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In maintenance practice, there is such a situation where the spare parts replacement should be carried out at the scheduling time
of calendar or usage for whichever comes first. The issue of two-dimensional preventive maintenance usually was not addressed
by traditional methods, and at present, few studies were focused on this very topic. Based on these considerations, this paper
presented the two-dimensional preventive policy where replacements of spare parts are based on both calendar time and usage
time. A novel model was developed to forecast spare parts demands under two-dimensional preventive maintenance policy, and a
discrete algorithm was presented for solving the mathematical model. A case study was given to demonstrate its applicability and
validity, and it was showed that the presented model can be used to forecast spare parts demands as well as to optimize spare parts

and preventive maintenance jointly.

1. Introduction

Spare parts are common inventory stock items, which exist
for satisfying the need of maintenance of plant systems [1].
Throughout plant life cycle costs, the expenditure on spare
parts accounted for a large share. A study showed that,
among the breakdown structures of plant life cycle cost,
operational and maintenance support costs account for more
than 60%, of which spare parts costs account for 25~30%.
Meanwhile, spare parts inventory, spare parts allocation, and
storage policy in a multiechelon inventory system have a great
impact on the plant availability. Thereby, spare parts demands
forecast is always one of the most critical issues in the research
fields of maintenance support and logistics engineering.
Spare parts provision and planned maintenance are
two related logistics activities, which must be considered
together to achieve a cost effective and efficient logistics
support. However, these two are often separately studied
with few exceptions [2]. Generally, the traditional methods
of forecasting spare parts demands are mostly for corrective
maintenance other than preventive maintenance. Literatures
[3-8] addressed the problems of failure-based repair policy
and the connection with spare parts provision: [3] presented
an optimum solution structure for an n-period repairable

inventory problem; [4] presented a model of describing
the station breakdown and repair rates as functions of the
maintenance and repair inputs to the system; [5] modeled
a two-echelon multi-indentured repairable-item inventory
system where each “base” has a maximum number of
identical online machines, and each machine consists of
several module types, and machine failures are due to module
failures and occur according to an exponential distribution as
well; [7] concerned the problem of determining the optimal
spare inventory level for a multiechelon repairable-item
inventory system, which has several bases and a central depot.
All of these papers considered how the inventory policy
was affected by equipment failures rather than preventive
maintenance. In recent years, several papers addressed the
methods of forecasting spare parts demands and spare parts
optimization considering both preventive maintenance and
corrective maintenance [2, 9-16]: [2, 10] set up models to
jointly optimize the spare parts inventory and the preventive
maintenance inspection intervals; [9] presented a method
which calculates the optimal time for preventive mainte-
nance and spare part provision by a stochastic optimiza-
tion algorithm based on a load-dependent reliability model;
[11] addressed an inventory policy for spare parts, when
demand for the spare parts arises due to regularly scheduled



preventive maintenance, as well as random failure of units in
service; [12] developed heuristics for the joint optimization
of spare part inventory, maintenance frequency, and repair
capacity for k-out-of-N systems under both condition-based
maintenance and block replacement; [13] proposed a sim-
ulation optimization approach based on genetic algorithms
(GAs) for the joint optimization of preventive maintenance
and spare provisioning policies of a manufacturing system
operating in the automotive sector; [15] presented a method
of joint optimization to establish an optimal production,
delivery planning, and scheduling maintenance strategy for
a manufacturing system; [16] proposed a jointly optimized
age-based replacement and ordering policy using simulation.
However, there is such a situation with which all of the above
researches did not concern; namely, the preventive replace-
ments of spare parts are based on both calendar time and
usage time; for example, the replacement of tires for a car is
carried out at the scheduling time of mileage over 60,000 km
or 3 years of cumulative usage. Regardless of which condition
comes first, the tires may be replaced with new ones. We
define the preventive maintenance cycle for this situation as
two-dimensional. Such products occupy a certain proportion
of actual preventive maintenance projects. How to optimize
spare parts under two-dimensional preventive maintenance
policy (two-dimensional PM policy) has become a critical
problem. But through analyzing the presented papers above,
we can see that present research work on spare parts demands
forecast has not considered the two-dimensional PM policy.

