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This paper studies the infinite horizon 𝐻
∞

control problem for a general class of nonlinear stochastic systems with time-delay
and multiplicative noise. The exponential/asymptotic mean square 𝐻

∞
control design of delayed nonlinear stochastic systems is

presented by solving Hamilton-Jacobi inequalities. Two numerical examples are provided to show the effectiveness of the proposed
design method.

1. Introduction

It is well known that 𝐻
∞

control is one of the most effective
approaches to eliminate the effect of the external disturbance
[1]. For deterministic linear systems, 𝐻

∞
norm is defined by

a norm of the transfer function, which cannot be extended to
stochastic or nonlinear systems directly. In 1989, Doyle et al.
found that, from the view point of time-domain, the norm
of a transfer function was the 𝐿

2
-induced norm of the input-

output operator [2], which made it possible to develop the
nonlinear or stochastic 𝐻

∞
theory [3, 4]. Following along

the lines of [4], Zhang and Chen developed infinite and finite
horizon nonlinear stochastic𝐻

∞
control designs bymeans of

Hamilton-Jacobi equations [5]. Moreover, the mixed𝐻
2
/𝐻
∞

control has also received much attention due to its important
significance in practical applications [6].

The phenomena of time-delay are frequently encountered
in many engineering applications owing to the finite speed
of information processing [7]. Time-delay, nonlinearity, and
stochasticity are arguably three of the main sources in reality
which result in the complexity of a system. Over the past
years, the stability of delayed nonlinear stochastic systems
(DNSSs) has gained significant research interests [8–15].
In [8], Mao established the LaSalle-type theorems for the
solutions of stochastic differential delay equations, which was

applied to establish sufficient criteria for the stochastically
asymptotic stability of the delay equations. In [10], the prob-
lem of exponential stability for a class of impulsive nonlinear
stochastic differential equations with mixed time-delays was
investigated, and some interesting results were derived. In
[13], the delay-dependent stability conditions for DNSSs were
derived based on the convergence theorem for semimartin-
gale inequalities.

Although many results for the stability analysis of DNSSs
have been published, the 𝐻

∞
control problem of DNSSs has

received relatively little attention [16–18]. In [16], the 𝐻
∞

analysis problem was studied for a general class of nonlinear
stochastic systems with time-delay by using the Razumikhin-
type method. In [17], the problem of robust 𝐻

∞
output

feedback control was studied for a class of uncertain discrete-
time DNSSs with missing measurements. In [18], the quan-
tized 𝐻

∞
control problem was investigated for delayed non-

linear stochastic network-based systems with data missing.
However, most of the above literatures only considered the
stochastic systems with state-dependent noise. As pointed
in [19], the control input and external disturbance may also
be corrupted by noise. Therefore, it is necessary to study
the stochastic systems with state, control, and disturbance-
dependent noise [20, 21].
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Motivated by the preceding discussion, this paper will
investigate the infinite horizon 𝐻

∞
control for a class of

nonlinear stochastic state-delayed systems with multiplica-
tive noise. Compared with [16–18, 22], the considered system
in this paper is more general since state, control, and distur-
bance enter into the diffusion term simultaneously. By means
of Hamilton-Jacobi inequalities (HJIs), a sufficient condi-
tion is derived for the exponential and asymptotic mean
square 𝐻

∞
control of DNSSs, respectively. In contrast to the

conditions for delay-free 𝐻
∞

control [20, 21], the current
HJIs depend on more variables owing to the appearance
of time-delay. Finally, two numerical examples are given to
demonstrate the effectiveness of the obtained results.

Throughout this paper, the following notations will be
used.R𝑛 is 𝑛-dimensional Euclidean space.R𝑛×𝑚 is the set of
all 𝑛 × 𝑚 real matrices. 𝐴 is the transpose of a matrix 𝐴. 𝐴 >

0 (𝐴 ≥ 0):𝐴 is a positive definite (positive semidefinite) sym-
metricmatrix.𝐸[⋅] is themathematical expectation. ‖𝑥‖ is the
Euclidean norm of a vector 𝑥. 𝐿

2

F(R+;R𝑙) is the space
of nonanticipative stochastic processes 𝑦(𝑡) ∈ R𝑙 with
respect to an increasing 𝜎-algebras F

𝑡
(𝑡 ≥ 0) satisfying

‖𝑦(𝑡)‖
𝐿
2

F
(R+ ;R𝑙) = (𝐸 ∫

∞

0

‖𝑦(𝑡)‖
2

𝑑𝑡)
1/2

< ∞. C2,1(𝑈, 𝑇) is
the class of functions 𝑉(𝑥, 𝑡) twice continuously differential
with respect to 𝑥 ∈ 𝑈 and once continuously differential
with respect to 𝑡 ∈ 𝑇, except possibly at the point 𝑥 = 0.
C([−𝜏, 0],R𝑛) is a vector space of all continuousR𝑛-valued
functions defined on [−𝜏, 0]. sym(𝑀): 𝑀 + 𝑀

.

