFT)
is shown in Figure 3. The strategy can be described in a very
compact way: start by cooperating and then do whatever the
other player did on the previous iteration.

Now, suppose each player has selected a strategy 𝑠𝑖 for
playing the infinitely repeated estimation game. The pair of
strategies (𝑠1, 𝑠2) can be used to determine exactly how the
game will proceed and then to discuss its existence of Nash
equilibrium.

(C, C)
(C,D)

(D,D)

(., C)

Figure 3: The tit-for-tat strategy for a repeated estimation game.

Proposition 3. For the infinitely repeated estimation game,
strategy profile (Grim, Grim) is a Nash equilibrium if and
only if 𝛿 ≥ (𝛾 − 𝛼)/(𝛾 − 𝜌); strategy profile (TFT, TFT) is
a Nash equilibrium if and only if 𝛿 ≥ (𝛾 − 𝛼)/(𝛼 − 𝛽) and
𝛿 ≥ (𝛾 − 𝛼)/(𝛾 − 𝜌).

Proof. Suppose that player 1 adheres to the strategy TFT.
If player 2 deviates by choosing “𝐷” in the first estimation
period, then player 1 chooses “𝐷” in the second estimation
period and continues to choose “𝐷” until player 2 reverts
to “𝐶.” As shown in Figure 3, player 2 has two choices:
reverting to “𝐶” and adhering to “𝐷.” For reverting to “𝐶,” its
corresponding payoffs are (𝛾, 𝛽, 𝛾, 𝛽, . . .), with a discounted
average of

𝑈2 = (1 − 𝛿) ⋅
𝛾

(1 − 𝛿2)
+ (1 − 𝛿) ⋅ 𝛿 ⋅

𝛽

(1 − 𝛿2)

=
(𝛾 + 𝛿𝛽)

(1 + 𝛿)
,

(5)

while for adhering to “𝐷,” its corresponding payoffs are
(𝛾, 𝜌, 𝜌, . . .), with a discounted average of

𝑈2 = (1 − 𝛿) ⋅ 𝛾 + (1 − 𝛿) ⋅ 𝛿 ⋅
𝜌

(1 − 𝛿)

= (1 − 𝛿) ⋅ 𝛾 + 𝛿 ⋅ 𝜌.

(6)

If player 2 also adheres to the tit-for-tat strategy, its corre-
sponding payoffs are (𝛼, 𝛼, . . .), with a discounted average of
𝛼. According to formulas (5) and (6), the tit-for-tat strategy
of each player is the best response to the strategy TFT of the
other player if and only if

𝛿 ≥
(𝛾 − 𝛼)

(𝛼 − 𝛽)
,

𝛿 ≥
(𝛾 − 𝛼)

(𝛾 − 𝜌)
.

(7)

The proof of strategy profile (TFT, TFT) being a Nash
equilibrium is done. Similarly, strategy profile (Grim, Grim)
can be proven to be a Nash equilibrium. Then, the proof is
done completely.

3.3. Finitely Repeated Game. The strategy space for repeated
games is difficultly illustrated even if the game is repeated
just 2 times. To determine how to play a finitely repeated
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Figure 4: Sum of the two stage-game payoffs.

Table 1: Payoff of the repeated estimation game.

P1 P2
𝐶 𝐷

𝐶 𝛼, 𝛼 𝛽, 𝛾
𝐷 𝛾, 𝛽 𝜌, 𝜌

Table 2: Payoff of the reduced two-stage game.

P1 P2
𝐶 𝐷

𝐶 𝜋1 + 𝛼, 𝜋2 + 𝛼 𝜋1 + 𝛽, 𝜋2 + 𝛾

𝐷 𝜋1 + 𝛾, 𝜋2 + 𝛽 𝜋1 + 𝜌, 𝜋2 + 𝜌

estimation game, the equilibrium in the one-shot version of
the game is investigated here. For example, the simplest situ-
ation is considered, in which two players play the estimation
game twice. Obviously, its players are involved repeatedly in
an interaction with payoffs as shown in Table 1.

The repeated estimation game 𝐺
𝑇 (𝑇 = 2) can be

expressed in the extensive form. As shown in Figure 4, there
are four histories at 𝑡 = 1: (𝐶, 𝐶), (𝐶,𝐷), (𝐷,𝐶), and (𝐷,𝐷).
It is easily derived that a reduced game for any history starting
at 𝑡 = 1 is expressed as Table 2.

For example, after (𝐶,𝐶) in the initial round, each player’s
payoffs are increased by𝜋1 = 𝜋2 = 𝛼; after (𝐶,𝐷) in the initial
round, the 1st player’s payoffs are increased by 𝜋1 = 𝛽 and the
2nd player’s payoffs are increased by𝜋2 = 𝛾; after (𝐷,𝐶) in the
initial round, the 1st player’s payoffs are increased by 𝜋1 = 𝛾

and the 2nd player’s payoffs are increased by 𝜋2 = 𝛽; after
(𝐷,𝐷) in the initial round, each player’s payoffs are increased
by 𝜋1 = 𝜋2 = 𝜌.