In the warranty research field, two-dimensional warranty,
which is used to warranty policies optimization, has become
a critical problem. The two-dimensional warranty is char-
acterized by a region in a two-dimensional plane with one
axis representing age and the other one usage. For instance,
when you buy a new car, it usually comes with 3 years or
36,000 miles warranty, whichever comes first [17]. It is very
similar to the two-dimensional PM policy. However, they are
quite different indeed, and according to the literature [18-31],
it can be concluded that the present research work on two-
dimensional warranty has not been jointed with spare parts
demands forecast.

According to the above analysis, we can draw the con-
clusions that few studies were focused on modeling spare
parts demands forecast under two-dimensional PM pol-
icy, and this area needs further attention either. Based on
these considerations, this research was carried out choosing
the nonrepairable spare parts for the object of study. The
remainder of this paper is organized as follows: Section 2
discusses two-dimensional PM policy in detail; in Section 3,
anovel model was developed to forecast spare parts demands
under two-dimensional PM policy, and a discrete algorithm
was presented for solving the mathematical model; a case
study was given in Section 4; finally, Section 5 gives some
concluding remarks and future research.

2. Two-Dimensional PM Policy Descriptions

The two-dimensional PM policy can be defined as a pre-
ventive maintenance policy that the item must be replaced
by new one when its cumulative usage time reaches U,

Mathematical Problems in Engineering

Ty t Uy Ty Uy t
e A X S AT e X
0 S

A Preventive replacement based on the calendar time T},
O Preventive replacement based on the usage time U,
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FIGURE 1: Two-dimensional PM policy.

(e.g., mile, operational hour, turnaround, etc.) or its age is
T, (calendar time, e.g., week, month, year, etc.). It can be
illustrated in Figure 1.

In Figure 1, the preventive maintenance interval is two-
dimensional, namely, calendar time T, and usage time U,.
Whether the usage time reaches U, or the calendar time
reaches T, the preventive replacement should be carried out.
If product breaks down before reaching the scheduling time
of U, and T, the failed item must be replaced by new one.

There is another term called two-dimensional warranty,
which is similar to two-dimensional PM. From the literature
[18], there are three main approaches to modeling failures for
products sold with two-dimensional warranty.

Approach 1. In this approach, the time to first failure is
modeled by a bivariate distribution function F(t, u). If failed
items are replaced by new ones and replacement times
are negligible, then failures over the warranty region occur
according to a two-dimensional renewal process [19-24].

Approach 2. In this approach, the two measures—age and
usage—are combined to provide a single composite scale Z
(e.g., Z = at + bu and the failure process is modeled using
this new composite scale [25, 26]).

Approach 3. This approach assumes that the product usage
rate R varies from customer to customer, but it is a constant
for a given customer. Then, it can be assumed that the usage
rate R is a random variable with given cumulative distribution
function Fi(r), 0 <r < oo [27-31].

Through contrastive analysis, the differences between
two-dimensional PM policy and two-dimensional warranty
can be illustrated as follows.

(1) The definitions of the two terms are quite different,
and their research emphases are different either.

(2) Two-dimensional warranty is used to warranty poli-
cies optimization, while two-dimensional PM policy
is brought forward to forecast spare parts demands.

(3) Generally, most of present studies on two-dimen-
sional warranty are concerned with corrective main-
tenance policy. However, because both preventive
replacement and failure replacement generate the
need of spare parts, two-dimensional PM policy is
concerned with not only corrective maintenance but
also preventive maintenance.

Because the preventive maintenance interval is two-
dimensional, there are three conditions for item replacement,
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that is, preventive replacement based on the calendar time
T,, preventive replacement based on the usage time U,, and
failure-based replacement. It is very difficult to model spare
parts demands forecast under two-dimensional PM policy.