2. Definitions and Preliminaries

Consider the following delayed nonlinear stochastic system
with multiplicative noise:

𝑑𝑥 (𝑡) = [𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) + 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) 𝑢 (𝑡)

+ ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) V (𝑡)] 𝑑𝑡

+ [𝑙 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) + 𝑞 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) 𝑢 (𝑡)

+ 𝑠 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = col (𝑚 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) , 𝑢 (𝑡))

:= [

𝑚 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡)

𝑢 (𝑡)
] , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜙 (𝑡) ∈ C
𝑏

F
0

([−𝜏, 0] ;R
𝑛

) , −𝜏 ≤ 𝑡 ≤ 0,

(1)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑛𝑢 , V(𝑡) ∈ R𝑛V , and 𝑧(𝑡) ∈ R𝑛𝑧

represent the system state, control input, exogenous distur-
bance, and regulated output, respectively. 𝑤(𝑡) is the one-
dimensional standard Wiener process defined on a complete
filtered space (Ω,F, {F

𝑡
}
𝑡∈R+ , 𝑃), a filtration {F

𝑡
}
𝑡∈R+ sat-

isfying usual conditions. C𝑏F
0

([−𝜏, 0];R𝑛) denotes all F
0
-

measurable boundedC([−𝜏, 0];R𝑛)-valued random variable
𝜉 = {𝜉(𝜃) : −𝜏 ≤ 𝜃 ≤ 0}. Assume that 𝑓, 𝑔, ℎ, 𝑙, 𝑞, 𝑠, and
𝑚 satisfy the local Lipschitz condition and the linear growth
condition, which guarantee system (1) has a unique strong

solution [23]. Moreover, suppose that 𝑓(0, 0, 𝑡) = 𝑙(0, 0, 𝑡) =

𝑚(0, 0, 𝑡) ≡ 0; hence 𝑥 ≡ 0 is an equilibrium point of (1). For
simplicity, we denote 𝑥 := 𝑥(𝑡) and 𝑥

𝜏
= 𝑥(𝑡 − 𝜏).

For each𝑉 ∈ C2,1(R𝑛×R+;R+), an operatorL𝑉 : R𝑛×
R𝑛 × R+ → R associated with (1) is defined as follows [8]:

L𝑉 (𝑥, 𝑦, 𝑡)

= 𝑉
𝑡
(𝑥, 𝑡) + 𝑉



𝑥
(𝑥, 𝑡)

× [𝑓 (𝑥, 𝑦, 𝑡) + 𝑔 (𝑥, 𝑦, 𝑡) 𝑢 (𝑡) + ℎ (𝑥, 𝑦, 𝑡) V (𝑡)]

+

1

2

[𝑙 (𝑥, 𝑦, 𝑡) + 𝑞 (𝑥, 𝑦, 𝑡) 𝑢 (𝑡)

+ 𝑠 (𝑥, 𝑦, 𝑡) V (𝑡)]


𝑉
𝑥𝑥

(𝑥, 𝑡)

× [𝑙 (𝑥, 𝑦, 𝑡) + 𝑞 (𝑥, 𝑦, 𝑡) 𝑢 (𝑡) + 𝑠 (𝑥, 𝑦, 𝑡) V (𝑡)] ,

(2)

where 𝑉
𝑡
(𝑥, 𝑡) = 𝜕𝑉(𝑥, 𝑡)/𝜕𝑡, 𝑉

𝑥
(𝑥, 𝑡) = (𝜕𝑉(𝑥, 𝑡)/𝜕𝑥

1
,

. . . , 𝜕𝑉(𝑥, 𝑡)/𝜕𝑥
𝑛
)
, and 𝑉

𝑥𝑥
(𝑥, 𝑡) = (𝜕

2

𝑉(𝑥, 𝑡)/𝜕𝑥
𝑖
𝜕𝑥
𝑗
)
𝑛×𝑛

.
To deal with the infinite horizon 𝐻

∞
control of system

(1), the following internal stability is needed.

Definition 1 (see [23]). The delayed nonlinear stochastic
system,

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) 𝑑𝑡

+ 𝑙 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) 𝑑𝑤 (𝑡) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜙 (𝑡) ∈ C
𝑏

F
0

([−𝜏, 0] ;R
𝑛

) , −𝜏 ≤ 𝑡 ≤ 0,

(3)

is exponentially mean square stable, if there exist positive
constants 𝜌 > 0 and  > 0 such that every solution 𝑥(𝑡) of
(3) satisfies

𝐸 ‖𝑥 (𝑡)‖
2

≤ 𝜌




𝜙





2 exp (−𝑡) , (4)

where ‖𝜙‖
2

= 𝐸max
−𝜏≤𝑡≤0

‖𝜙(𝑡)‖
2.