Since a player’s preferences in the game of the initial
round do not change when we add a constant to his payoffs,
hence, the set of Nash equilibriums in the reduced estimation
game is the same as the stage game (namely, the game of the
initial round). It is a general result of finitely repeated game
equilibriums as follows [21] and its proof is ignored here.

Lemma4. For the finitely repeated game𝐺𝑇, it is assumed that
the stage game has a unique subgame-perfect Nash equilibrium
𝑠
∗ (SPNE). Then, 𝐺𝑇 has a unique SPNE and 𝑠

∗ is played at
each round independent of the history of the previous rounds.

As shown in Table 1, the two players’ sets of actions are the
same and their preferences have the following characteristics:

𝑢1 (𝑎
𝑡

1
, 𝑎
𝑡

2
) = 𝑢2 (𝑎

𝑡

2
, 𝑎
𝑡

1
) , (8)

for every action pair (𝑎𝑡
1
, 𝑎
𝑡

2
). This two-player strategic game at

any stage is denoted as the symmetric game and has a unique
mixed strategy Nash equilibrium, in which each player’s mixed
strategy assigns probability (𝛽 − 𝜌)/(𝛾 + 𝛽 − 𝛼 − 𝜌) to 𝐶 and
probability (𝛾 − 𝛼)/(𝛾 + 𝛽 − 𝛼 − 𝜌) to 𝐷.

In other words, there are multiple Nash equilibriums in the
one-shot stage game of the finitely repeated estimation game:
(𝐶,𝐷), (𝐷, 𝐶), and the mixed strategy assigns probability (𝛽 −

𝜌)/(𝛾 + 𝛽 − 𝛼 − 𝜌) to 𝐶 and probability (𝛾 − 𝛼)/(𝛾 + 𝛽 −

𝛼 − 𝜌) to 𝐷. The uniqueness condition of SPNE in Lemma 4
is untenable. Actually, there are multiple SPNEs in finitely
repeated estimation game, and some versions are given as
follows:

(1) (𝐶,𝐷), (𝐶,𝐷), . . . , (𝐶,𝐷) (𝑇 even rounds).
(2) (𝐷, 𝐶), (𝐷, 𝐶), . . . , (𝐷, 𝐶) (𝑇 even rounds).
(3) (𝐶,𝐷), (𝐷, 𝐶), (𝐶,𝐷), (𝐷, 𝐶), . . . , (𝐶,𝐷), (𝐷, 𝐶) (𝑇

even rounds).
(4) (𝐷, 𝐶), (𝐶,𝐷), (𝐷, 𝐶), (𝐶,𝐷), . . . , (𝐷, 𝐶), (𝐶,𝐷) (𝑇

even rounds).

Within, the first strategy denotes that the 1st player’s first move
is to play 𝐶 and its second move is to play 𝐶 after every
possible history, and the 2nd player’s first move is to play 𝐷

and its second move is to play 𝐷 after every possible history.
The average payoff for the first strategy is (𝛽, 𝛾). Similarly,
the average payoffs for the second strategy, the third strategy,
and the fourth strategy are (𝛾, 𝛽), ((𝛽 + 𝛾)/2, (𝛽 + 𝛾)/2), and
((𝛽 + 𝛾)/2, (𝛽 + 𝛾)/2), respectively. These strategies are SPNEs
because each of (𝐶,𝐷) and (𝐷, 𝐶) is each player’s best response
to the other’s strategy at each subgame.
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Figure 5: The players’ actions for the infinitely repeated estimation
game: cooperation.

According to Proposition 3 and Lemma 4, the Nash
equilibriums of the proposed repeated estimation game deal
with the problem of nodes’ selfishness and maintain nodes’
actions evenly. It is noted that the MLE [16] can be extended
into nonideal channels [22]. Meanwhile, nonideal channels
have no effect on the proposed game due to nonadditional
information exchange among nodes. Thus, the results can be
applied onto the nonideal channels.

4. Simulation Results

In this section, simulation results are obtained by Matlab. 10
sensor nodes are randomly deployed in a given square area,
such as the square region (200m × 200m). It is assumed that
the minimum number of participants 𝐾0 is equal to 4. The
MLE is adopted by the FC (located on (100, 100)).The virtual
clusters are randomly divided into two clusters with the same
number of members 5. As shown in Figure 5, the cluster with
sensors (1, 2, 3, 4, 5) is the 1st player and the cluster with
sensors (6, 7, 8, 9, 10) is the 2nd player. To be more efficient
and fair, in the two clusters, nodes with more residual energy
are orderly selected to play the repeated estimation game.The
discount factor 𝛿 is set to 1/2. 𝛾, 𝛼, 𝛽, and 𝜌 are set to be 4, 3, 1

and 0, respectively.
A similar simple energy dissipation model is adopted for

nodes’ radio hardware [9]. In this model, 𝐸elec denotes the
electronics energy consumption and 𝜖𝑓𝑠 and 𝜖𝑚𝑝 are energy
factors. The energy consumption of the sensor 𝑖 in a stage
game is expressed as

𝐸(𝑖) = 𝑙𝐸elec + 𝑙𝜖𝑓𝑠𝑑
2

(𝑖,FC), (9)

where 𝑑(𝑖,FC) denotes the distance from the sensor 𝑖 to the FC.
The initial energy of nodes is set to be 5 J. Because each sensor
quantizes its local estimate by using a one-bit quantizer, its
length of bits 𝑙 is assumed to be 10 with 9 header bits for
simplicity.