3. Forecast Model and Solution Algorithm

3.1. Model Notations

T': Calendar time, for example, day, week, month, year,
and so forth;

U: Usage time of the product, for example, mile,
kilometer, operational hour, turnaround, and so forth

(Ty, Uy): Two-dimensional PM intervals, wherein U,
is the replacement interval according to the usage
time, while T} is the replacement interval according
to the calendar time;

S: Planning horizon, which is the calendar time;

EN(S, Ty, Uy): The spare parts demands of the plan-
ning horizon S under the two-dimensional PM inter-
vals (T, Uy);

r: Usage rate of the product, which is illustrated as the
ratio of usage time T of the product to the calendar
time U;

fr(r): Probability density function of the usage rate r;

T,, T s Mean time for a preventive replacement, mean
time for a failure replacement, and then Ty, > T > T);

E(t), R(t), f(t): The cumulative distribution function,
reliability function, and probability density function
of the first failure time of the item, respectively, and
they are all the functions of calendar time T

3.2. Modeling Two-Dimensional PM Policy. For the sake of
calculation, the parameter of usage rate r is introduced, which
is illustrated as the ratio of usage time T' of the product to the
calendar time U; we then have

U=r-T. (1)

Usage rate of a product is usually different from other
products. Even for the same product, its usage rate will
dynamically change along with time going; thus usage rate is
the function of the calendar time T If the planning horizon S
is too long, usage rate of a product will change remarkably.
In this case, in order to forecast the spare parts demands,
we should divide the planning horizon into several time
segments (S,,S,,...,S,) according to the usage rate. So the
usage rate is approximately constant in each time segment S;,
and the problem of forecasting spare parts demands in the
planning horizon S will be transformed to calculate the spare
parts demands of each time segment §;.

For the nonrepairable spare parts, both corrective main-
tenance and preventive maintenance will generate the need
of spare parts. As is shown in Figure 2, there is a straight line
whose slope is r,,. It represents the situation that the usage
time reaches U, while the calendar time reaches T}, and there
are two situations.

(a) Preventive replacement based on calendar time T|: if
r, < 1y, it shows that the calendar time reaches T
before the usage time reaches U, so the preventive
replacement should be performed according to the
calendar time T,.

(b) Preventive replacement based on operational time U,,:
on the contrary of the first situation, if , > 7, it shows
that the usage time reaches U, before the calendar
time reaches T}, so the preventive replacement should
be performed according to the usage time U,,.

It is assumed that the item will be as good as new after
the replacement. Then the clock tracking the item should be
reset after either a failure-based replacement or a preventive
replacement.

Through the above analysis of two-dimensional PM
policy, the relation between U and T was constructed by the
parameter of usage rate r. If r is constant in the planning
horizon S, the situations of generating spare parts demands
can be divided into the following three cases.

(1) When 0 < § < Ty, no replacement is carried out.
Firstly, the item should not be replaced even if it
fails, because replacement of the failed item cannot
be finished before reaching time S. Secondly, because
T, > T = S, there is no preventive replacement based
on the calendar time. At last, it is impossible that the
usage rate r is so high in a short period of time S that
the usage time reaches the value of U,. So there is
no preventive replacement based on the usage time
Uj either. In conclusion, when 0 < § < T, there is
no replacement carried out and no need of the spare
parts.

(2) Only failure-based replacement is carried out. From
the above analysis of two-dimensional PM policy, we
can conclude that preventive replacement has two
cases according to the parameter r.

(i) If r < r,, preventive replacement is carried out
according to Tj. In this case, when T, < § <
T, + Ty, preventive replacement should not be
carried out even if the calendar time reaches Tj,.

(ii) If r > r,, preventive replacement is carried out
according to U,. In this case, when T, < § <
Uy/r + T}, preventive replacement should not
be carried out even if the usage time reaches U,,.

In both the above cases, if the item fails at the time
close to S, we can hardly restore the function of the
failed item in a short time. Therefore, only when the
item fails before S— Tf, failure-based replacement will
be carried out. The spare parts demands lie on failure-
based replacement in this case.