Lemma 2 (see [24]). System (3) is exponentially mean square
stable, if there exist a positive definite Lyapunov function
𝑉(𝑥, 𝑡) ∈ C2,1(R𝑛,R+;R+) and 𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4

> 0 with 𝑐
1
𝑐
3

>

𝑐
2
𝑐
4
such that

(i) 𝑐
1
‖𝑥‖
2

≤ 𝑉(𝑥, 𝑡) ≤ 𝑐
2
‖𝑥‖
2, ∀(𝑥, 𝑡) ∈ R𝑛 × [−𝜏,∞),

(ii) L𝑉(𝑥, 𝑦, 𝑡)|V=0 ≤ −𝑐
3
‖𝑥‖
2

+ 𝑐
4
‖𝑦‖
2, ∀𝑡 > 0.

Definition 3. For given 𝛾 > 0, 𝑢(𝑡) = 𝑢
∗

(𝑡) ∈ 𝐿
2

F(R+;R𝑛𝑢) is
said to be an exponential mean square 𝐻

∞
control of system

(1), if

(i) for any nonzero V(𝑡) ∈ 𝐿
2

F(R+;R𝑛V) and 𝑥(𝑡) ≡ 0,
𝑡 ∈ [−𝜏, 0], one always has

‖𝑧 (𝑡)‖
𝐿
2

F
(R+ ;R𝑛𝑧 ) ≤ 𝛾 ‖V (𝑡)‖

𝐿
2

F
(R+ ;R𝑛V ) ; (5)
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(ii) system (1) with V(𝑡) = 0 and 𝑢(𝑡) = 𝑢
∗

(𝑡) is internally
stable; that is, the system

𝑑𝑥 (𝑡)

= [𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) + 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) 𝑢
∗

(𝑡)] 𝑑𝑡

+ [𝑙 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡)

+ 𝑞 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) 𝑢
∗

(𝑡)] 𝑑𝑤 (𝑡)

(6)

is exponentially mean square stable.

Equation (5) is equivalent to ‖L
𝑧V‖∞ ≤ 𝛾, where the per-

turbation operatorL
𝑧V is defined byL

𝑧V : 𝐿
2

F(R+;R𝑛V) →

𝐿
2

F(R+;R𝑛𝑧) as

L
𝑧V (V) = 𝑧 (𝑥 (𝑡, 𝑢

∗

, V, 𝑥
𝜏
, 𝑡)) , 𝑡 ≥ 0, V ∈ 𝐿

2

F (R
+

;R
𝑛V
) ,





L
𝑧V



∞

= sup
V∈𝐿2

F
(R+ ;R𝑛V ),V ̸=0,𝑥(0)=0

‖𝑧‖
𝐿
2

F
(R+ ;R𝑛𝑧 )

‖V‖
𝐿
2

F
(R+ ;R𝑛V )

.

(7)

Definition 4. In (ii) of Definition 3, if the equilibrium point
of system (6) is asymptotically mean square stable, that is,

lim
𝑡→∞

𝐸 ‖𝑥 (𝑡)‖
2

= 0, (8)

and (5) holds, then 𝑢(𝑡) = 𝑢
∗

(𝑡) is called an asymptotic mean
square 𝐻

∞
control.

Lemma 5 (see [25]). For a positive definite symmetric matrix
𝑃 > 0 ∈ R𝑛×𝑛 and any matrices (or vectors) 𝑁

1
∈ R𝑛×𝑚 and

𝑁
2
∈ R𝑛×𝑚, one has

𝑁


1
𝑃𝑁
2
+ 𝑁


2
𝑃𝑁
1
≤ 𝑁


1
𝑃𝑁
1
+ 𝑁


2
𝑃𝑁
2
. (9)

Lemma 6 (see [21]). For any vectors 𝑥, 𝑏 ∈ R𝑛 and symmetric
matrix 𝐴 ∈ R𝑛×𝑛, 𝐴−1 exists, and one has

𝑥


𝐴𝑥 + 𝑥


𝑏 + 𝑏


𝑥 = (𝑥 + 𝐴
−1

𝑏)



𝐴(𝑥 + 𝐴
−1

𝑏) − 𝑏


𝐴
−1

𝑏.

(10)

3. Infinite Horizon Stochastic 𝐻
∞

Control

In this section, several sufficient conditions are presented
for the infinite horizon 𝐻

∞
control of system (1) by using

inequality technique.

Theorem 7. Assume that there exist a positive function
𝑉(𝑥, 𝑡) ∈ C2,1(R𝑛 × R+;R+) and 𝑐

1
, 𝑐
2
, 𝑐
3
, 𝑐
4

> 0 with
𝑐
1
𝑐
3
> 𝑐
2
𝑐
4
such that

(i) 𝑐
1
‖𝑥‖
2

≤ 𝑉(𝑥, 𝑡) ≤ 𝑐
2
‖𝑥‖
2, ∀(𝑥, 𝑡) ∈ R𝑛 × [−𝜏,∞),

(ii) −‖𝑚(𝑥, 𝑦, 𝑡)‖
2

≤ −𝑐
3
‖𝑥‖
2

+ 𝑐
4
‖𝑦‖
2, ∀𝑡 > 0.

