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A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and
topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation
problem, generalized equilibrium problem, equilibrium problem with lower and upper bounds, and minimax problem in FWC-
spaces. The results represented in this paper unify and extend some known results in the literature.

1. Introduction and Preliminaries

In 1983, by using fixed point theorems for set-valued map-
pings, Yannelis and Prabhakar [1] proved three existence
theorems of maximal elements under the setting of locally
convex topological vector spaces. In 1985, Yannelis [2]
improved the Fan-Browder-type fixed point theorem and
obtained an existence result of maximal elements by using
this fixed point theorem. Since then, many maximal element
theorems and their applications have been established in the
setting of topological vector spaces; see, for example, [3–8]
and the references therein.

It is well known that the linearity and convexity assump-
tions play crucial roles in most of the known existence results
of maximal elements, which strictly restrict the applicable
range of these maximal element theorems. Considering this
fact, Zhang and Wu [9] proved an existence theorem of
maximal elements in noncompact 𝐻-spaces and obtained
some minimax inequalities, variational inequalities, and
quasivariational inequalities by using this maximal element
theorem. Subsequently, Wu [10] used existence theorems of
maximal elements to prove equilibrium existence theorems
for qualitative games and abstract economies in noncompact
𝐻-spaces. Recently, by using a generalization of the Fan-
Browder fixed point theorem, Balaj and Lin [11] proved
a new fixed point theorem for set-valued mappings in

𝐺-convex spaces from which they derived several coinci-
dence theorems and existence theorems for maximal ele-
ments. As applications, they obtained some existence theo-
rems of solutions to the generalized equilibrium problem and
minimax problem.

Motivated and inspired by the work mentioned above,
in this paper, we prove a new maximal element theorem in
𝐹𝑊𝐶-spaces (see Definition 1) without any linear, convex,
and topological structure. As applications of this theorem,
we obtain some new existence theorems of solutions to vari-
ational relation problem, generalized equilibrium problem,
equilibrium problem with lower and upper bounds, and
minimax problem in 𝐹𝑊𝐶-spaces.

Now, we introduce some notation and definitions. For a
nonempty set𝑋, 2𝑋 and ⟨𝑋⟩denote the family of all subsets of
𝑋 and the family of nonempty finite subsets of𝑋, respectively.
For every 𝐴 ∈ ⟨𝑋⟩, |𝐴| denotes the cardinality of 𝐴. If 𝑋 is
a topological space, then 𝐴 denotes the closure of 𝐴 ⊆ 𝑋. If
𝑋 is a vector space, then we denote by co𝐴 the convex hull
of 𝐴 ⊆ 𝑋. Let 𝑇 : 𝑋 → 2

𝑌 be a set-valued mapping with 𝑌

being a nonempty set. We define the mapping 𝑇
−1

: 𝑌 → 2
𝑋

by 𝑇
−1

(𝑦) = {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝑇(𝑥)} for each 𝑦 ∈ 𝑌. If 𝑌 is
a topological space, we say that 𝑇 : 𝑋 → 2

𝑌 is compact if
𝑇(𝑋) ⊆ 𝑌 is compact. If𝑋 and 𝑌 are both topological spaces,
we say that 𝑇 : 𝑋 → 2

𝑌 is upper semicontinuous (resp.,
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lower semicontinuous) if for every closed subset 𝐵 of 𝑌, the
set {𝑥 ∈ 𝑋 : 𝑇(𝑥)⋂𝐵 ̸= 0} (resp., {𝑥 ∈ 𝑋 : 𝑇(𝑥) ⊆ 𝐵}) is
closed. Let Δ