(3) Both preventive replacement and failure-based re-
placement are carried out. When r < r, and S >
Ty + Ty orr = ryand S > Uy/r + Ty, failure-
based replacement is carried out after a failure occurs
before S — T, and preventive replacement is carried
out after the usage time reaches U, or the calendar
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FIGURE 2: Analysis of two-dimensional PM policy.

time reaches T},. In this case, the spare parts demands
lie on both failure-based replacement and preventive
replacement.

3.3. Modeling Spare Parts Demands. According to the above
analysis results, the model of forecasting spare parts demands
under two-dimensional PM policy was developed in the
following cases.

3.3.1. Case A: Spare Parts Demands for0 < § < Ty. According
to the above analysis result (1), when 0 < § < Tf, there
is no need of spare parts, and then we have the function of
EN(S, Ty, U,) in case of 0 < § < Ty

EN (S, T,,U,) = 0. (2)
3.3.2. Case B: Spare Parts Demands for Ty < S < Ty + Ty
According to the above analysis result (2), there are two cases.

(1) When r < 7, the need of spare parts is only
generated by the failures. In other words, the spare
parts demands in this case are equal to the number
of the failure-based replacement. According to the
renewal process model [32], we have the function of
EN(S, T,, U,) in this case:

EN (S, T,, Uy)

JS—Tf
0

(2) When r > r,, preventive replacement should be
carried out according to the usage time U,. However,
not all of the cases follow this rule. As is shown in
Figure 3, there is a critical value r,,, where U,/r,, =
S - Tf.

[1+EN(S-t-T.,To,Up)|- f(H)dt,  (3)

r < 1.

According to the above analysis result (2), when ry < <
r,, (i.e., the straight line of which the slope is ), because T} >
§—Tj, there is no need of spare parts generated by preventive
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FIGURE 3: Analysis of preventive replacement based on usage time
U,.

replacement. When r > r,, (i.e., the straight line of which
the slope is 1), because T, < S — T';, preventive replacement
is carried out according to U, and the need of spare parts
is generated according to the usage time U,. So we can draw
the conclusion that when r < r,,, the need of spare parts is
only generated by failure-based replacement; when r > r,,,,
the need of spare parts is generated by either failure-based
replacement or preventive replacement based on usage time
U,. Then we have the function of EN(S, T, U,) in this case:

EN (S, T,,U,)

( S-T;
jo [1+EN(S— =T, ToUp)] - () dt,

A e (s o d

U U
‘ +[1+EN(S—7°—TP,TO,UO>] -R(70>, r>r,.
(4)
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Because f(r) is a probability density function of the
parameter r, formula (4) becomes the following function:

EN (S, T,,U,)

T (ST
-] N (s 1T w)

- f () fr(r)dtdr

JWT [1+EN(S—t =TTy, Uy)| - f (1) dt

0

U U,
+ [1+EN(3- 7" —TP,TO,UO>] R(T(’)}

[

m

- fr(r)dr.
©)
Because Uy/r,, = S — Ty, r,, in formula (5) can be
calculated by the following formula:
o ©)
m= T o\ 6
(s-177)

3.3.3. Case C: Spare Parts Demands for S > Ty+T . According
to the above analysis result (3), when S > T, + T}, both
preventive replacement and failure-based replacement exist
simultaneously regardless of the parameter .

(1) When r < ry, there are failure-based replacement and
preventive replacement based on calendar time T,.
Then we have the function of forecasting spare parts
demands in this case:

EN (S, T,,U,)
= LTO [1+EN(S=t-T;Ty,Uy)] - f (D) dt

+[1+EN(S =T, - T,, T, Uy) | - R(Ty), 7 <1
)

(2) When r > r,, there are failure-based replacement and
preventive replacement according to usage time U,.
The need of spare parts in this case can be calculated
by the following function:

EN (S, T,, U,)

= LU"/T [1+EN(S-t =TTy U,)] - f () dt

U U
+ [1+EN(S— 7" —TP,TO,UO)] -R<7°>, r>r,.
(8)

Similarly, because fr(r) is probability density function
of the parameter r, formulas (7) and (8) are integrated to a
function, and we then have

EN (S, T,,U,)