For given 𝛾 > 0, if 𝑉(𝑥, 𝑡) solves the Hamilton-Jacobi inequal-
ities (HJIs)

𝑉
𝑡
(𝑥, 𝑡) + 𝑉



𝑥
(𝑥, 𝑡) 𝑓 (𝑥, 𝑦, 𝑡)

+

1

2

𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡) + 𝑚


(𝑥, 𝑦, 𝑡)𝑚 (𝑥, 𝑦, 𝑡)

+

1

4

[𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑦, 𝑡) + 𝑉


𝑥
(𝑥, 𝑡) ℎ (𝑥, 𝑦, 𝑡)]

× [𝛾
2

𝐼 − 𝑠


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑦, 𝑡)]

−1

⋅ [𝑠


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡) + ℎ


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)]

−

1

4

[𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡) + 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑦, 𝑡)]

× [𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

⋅ [𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡) + 𝑔


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)]

< 0,

(11)

𝛾
2

𝐼 − 𝑠


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑦, 𝑡) > 0, (12)

then

𝑢
∗

= −

1

2

[𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

× [𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ 𝑔


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)]

(13)

is an exponential mean square 𝐻
∞

control of (1).

Proof. Applying Itô’s formula to 𝑉(𝑥, 𝑡), we have

𝑉 (𝑥 (𝑇) , 𝑇)

= 𝑉 (𝑥 (0) , 0) + ∫

𝑇

0

L𝑉 (𝑥, 𝑥
𝜏
, 𝑡) 𝑑𝑡

+ ∫

𝑇

0

𝑉
𝑥
(𝑥, 𝑡)

× [𝑙 (𝑥, 𝑥
𝜏
, 𝑡) + 𝑞 (𝑥, 𝑥

𝜏
, 𝑡) 𝑢

+ 𝑠 (𝑥, 𝑥
𝜏
, 𝑡) V] 𝑑𝑤 (𝑡) .

(14)
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Taking mathematical expectation on both sides of (14), we
obtain

𝐸 [𝑉 (𝑥 (𝑇) , 𝑇) − 𝑉 (𝑥 (0) , 0)]

= 𝐸∫

𝑇

0

{𝑉
𝑡
(𝑥, 𝑡) + 𝑉



𝑥
(𝑥, 𝑡)

× [𝑓 (𝑥, 𝑥
𝜏
, 𝑡) + 𝑔 (𝑥, 𝑥

𝜏
, 𝑡) 𝑢 + ℎ (𝑥, 𝑥

𝜏
, 𝑡) V]

+

1

2

[𝑙 (𝑥, 𝑥
𝜏
, 𝑡) + 𝑞 (𝑥, 𝑥

𝜏
, 𝑡) 𝑢 + 𝑠 (𝑥, 𝑥

𝜏
, 𝑡) V]

× 𝑉
𝑥𝑥

(𝑥, 𝑡) [𝑙 (𝑥, 𝑥
𝜏
, 𝑡)

+ 𝑞 (𝑥, 𝑥
𝜏
, 𝑡) 𝑢 + 𝑠 (𝑥, 𝑥

𝜏
, 𝑡) V]

+




𝑚(𝑥, 𝑥

𝜏
, 𝑡)






2

+ ‖𝑢‖
2

− ‖𝑧‖
2

− 𝛾
2

‖V‖2 + 𝛾
2

‖V‖2} 𝑑𝑡

= 𝐸∫

𝑇

0

{Ω
1
(V, 𝑥, 𝑥

𝜏
, 𝑡) + Ω

2
(𝑥, 𝑥
𝜏
, 𝑡)

+ Ω
3
(𝑢, 𝑥, 𝑥

𝜏
, 𝑡) − ‖𝑧‖

2

+ 𝛾
2

‖V‖2

+

1

2

sym [𝑢


𝑞


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑥
𝜏
, 𝑡) V]} 𝑑𝑡,

(15)

where

Ω
1
(V, 𝑥, 𝑥

𝜏
, 𝑡)

= V [−𝛾
2

𝐼 +

1

2

𝑠


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑥
𝜏
, 𝑡)] V

+

1

2

sym [(𝑙


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑥
𝜏
, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) ℎ (𝑥, 𝑥

𝜏
, 𝑡)) V] ,

Ω
2
(𝑥, 𝑥
𝜏
, 𝑡)

= 𝑉
𝑡
(𝑥, 𝑡) + 𝑉



𝑥
(𝑥, 𝑡) 𝑓 (𝑥, 𝑥

𝜏
, 𝑡)

+

1

2

𝑙


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑥
𝜏
, 𝑡)

+ 𝑚


(𝑥, 𝑥
𝜏
, 𝑡)𝑚 (𝑥, 𝑥

𝜏
, 𝑡) ,

Ω
3
(𝑢, 𝑥, 𝑥

𝜏
, 𝑡)

= 𝑢


[𝐼 +

1

2

𝑞


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑥
𝜏
, 𝑡)] 𝑢

+

1

2

sym [(𝑙


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑥
𝜏
, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑥

𝜏
, 𝑡)) 𝑢] .