𝑛
denote the standard 𝑛-dimensional simplex

with vertices {𝑒
0
, 𝑒

1
, . . . , 𝑒

𝑛
}. For a nonempty subset 𝐽 ⊆

{0, 1, . . . , 𝑛}, let Δ
|𝐽|−1

denote the convex hull of the vertices
{𝑒
𝑗
: 𝑗 ∈ 𝐽}.
A nonempty topological space 𝑋 is contractible if the

identity mapping on 𝑋 is homotopic to a constant mapping.
Every nonempty convex subset of a topological vector space is
contractible, but the converse is not true in general. A subset
𝐴 of a topological space 𝑋 is called to be compactly closed
(resp., compactly open) in 𝑋 if for each nonempty compact
subset 𝐶 of 𝑋, 𝐴 ∩ 𝐶 is closed (resp., open) in 𝐶. The notions
of compactly closed (resp., compactly open) sets are true
generalizations of closed (resp., open) sets. Note that there
exists a nonempty subset𝐴 of the topological vector spaceRR

such that for each nonempty compact subset 𝐶 of RR, 𝐴 ∩ 𝐶

is closed in 𝐶, but 𝐴 is not closed. For details, see Kelley [12,
page 240] or Wilansky [13, page 143].

Let 𝑋 be a topological vector space. For every 𝑁 =

{𝑥
0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, let us define a continuous mapping 𝜑 :

Δ
𝑛

→ 𝑋 by𝜑(𝑝) = ∑
𝑛

𝑖=0
𝑡
𝑖
𝑥
𝑖
for each𝑝 = ∑

𝑛

𝑖=0
𝑡
𝑖
𝑒
𝑖
∈ Δ

𝑛
.This

mapping motivates us to introduce an abstract convex space
which does not possess any linear, convex, and topological
structure and is described in the following definition.

Definition 1 (see [14]). A triple (𝑋,𝐷; 𝜑
𝑁
) is said to be a finite

weakly convex space (𝐹𝑊𝐶-space, in short) if 𝑋, 𝐷 are two
nonempty sets and for each 𝑁 = {𝑢

0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩

where some elements in 𝑁 may be same, there exists a set-
valued mapping 𝜑

𝑁
: Δ

𝑛
→ 2

𝑋 with nonempty values.
When 𝐷 ⊆ 𝑋, the space is denoted by (𝑋 ⊇ 𝐷; 𝜑

𝑁
). In

case 𝑋 = 𝐷, let (𝑋; 𝜑
𝑁
) := (𝑋,𝑋; 𝜑

𝑁
). Let 𝐴 ⊆ 𝐷 and

𝐵 ⊆ 𝑋. 𝐵 is said to be an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
)

relative to 𝐴 if for each 𝑁 = {𝑢
0
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩ and for each

{𝑢
𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝐴 ∩ {𝑢

0
, 𝑢

1
, . . . , 𝑢

𝑛
}, we have 𝜑

𝑁
(Δ

𝑘
) ⊆

𝐵, where Δ
𝑘

= co({𝑒
𝑖0
, 𝑒

𝑖1
, . . . , 𝑒

𝑖𝑘
}). We note that if 𝐴 is

nonempty and 𝐵 is an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative

to 𝐴, then 𝐵 is automatically nonempty. When 𝐴 = 𝐵, 𝐵 is
said to be an 𝐹𝑊𝐶-subspace of (𝑋 ⊇ 𝐷; 𝜑

𝑁
).

It is worthwhile noticing that 𝑋 and 𝐷 in Definition 1
do not possess any linear, convex, and topological structure.
Major examples of 𝐹𝑊𝐶-spaces are convex subsets of topo-
logical vector spaces, hyperconvex metric spaces introduced
byAronszajn andPanitchpakdi [15], Lassonde’s convex spaces
in [16], 𝐻-spaces introduced by Horvath [17], 𝐺-convex
spaces introduced by Park and Kim [18], 𝐿-convex spaces
introduced by Ben-El-Mechaiekh et al. [19], 𝐺-𝐻-spaces
introduced by Verma [20–22], pseudo-𝐻-spaces introduced
by Lai et al. [23], 𝐺𝐹𝐶-spaces due to Khanh et al. [24],
𝐹𝐶-spaces due to Ding [25], and many other topological
spaces with abstract convex structure (see, e.g., [26] and the
references therein).