I

JT° [1+EN(S—t =T, Ty Up)] - f (9t

+ [1 +EN(S—T0 —TP,TO,UO)] ‘R(To)}

< fr(r)dr

+00 U,/r
" J “0 [L+EN(S—t-T7 To,Up)] - f (1) dt

U, U
+ [1 +EN<S— 7‘) —TP,TO,UO)] R(TO)}

- fr(r)dr.
9)

Based on the above models constructed in three cases,
we can integrate formulas (2), (5), and (9) to the function of
forecasting spare parts demands under two-dimensional PM

policy:
EN (S, Ty, Uj)

0, 0<S<Ty,

T STy
jo jo [1+EN(S=t-T;T,U,)]

f@O)dt- fr(r)dr

+00 Uy /r
+J “ [1+EN(S-t-T}TyU,)]
0

N Or
+ [1 +EN<S— Y% —Tp,TO,UO>]

()

= J 'fR (T’) dr, Tf <S< TO + Tf’

ro (To
| JO [1+EN(S—t =T, To Up)] - f (0t

0
+[1+EN(S=T, - T,, Ty, Uy)] - R(T,)

'fR (r)dr

oo Uo/r
+J “0 [1+EN(S—t =T/ Ty, Up)] - f (£)dt

To

+[1+EN<S— % —TP,TO,U())]
()]
r
fr(r)dr,  S§>Ty+Ts.

(10)



3.4. Discrete Algorithm for the Model Solution. From the
equations deduced above, it can be seen that the model is very
difficult to solve directly because of its recurrence relation.
Hence, the thought of numerical calculation was adopted, the
discrete algorithm [33] was introduced, and the calculation
process for spare parts demand was given.

Step 1. Judge if S is longer than T';. From the analysis above, it
is obvious that when 0 < § < T/, the value of EN(S, Ty, Uy) is
zero; that is, EN(0, T, U,), EN(1, T, Uy), . . ., EN(Tf, Ty, Up)
are all equal to 0. When § > T/, it should go to Step 2.

Step 2. WhenTy < S < To+T, discretize the failure time £ by
step At according to the specific requirements and calculate
the value of (3).

For example, if the discrete steps for At were taken as “1,”
then the definite integral for ¢ can be discretized as follows:

ST,
L [1+EN(S— =T, ToUy)] - £ (1) dt

= Jlf(t)dt- [1+EN(S-1-T},T,U,)]
0

2
+L FOdt-[L+EN(S-2-T, T U)] ()

-2,
E IR o

. f@®)dt-[1+EN(T}, Ty, U )]

STy
+...+J f(t)dt-[1+EN(0,T,,U,)].
$-Tj-1

Step 3. For a given r, discretize the failure time ¢ in the same
way. For example, if the discrete steps for At were still taken
as “1,” then the definite integral can be discretized as follows:

LU(’/r [1+EN(S—t =T, Ty, Uy)] - f (9t

= Jlf(t)dt- [1+EN(S-1-T},T,U,)]
0

(12)
- rf(t)dt- [1+EN(S-2-T},T,U,)]
1

Uy /r
+...+J f(t)dt-[1+EN(0,Ty,U,)].

Uy /r-1

Step 4. Discretize the usage rate r by step Ar according to
the specific requirements and calculate the finite integral for
r with the probability density distribution of fz(r). Then the
value of EN(S, T;;, U,) can be recurred.

Step 5. When § > T + T}, the value of EN(S, Ty, Uy) can be
got likewise from Step 2 to Step 4. The major difference is that
the upper integral bound for f becomes T, from S — T

Thus, the expectation of spare parts demand in a planning
horizon S can be solved by discrete algorithm, on condition
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TABLE 1: The parameter values of the usage rate function for different
usage types.

Usage type a, B, (km/day) Tmax (Km/day)
Low usage rate 3.51 31 200
Moderate usage rate 3.45 52 400
High usage rate 3.67 83 600

that the two-dimensional preventive replacement intervals
(Ty,U,) are known.