(16)

Considering 𝑉
𝑥𝑥

(𝑥, 𝑡) > 0 and Lemma 5, we have
1

2

sym [𝑢


𝑞


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑥
𝜏
, 𝑡) V]

≤

1

2

𝑢


𝑞


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑥
𝜏
, 𝑡) 𝑢

+

1

2

V𝑠 (𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑥
𝜏
, 𝑡) V.

(17)

Therefore,
𝐸 [𝑉 (𝑥 (𝑇) , 𝑇) − 𝑉 (𝑥 (0) , 0)]

≤ 𝐸∫

𝑇

0

{Ω
1
(V, 𝑥, 𝑥

𝜏
, 𝑡) + Ω

2
(𝑥, 𝑥
𝜏
, 𝑡)

+ Ω
3
(𝑢, 𝑥, 𝑥

𝜏
, 𝑡) − ‖𝑧‖

2

+ 𝛾
2

‖V‖2

+

1

2

[𝑢


𝑞


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑥
𝜏
, 𝑡) 𝑢

+ V𝑠 (𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑥
𝜏
, 𝑡) V]} 𝑑𝑡

= 𝐸∫

𝑇

0

(Ω̃
1
(V, 𝑥, 𝑥

𝜏
, 𝑡) + Ω

2
(𝑥, 𝑥
𝜏
, 𝑡)

+ Ω̃
3
(𝑢, 𝑥, 𝑥

𝜏
, 𝑡) − ‖𝑧‖

2

+ 𝛾
2

‖V‖2) 𝑑𝑡,

(18)

where
Ω̃
1
(V, 𝑥, 𝑥

𝜏
, 𝑡)

= V [−𝛾
2

𝐼 + 𝑠


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑥
𝜏
, 𝑡)] V

+

1

2

sym [(𝑙


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑥
𝜏
, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) ℎ (𝑥, 𝑥

𝜏
, 𝑡)) V] ,

Ω̃
3
(𝑢, 𝑥, 𝑥

𝜏
, 𝑡)

= 𝑢


[𝐼 + 𝑞


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑥
𝜏
, 𝑡)] 𝑢

+

1

2

sym [(𝑙


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑥
𝜏
, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑥

𝜏
, 𝑡)) 𝑢] .

(19)

Set
A
1
= − 𝛾

2

𝐼 + 𝑠


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑥
𝜏
, 𝑡) ,

b


1
=

1

2

(𝑙


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑥
𝜏
, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) ℎ (𝑥, 𝑥

𝜏
, 𝑡)) ,

A
3
= 𝐼 + 𝑞



(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑥
𝜏
, 𝑡) ,

b


3
=

1

2

(𝑙


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑥
𝜏
, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑥

𝜏
, 𝑡)) .

(20)
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According to Lemma 6, Ω̃
1
(V, 𝑥, 𝑥

𝜏
, 𝑡) and Ω̃

3
(𝑢, 𝑥, 𝑥

𝜏
, 𝑡) can

be rewritten as

Ω̃
1
(V, 𝑥, 𝑥

𝜏
, 𝑡) = (V + A

−1

1
b
1
)



A
1
(V + A

−1

1
b
1
) − b


1
A
1
b
1
,

Ω̃
3
(𝑢, 𝑥, 𝑥

𝜏
, 𝑡) = (𝑢 + A

−1

3
b
3
)



A
3
(𝑢 + A

−1

3
b
3
) − b


3
A
3
b
3
.

(21)

Implementing (21) and Ω
2
(𝑥, 𝑥
𝜏
, 𝑡) into (18) yields

𝐸 [𝑉 (𝑥 (𝑇) , 𝑇) − 𝑉 (𝑥 (0) , 0)]

= 𝐸∫

𝑇

0

[𝛾
2

‖V‖2 − ‖𝑧‖
2

+ (V + A
−1

1
b
1
)



A
1
(V + A

−1

1
b
1
)

+ (𝑢 + A
−1

3
b
3
)



A
3
(𝑢 + A

−1

3
b
3
)

+ 𝑉
𝑡
(𝑥, 𝑡) + 𝑉



𝑥
(𝑥, 𝑡) 𝑓 (𝑥, 𝑥

𝜏
, 𝑡)

+

1

2

𝑙


(𝑥, 𝑥
𝜏
, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑥
𝜏
, 𝑡)

+ 𝑚


(𝑥, 𝑥
𝜏
, 𝑡)𝑚 (𝑥, 𝑥

𝜏
, 𝑡)

+ b


1
(−A
1
)b
1
− b


3
A
3
b
3
] 𝑑𝑡.

(22)

According to (11), we have

𝐸 [𝑉 (𝑥 (𝑇) , 𝑇) − 𝑉 (𝑥 (0) , 0)]

≤ 𝐸∫

𝑇

0

[𝛾
2

‖V‖2 − ‖𝑧‖
2

+ (V + A
−1

1
b
1
)



A
1
(V + A

−1

1
b
1
)

+ (𝑢 + A
−1

3
b
3
)



A
3
(𝑢 + A

−1

3
b
3
)] 𝑑𝑡.