Taking Lassonde’s convex space, 𝐻-space, and hypercon-
vexmetric space as examples, we show that these three spaces
are particular forms of 𝐹𝑊𝐶-spaces. Let𝑋 be a convex space
in [16]; that is, a nonempty convex set in a vector space
with any topology that induces the Euclidean topology on

the convex hulls of its finite subsets. Then for every 𝑁 =

{𝑥
0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, define a continuous mapping 𝜑

𝑁
:

Δ
𝑛

→ co(𝑁) ⊆ 𝑋 as follows:

𝜑
𝑁

(

𝑛

∑

𝑗=0

𝑡
𝑗
𝑒
𝑗
) =

𝑛

∑

𝑗=0

𝑡
𝑗
𝑥
𝑗

for each (𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑛
) =

𝑛

∑

𝑗=0

𝑡
𝑗
𝑒
𝑗
∈ Δ

𝑛
.

(1)

Therefore, (𝑋; 𝜑
𝑁
) forms an 𝐹𝑊𝐶-space. Let (𝑋; Γ

𝑁
) be an

𝐻-space in [17], where {Γ
𝑁
}
𝑁∈⟨𝑋⟩

is a family of nonempty
contractible subsets of 𝑋 indexed by 𝑁 ∈ ⟨𝑋⟩ such that
Γ
𝑁

⊆ Γ


𝑁
whenever 𝑁 ⊆ 𝑁

. Then by Theorem 1 of Horvath
[17], for every 𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, there exists a

continuous mapping 𝜑
𝑁

: Δ
𝑛

→ 𝑋 and thus, (𝑋; 𝜑
𝑁
) is an

𝐹𝑊𝐶-space. Let (𝑋, 𝑑) be a hyperconvexmetric space in [15].
Then by Lemma 2.3 of Yuan [27], we know that (𝑋, 𝑑) is an
𝐻-space and thus, (𝑋, 𝑑) is an 𝐹𝑊𝐶-space.

Definition 2. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space and 𝑌 a

topological space. The class B̃(𝑋,𝐷, 𝑌) of better admissible
mappings is defined as follows: a set-valued mapping 𝑇 :

𝑋 → 2
𝑌 belongs to B̃(𝑋,𝐷, 𝑌) if and only if for every 𝑁 =

{𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩ and for every continuous mapping

𝜓 : 𝑇(𝜑
𝑁
(Δ

𝑛
)) → Δ

𝑛
, the composition 𝜓 ∘ 𝑇|

𝜑𝑁(Δ 𝑛)
∘ 𝜑

𝑁
:

Δ
𝑛

→ 2
Δ 𝑛 has a fixed point. When 𝑋 = 𝐷, we will write

B̃(𝑋, 𝑌) instead of B̃(𝑋,𝐷, 𝑌).

Remark 3. Since 𝑋 and 𝐷 in Definition 2 are nonempty sets
which do not possess any linear, convex, and topological
structure, the class B̃(𝑋,𝐷, 𝑌) includes many important
classes of mappings as special cases, for example, the class
of Kakutani’s mappingsK(𝑋, 𝑌) (i.e., the upper semicontin-
uous set-valued mappings with nonempty compact convex
values and codomain 𝑌 being convex set in a topological
vector space), the class U𝐾

𝐶
(𝑋, 𝑌) in Park and Kim [18], the

class A(𝑋, 𝑌) in Ben-El-Mechaiekh et al. [19], and the class
B(𝑋, 𝑌) in Ding [25].