4. Case Study

In order to demonstrate the applicability and validity of the
model of forecasting spare parts demands, a type of automo-
bile was taken as an example to conduct a case study. It is quite
reasonable that the automobile was chosen as the object of
the case study mainly because (a) preventive replacements of
many components and parts of the automobile, for example,
tires, oil filters, sparking plugs, and so on, are based on
both calendar time and usage time; (b) most automobiles are
driven at a constant usage rate over a period of time, and then
the accumulative mileage can be expressed as an increasing
linear equation of the calendar time, which satisfies the
requirements of the model presented in this paper; (c) we can
gain enough operational and maintenance data from the car
service shop to support the case study.

The latest two years’ operational and maintenance records
for a type of automobile (FAW-Volkswagen, Sagitar 1.6 L)
were collected from a car service shop. Before carrying out the
case study, analysis of operational and maintenance data had
been conducted, and the conclusion was that the usage rate
remarkably varied from user to user. For example, a user like
a housewife usually has a low usage rate of the automobile,
a user like a common staff has a moderate usage rate, and a
driver like a taximan has a high usage rate. Therefore, in order
to consider different situations in the case study, we divided
the overall records into three types according to the usage
rate, that is, low usage rate, moderate usage rate, and high
usage rate.

For the sake of determining the distribution of the usage
rate, we conducted fitting of distribution according to the
history usage data, and we found that it follows the Weibull
distribution:

a,—1
fR (r) = & (L) e—(T//-;r)ur ) (13)
r ﬁi’

The maximum likelihood estimation (MLE) was adopted
to estimate the parameters in the usage rate function (13),
and then we can get the parameter estimation results shown
in Table 1. Besides, we investigated different users for more
information about the usage rate of their automobiles, and
then we got the mean value of the maximum usage rate for
different usage types shown in Table 1 either.

In the following case study, we only chose the oil filter of
the automobile as the representative research object because
there were numerous operational and maintenance records in
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TABLE 2: The need for oil filter under three usage types in a year.

Low usage rate Moderate usage rate High usage rate

Need for

1.390
oil filter

0.562 1.861

the car service shop. Assume that the first failure time for the
oil filter follows Weibull distribution, and then the parameters
can be estimated in the same way; that is, o, = 3.24, 3, = 6.85
months. From the maintenance records, we also estimated the
other parameters of the forecasting model of the spare parts
demands; that is, T, = 2 days, T = 7 days.

Based on the above conditions, an integrated case was
conducted to forecast spare parts demands, as well as to
optimize spare parts and two-dimensional PM policy jointly.

4.1. Forecasting Spare Parts Demand under Given Preventive
Replacement Interval. According to the service manual of
this automobile, the preventive replacement interval of the
oil filter is (6 months, 5000 km); namely, T, = 6 months,
U, = 5000 km. In this situation, based on the forecast model
presented in the paper and the above parameter values, we
can easily calculate the need for the oil filter in any given
planning horizon S. When S = 12 months, we got the forecast
results under the three usage types as shown in Table 2.

From the results shown in Table2, we can see the
following.

First of all, the need for oil filter is less under “moderate
usage rate” than the other two circumstances. Therefore, in
order to reduce the maintenance cost under a given preven-
tive replacement interval, it is obvious that the optimized
usage way for the automobile is based on moderate usage rate.
Actually, the results are consistent with the actual conditions
because the preventive replacement interval was optimized
under some nominal usage rate ;.

What is more, the preventive replacement interval under
the nominal usage rate is not adapted to all of the conditions.
For example, if the preventive replacement interval was
optimal for all of the three usage types, the need for oil
filter under “low usage rate” would presumably be less than
that under “moderate usage rate” Therefore, the preventive
replacement interval should be further optimized.

To sum up, when we determine the preventive replace-
ment interval, we should consider the variation of the usage
rate for different users and carry out a joint optimization of
spare parts and preventive replacement.

4.2. Joint Optimization of Spare Parts and Preventive Replace-
ment. Further to the above case, considering the circum-
stances are all the same, we carried out a joint optimization
of spare parts and preventive replacement.