(23)

Considering (12) and taking 𝑢 = 𝑢
∗

= −A−1
3
b
3
, (23) leads to

𝐸(∫

𝑇

0

‖𝑧‖
2

𝑑𝑡)

≤ −𝐸 [𝑉 (𝑥 (𝑇) , 𝑇)] + 𝛾
2

𝐸(∫

𝑇

0

‖V‖2 𝑑𝑡)

− 𝐸[∫

𝑇

0

(V + A
−1

1
b
1
)



(−A
1
) (V + A

−1

1
b
1
) 𝑑𝑡]

≤ 𝛾
2

𝐸(∫

𝑇

0

‖V‖2 𝑑𝑡) .

(24)

Let 𝑇 → ∞, and then (5) of Definition 3 is proved.

Next, we will prove system (6) to be exponentially mean
square stable. Let L

𝑢
∗ be the infinitesimal generator of the

system (6), and then

L
𝑢
∗𝑉 (𝑥, 𝑦, 𝑡) = 𝑉

𝑡
(𝑥, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) [𝑓 (𝑥, 𝑦, 𝑡) + 𝑔 (𝑥, 𝑦, 𝑡) 𝑢

∗

]

+

1

2

[𝑙 (𝑥, 𝑦, 𝑡) + 𝑞 (𝑥, 𝑦, 𝑡) 𝑢
∗

]


× 𝑉
𝑥𝑥

(𝑥, 𝑡) [𝑙 (𝑥, 𝑦, 𝑡) + 𝑞 (𝑥, 𝑦, 𝑡) 𝑢
∗

]

= 𝑉
𝑡
(𝑥, 𝑡) + 𝑉



𝑥
(𝑥, 𝑡) 𝑓 (𝑥, 𝑦, 𝑡)

+

1

2

𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑦, 𝑡) 𝑢

∗

+

1

2

sym [𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡) 𝑢
∗

]

+

1

2

𝑢
∗

𝑞 (𝑥, 𝑦, 𝑡)


𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡) 𝑢
∗

.

(25)

Setting

Σ
1
= 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑦, 𝑡) 𝑢

∗

+

1

2

sym [𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡) 𝑢
∗

] ,

Σ
2
=

1

2

𝑢
∗

𝑞 (𝑥, 𝑦, 𝑡)


𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡) 𝑢
∗

(26)

and implementing

𝑢
∗

= −

1

2

[𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

× [𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ 𝑔


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)]

(27)

into Σ
1
and Σ

2
, it yields

Σ
1
= −

1

2

𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑦, 𝑡)

× [𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

⋅ [𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ 𝑔


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)]

−

1

4

sym {[𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

× [𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

⋅ [𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ 𝑔


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)]} ,
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= −

1

2

[𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑦, 𝑡)]

× [𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

⋅ [𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ 𝑔


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)] ,

Σ
2
=

1

8

[𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑦, 𝑡)]

× [𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

⋅ 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)

× [𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

⋅ [𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ 𝑔


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)]

≤

1

8

[𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑦, 𝑡)]

× [𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

⋅ [𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ 𝑔


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)] .

(28)

Substituting (28) into (25) and considering conditions (i),
(ii), and (11) in Theorem 7, it follows that

L
𝑢
∗𝑉 (𝑥, 𝑦, 𝑡)

≤ 𝑉
𝑡
(𝑥, 𝑡) + 𝑉



𝑥
(𝑥, 𝑡) 𝑓 (𝑥, 𝑦, 𝑡)

+

1

2

𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

−

3

8

[𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑦, 𝑡)]

× [𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

⋅ [𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ 𝑔


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)]

≤ 𝑉
𝑡
(𝑥, 𝑡) + 𝑉



𝑥
(𝑥, 𝑡) 𝑓 (𝑥, 𝑦, 𝑡)

+

1

2

𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

−

1

4

[𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑦, 𝑡)]

× [𝐼 + 𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑞 (𝑥, 𝑦, 𝑡)]

−1

⋅ [𝑞


(𝑥, 𝑦, 𝑡) 𝑉
𝑥,𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ 𝑔


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)]

< −

1

4

[𝑙


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑦, 𝑡)

+ 𝑉


𝑥
(𝑥, 𝑡) ℎ (𝑥, 𝑦, 𝑡)]

× [𝛾
2

𝐼 − 𝑠


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑠 (𝑥, 𝑦, 𝑡)]

−1

⋅ [𝑠


(𝑥, 𝑦, 𝑡) 𝑉
𝑥𝑥

(𝑥, 𝑡) 𝑙 (𝑥, 𝑦, 𝑡)

+ ℎ


(𝑥, 𝑦, 𝑡) 𝑉
𝑥
(𝑥, 𝑡)]

− 𝑚


(𝑥, 𝑦, 𝑡)𝑚 (𝑥, 𝑦, 𝑡)

≤ −




𝑚 (𝑥, 𝑦, 𝑡)






2

≤ −𝑐
3
‖𝑥‖
2

+ 𝑐
4





𝑦





2

.