As shown in Figure 5, strategy profile (Grim, Grim) is
adopted and the two clusters choose the “𝐶” strategy. It is
noted that strategy profile (Grim, Grim) is Nash equilibrium
under the condition of these parameters (𝛾, 𝛼, 𝛽, and 𝜌),
which coincides with Proposition 3. Additionally, according
to the definition of the stage game in Section 3.1, there
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Figure 6: Sensors’ residual energy for the infinitely repeated
estimation game: cooperation.

are 4 sensors that transmit their observations (2 sensors in
cluster 1 and 2 sensors in cluster 2). There are more times
of cooperation for sensors (2, 3, 4) in cluster 1 and sensors
(6, 9, 10) in cluster 2 than other sensors. Considering the
requirement of energy efficiency and fairness, sensors with
longer distances from the FC will consume more energy
for transmitting observations and then have less times of
cooperation. For example, sensors (1, 2, 6, 7) are selected to
be the actual players at stage 1 of the infinitely repeated
estimation game. At stages 2 and 3, sensors (3, 4, 8, 9) and
sensors (2, 5, 6, 10) are selected to be the actual players,
respectively. At stage 3, sensor 2 is the nearest from the FC
for cluster 1, and sensor 6 is the nearest from the FC for
cluster 2. Additionally, as shown in Figure 6, sensors’ residual
energy varies with the player (cluster). The members of the
2nd player are relatively closer to the FC than themembers of
the 1st player. Thus, the energy cost of the 2nd player is less
than that of the 1st player when playing the same strategy.

To show the effectiveness of the SPNEs for the finitely
repeated estimation game, strategy “(𝐶,𝐷), (𝐷, 𝐶), . . . ,

(𝐶,𝐷), (𝐷, 𝐶)” is adopted by the two players. As shown in
Figures 7 and 8, the strategy has the similar distributions
of cooperation times and residual energy for the infinitely
repeated estimation game. For example, sensors (2, 3, 4, 5)
are selected to be the actual players at stage 1 of the finitely
estimation repeated game. At stages 2, 3, and 4, sensors
(7, 8, 9, 10), sensors (1, 2, 3, 4), and sensors (6, 8, 9, 10) are
selected to be the actual players, respectively.

Moreover, sensors’ times of transmissions or cooperation
are depicted in Figure 9. Whether it is the infinitely repeated
estimation game or the finitely repeated estimation game,
there are more times for these sensors (2, 3, 4, 6, 9, 10) closely
related to the FC. Meanwhile, it is assumed that the payoffs
of players are evenly divided by the cluster’s members under
the following cases: (1) the player adopts strategy “𝐷” and its
sensors obtain the same payoff; (2) the player adopts strategy
“𝐶” and its active sensors divide the payoffs evenly. For
comparison’s sake, sensors’ payoffs for infinitely and finitely
repeated estimation games are defined to their respective
algebraic sums without considering the discount factor, as
shown in Figure 10. For the infinitely repeated estimation
game, there aremore payoffs for these sensors (2, 3, 4, 6, 9, 10)
closely related to the FC. More pay for more work is true.
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Figure 7: The players’ actions for the finitely repeated estimation
game: (𝐶,𝐷), (𝐷, 𝐶), . . . , (𝐶,𝐷), (𝐷, 𝐶) (SPNE, 𝑇 = 24).
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Figure 8: Sensors’ residual energy for the finitely repeated estima-
tion game: (𝐶,𝐷), (𝐷, 𝐶),. . . , (𝐶,𝐷), (𝐷, 𝐶) (SPNE, 𝑇 = 24).

However, for the finitely repeated estimation game, payoffs
are allocated evenly by the cluster’s member if the cluster
adopts strategy “𝐷.” Then, payoffs of sensors are almost the
same for the finitely repeated estimation game in Figure 10.

5. Conclusions

In this paper, we focus on the repeated game for distributed
estimation in WSNs. The two kinds of repeated estimation
games (infinitely and finitely repeated estimation games) are
investigated.Their existences of Nash equilibriums are simply
proven. Particularly, the profiles (Grim, Grim) and (TFT,
TFT) for the infinitely repeated estimation game and some
SPNEs for the finitely repeated estimation game are discussed
in detail. Finally, some simulation results show that some
Nash equilibriums of the proposed infinitely and finitely
repeated game are efficient.
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