Assume that the usage time-based preventive replace-
ment interval of the oil filter is unknown, and the calendar
time-based preventive replacement interval was determined
according to its storage life; that is, T, = 6 months. The
problem is to jointly optimize the usage time-based preven-
tive replacement and spare parts. Then we used the model
proposed in the paper to conduct the joint optimization, and

EN(S, Ty, Uy)

O 1 1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Uy (km)

—— Low usage rate
—«— Moderate usage rate
—=— High usage rate

FIGURE 4: Development of spare parts demand for different usage
time-based preventive replacement intervals under three different
usage types.

the optimization results are shown in Figure 4. We can see
that the joint optimization result for spare parts and preven-
tive replacement is different under different usage types: (a)
when the usage type is “low usage rate,” the optimized U,
is 1600 km, and EN (1 year, 6 months, 1600 km) = 0.135; (b)
when the usage type is “moderate usage rate,” the optimized
U, is 3800 km, and EN (1 year, 6 months, 3800 km) = 0.399;
(c) when the usage type is “high usage rate,” the optimized
U, is 8300 km, and the need of the spare parts EN (1 year, 6
months, 8300 km) = 0.950.

From the above numerical experiment results, we can
conclude the following.

Firstly, under different usage rates, the optimal preventive
replacement interval and spare parts demand vary signifi-
cantly. Specifically, with the increase of usage rate, the optimal
usage replacement interval becomes longer, and the spare
parts demand under optimal preventive replacement interval
becomes greater. It means that the more frequently the
automobile is used, the worse it becomes, and the more spare
parts are needed.

Secondly, the model presented in the paper is used not
only to forecast spare parts demands, but also to optimize
spare parts and preventive maintenance jointly. By contrast,
we can see that the spare parts demands after optimizing the
preventive maintenance are less than those before optimiza-
tion. The comparison results are shown in Table 3. It showed
that the optimization is effective.

Thirdly, when preventive replacement for a product is
two-dimensional, the preventive replacement interval should
be determined based on the usage rate for the product. In
particular when the usage rate varies significantly for different
users, we should differentiate varied usage types to determine
the preventive maintenance interval for seeking least spare
parts cost.



TABLE 3: The comparison between the forecast results and optimiza-
tion results.

U Need for oil filter Need for oil filter
sage type R S
before optimization after optimization
Low usage rate 1.390 >0.135
Moderate usage rate 0.562 >0.399
High usage rate 1.861 >0.950

5. Conclusions and Future Research

The shortage of spare parts needed when carrying out mainte-
nance is a critical problem for many industrial organizations.
If there is lack of spare parts, it may take several days for
waiting the spare parts and this will extend the downtime of
the equipment with significant costs. In order to deal with
the problem, a cost effective solution is to consider spare
parts and maintenance jointly. But, most of the present works
played emphasis on the one-dimensional preventive mainte-
nance, namely, usage time-based preventive maintenance and
corrective maintenance.

In this paper, we concentrated on the issue of two-
dimensional PM policy, and a novel model was developed
to forecast spare parts demands under this policy. A discrete
algorithm was presented for solving the mathematical model.
A case study was given to demonstrate its applicability and
validity. Besides, a few of conclusions were drawn from the
numerical experiment results and may benefit the works for
determining two-dimensional preventive replacement inter-
val and optimizing spare parts and preventive maintenance
jointly.

Aside from the topic in the paper, it must be pointed out
that there are still several other topics for further research in
the future as follows.

Firstly, there is usually more than one objective for
optimization of spare parts and preventive maintenance, such
as high availability and low costs. This paper only presents
a one-objective optimization model, and a multiobjective
approach needs to be established.

Secondly, this research was carried out under the cir-
cumstance of choosing the nonrepairable spare parts for the
object of study. The model of forecasting repairable spare
parts demands under two-dimensional PM policy needs to
be developed.

Last but not least, there are two types of preventive
replacement, that is, age-based replacement and block-based
replacement. The two-dimensional PM policy presented in
the paper was established based on age-based replacement.
If the block-based replacement is introduced to the two-
dimensional PM policy, the issue will be changed, and it
needs further study on the model of forecasting spare parts
demands.
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