(29)

From Lemma 2, system (6) is exponentially mean square
stable. This theorem is proved.

The following theorem is derived for the asymptoticmean
square 𝐻

∞
control, which is weaker than the exponential

mean square 𝐻
∞

control.

Theorem 8. Assume that 𝑉(𝑥, 𝑡) ∈ C2,1(R𝑛 × R+;R+) has
an infinitesimal upper limit; that is, lim

‖𝑥‖→∞
inf
𝑡>0

𝑉(𝑥, 𝑡) =

∞ and 𝑉(𝑥, 𝑡) > 𝑐‖𝑥‖
2 for some 𝑐 > 0. If 𝑉(𝑥, 𝑡) solves HJIs

(11)-(12), then (13) is an asymptotic mean square𝐻
∞
control of

(1).

Proof. It only needs to prove that system (6) is asymptot-
ically mean square stable when V = 0. We know that
L
𝑢
∗𝑉(𝑥, 𝑦, 𝑡) < 0 from (29), which implies that system (6) is

globally asymptotically stable in probability 1 [26]. According
to Itô formula and the property of stochastic integration, we
obtain

𝐸𝑉 (𝑥 (𝑡) , 𝑡)

= 𝐸𝑉 (𝑥 (0) , 0)

+ 𝐸∫

𝑡

0

L
𝑢
∗𝑉 (𝑥 (𝑠) , 𝑠)




V=0 𝑑𝑠

+ 𝐸∫

𝑡

0

𝑉
𝑥
(𝑥 (𝑠) , 𝑠)

× [𝑙 (𝑥, 𝑥
𝜏
, 𝑡) + 𝑞 (𝑥, 𝑥

𝜏
, 𝑡) 𝑢
∗

]



V=0 𝑑𝑤 (𝑠)
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= 𝐸𝑉 (𝑥 (0) , 0) + 𝐸∫

𝑡

0

L
𝑢
∗𝑉 (𝑥 (𝑠) , 𝑠)




V=0 𝑑𝑠

≤ 𝐸𝑉 (𝑥 (0) , 0) − 𝐸∫

𝑡

0

‖𝑚 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏) , 𝑠)‖
2

𝑑𝑠

≤ 𝐸𝑉 (𝑥 (0) , 0) < ∞.

(30)

Let ̃F
𝑡
= F
𝑡
∪ 𝜎(𝑦(𝑠), 0 ≤ 𝑠 ≤ 𝑡), and then (30) leads to

𝐸 [𝑉 (𝑥 (𝑡) , 𝑡) |
̃F
𝑠
] ≤ 𝑉 (𝑥 (𝑠) , 𝑠) a.s., (31)

which means that {𝑉(𝑥(𝑡), 𝑡),
̃F
𝑡
, 0 ≤ 𝑠 ≤ 𝑡} is a nonnegative

supermartingale with respect to {
̃F
𝑡
}
𝑡≥0

. According to Doob’s
convergence theorem [27] and lim

𝑡→∞
𝑥(𝑡) = 0 a.s., we have

𝑉(𝑥(∞),∞) = lim
𝑡→∞

𝑉(𝑥(𝑡), 𝑡) = 0 a.s. Furthermore,
lim
𝑡→∞

𝐸𝑉(𝑥(𝑡), 𝑡) = 𝐸𝑉(𝑥(∞),∞) = 𝐸𝑉(0,∞) = 0.
Since 𝑉(𝑥, 𝑡) > 𝑐‖𝑥‖

2 for some 𝑐 > 0, it yields that
lim
𝑡→∞

𝐸‖𝑥(𝑡)‖
2

= 0. The proof is completed.

Remark 9. In [24], Zhang et al. studied the robust 𝐻
∞

filter-
ing problem of nonlinear stochastic systems with time delay.
However, the 𝐻

∞
control problem was not tackled in [24],

mainly due to mathematical difficulties in dealing with the
case that state, control, and disturbance enter into the diffu-
sion term simultaneously. In this paper, Lemma 6 is applied
to solve this problem, and two sufficient conditions for 𝐻

∞

control of delayed nonlinear stochastic systems are obtained
inTheorems 7 and 8.

Remark 10. A further development of the present issue is
twofold. On the one hand, in order to avoid solving HJIs
(11) and (12), the global linearization approach [25] or fuzzy
approach based on Takagi-Sugeno model [28] can be used to
design 𝐻

∞
control for delayed nonlinear stochastic systems.

On the other hand, Lévy noise is more versatile and interest-
ing with a wider range of applications in comparison to the
standard Gaussian noise [29, 30]. Therefore, the 𝐻

∞
control

of stochastic differential equations with Lévy noise is another
valuable research topic.

4. Numerical Examples

In this section, two numerical examples are given to illustrate
the proposed 𝐻

∞
control design.

Example 1. Consider the following one-dimensional nonlin-
ear stochastic state-delayed system:

𝑑𝑥 (𝑡) = [−2𝑥 (𝑡) + 𝑥 (𝑡) 𝑥
2

(𝑡 − 𝜏)

+ 4𝑥 (𝑡 − 𝜏) 𝑢 (𝑡) + 𝑥 (𝑡 − 𝜏) V (𝑡)] 𝑑𝑡

+ [𝑥 (𝑡) 𝑥 (𝑡 − 𝜏) + 𝑢 (𝑡) + V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = [

2𝑥 (𝑡)

𝑢 (𝑡)
] , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜙 (𝑡) ∈ C
𝑏

F
0

([−𝜏, 0] ;R
𝑛

) , −𝜏 ≤ 𝑡 ≤ 0.

(32)

0

5

10

15

20

25

30

Time (s)

x
(
t
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 1: The state 𝑥(𝑡) of the unforced system in Example 1.

Set 𝑉(𝑥) = 𝑝𝑥
2, 𝑝 > 0 to be determined, and then HJIs

(11)-(12) become

2𝑝𝑥 ⋅ (−2𝑥 + 𝑥𝑥
2

𝜏
)

+

1

2

𝑥𝑥
𝜏
⋅ 2𝑝 ⋅ 𝑥𝑥

𝜏
+ 2𝑥 ⋅ 2𝑥

+

1

4

(𝑥𝑥
𝜏
⋅ 2𝑝 + 2𝑝𝑥 ⋅ 𝑥

𝜏
)
2

(𝛾
2

− 2𝑝)

−1

−

1

4

(𝑥𝑥
𝜏
⋅ 2𝑝 + 2𝑝𝑥 ⋅ 4𝑥

𝜏
)
2

(1 + 2𝑝)
−1

< 0,

𝛾
2

− 2𝑝 > 0.

(33)

Given 𝛾 = √3, the above inequalities have a solution 𝑝 =

1. From Theorem 7, the 𝐻
∞

control of system (32) is 𝑢
∗

=

−(5/3)𝑥𝑥
𝜏
.

The initial condition is chosen as 𝜙(𝑡) = 1.2 for any
𝑡 ∈ [−𝜏, 0] with 𝜏 = 0.2 and V(𝑡) = 𝑒

−𝑡. Applying the Euler-
Maruyama method [31], the state responses of the unforced
system (𝑢 = 0) and the controlled system (𝑢 = 𝑢

∗

) and the
control input are shown in Figures 1, 2, and 3, respectively. It
is found that the controlled system can achieve stability and
attenuation performance by using the proposed𝐻

∞
control.

Example 2. Consider a two-dimensional system (1) with the
following parameters:

𝑓 (𝑥) = [

𝑥
2
(𝑡)

−𝑥
3

2
(𝑡) − 𝑥

2
(𝑡) − 𝑥

1
(𝑡)

] ,

𝑔 (𝑥) = [

0

2𝑥
2
(𝑡 − 𝜏)

] , 𝑚 (𝑥) = √2𝑥
2
(𝑡) ,

ℎ (𝑥) = [

0

𝑥
2
(𝑡 − 𝜏)

] , 𝑙 (𝑥) = [

0

𝑥
2
(𝑡) 𝑥
2
(𝑡 − 𝜏)

] ,

𝑞 (𝑥) = 0, 𝑠 (𝑥) = 0.

(34)
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Figure 2: The state 𝑥(𝑡) of the controlled system in Example 1.
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Figure 3: The control input 𝑢(𝑡) in Example 1.

Take 𝑉(𝑥) = 𝑥


𝑃𝑥 with 𝑃 = diag{𝑝
1
, 𝑝
2
} < 0 to be deter-

mined. For a given disturbance attenuation level 𝛾 = 1, 𝑃 =

diag{1, 1} is a solution to (11)-(12). According to Theorem 7,
𝑢
∞

= −2𝑥
2
𝑥
2𝜏

is an 𝐻
∞

control of system (1). The initial
condition is chosen as 𝜙(𝑡) = [0.2 0.5]

 for any 𝑡 ∈ [−0.2, 0],
and take V(𝑡) = 𝑒

−𝑡. By using a similar method in Example 1,
the states of the controlled system and the control input are
shown in Figures 4-5, which show the effectiveness of the
designed controller.

5. Conclusions

For general delayed nonlinear stochastic systems with state,
control, and disturbance-dependent noise, this paper has
presented a sufficient condition for exponential/asymptotic
mean square𝐻

∞
control problem in terms of HJIs.There still

remain many interesting topics, for example, how to derive
delay-dependent conditions or how to design𝐻

2
/𝐻
∞
control

0 5 10 15 20
Time (s)
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
1
(
t
)
,
x
2
(
t
)

x
1
(t)

x
2
(t)

Figure 4: The states 𝑥
1
(𝑡) and 𝑥

2
(𝑡) of the controlled system in

Example 2.
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−0.3
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0

0.1

0.2

u
(
t
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Figure 5: The control input 𝑢(𝑡) in Example 2.

for delayed nonlinear stochastic systems.These issues deserve
further research.
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