Example 4. Let𝐷 = [0, 1] and (𝑋, 𝜏) = ([0, 1], {[0, 1], 0, (0, 1],

[0, 1/2]}), where 𝜏 is a family of subsets of 𝑋. We can verify
that (𝑋, 𝜏) is not a topological space. For simplicity, we write
𝑋 instead of (𝑋, 𝜏). Let 𝑌 = (0, 1] with the Euclidean metric
topology. For each 𝑁 = {𝑢

0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, define a set-

valued mapping 𝜑
𝑁

: Δ
𝑛

→ 2
𝑋 by 𝜑

𝑁
(𝑧) = [∑

𝑛

𝑖=0
𝜆
𝑖
𝑑
𝑖
, 1]

for each 𝑧 = ∑
𝑛

𝑖=0
𝜆
𝑖
𝑒
𝑖
∈ Δ

𝑛
. It is easy to see that (𝑋,𝐷; {𝜑

𝑁
})

forms an 𝐹𝑊𝐶-space. Now we define a set-valued mapping
𝑇 : 𝑋 → 2

𝑌 by

𝑇 (𝑥) =

{{{

{{{

{

[
7

10
,
4

5
] , if 𝑥 = 1,

(
3

4
,
4

5
] , if 𝑥 ∈ [0, 1) .

(2)
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Then for each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, we have

𝑇(𝜑
𝑁
(Δ

𝑛
)) = [7/10, 4/5]. Therefore, the composition 𝑇|

𝜑𝑁
∘

𝜑
𝑁

: Δ
𝑛

→ 2
𝑇(𝜑𝑁(Δ 𝑛)) is an upper semicontinuous set-

valued mapping with nonempty compact contractible values.
By Lemma 1 of [28], for every continuous function 𝜓 :

𝑇(𝜑
𝑁
(Δ

𝑛
)) → Δ

𝑛
, the composition 𝜓 ∘ 𝑇|

𝜑𝑁
∘ 𝜑

𝑁
: Δ

𝑛
→

2
Δ 𝑛 has a fixed point. Therefore, 𝑇 ∈ B̃(𝑋, 𝑌).

Lemma5. Let 𝐼 be an index set. For each 𝑖 ∈ 𝐼, let (𝑋
𝑖
, 𝐷

𝑖
; 𝜑

𝑖

𝑁𝑖
)

be an 𝐹𝑊𝐶-space. Let 𝑋 = ∏
𝑖∈𝐼

𝑋
𝑖
, 𝐷 = ∏

𝑖∈𝐼
𝐷
𝑖
, and 𝜑

𝑁
=

∏
𝑖∈𝐼

𝜑
𝑖

𝑁𝑖
. Then (𝑋,𝐷; 𝜑

𝑁
) is also an 𝐹𝑊𝐶-space.

Proof. For each 𝑖 ∈ 𝐼, let 𝜋
𝑖
: 𝑋 → 𝑋

𝑖
be the projection of

𝑋 onto 𝑋
𝑖
. For every 𝑁 = {𝑢

0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, let 𝑁

𝑖
=

𝜋
𝑖
(𝑁) = {𝜋

𝑖
(𝑢

0
), 𝜋

𝑖
(𝑢

1
), . . . , 𝜋

𝑖
(𝑢

𝑛
)}. Since each (𝑋

𝑖
, 𝐷

𝑖
; 𝜑

𝑁𝑖
)

is an 𝐹𝑊𝐶-space, it follows that there exists a set-valued
mapping 𝜑

𝑖

𝑁𝑖
: Δ

𝑛
→ 2

𝑋𝑖 with nonempty values. Define a
set-valued mapping 𝜑

𝑁
: Δ

𝑛
→ 2

𝑋 by

𝜑
𝑁 (𝑧) = ∏

𝑖∈𝐼

𝜑
𝑖

𝑁𝑖
(𝑧) for each 𝑧 ∈ Δ

𝑛
. (3)

It is clear that 𝜑
𝑁
has nonempty values.Therefore, (𝑋,𝐷; 𝜑

𝑁
)

is also an 𝐹𝑊𝐶-space.

2. A Maximal Element Theorem

Our first result is the following maximal element theorem.

Theorem 6. Let (𝑋,𝐷; 𝜑
𝑁
) be an FWC-space, 𝑌 a Hausdorff

topological space, and 𝐾 a nonempty compact subset of 𝑌. Let
𝑃 : 𝑋 → 2

𝑌, 𝐻 : 𝑌 → 2
𝐷, 𝑄 : 𝐷 → 2

𝑋, and
𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be set-valued mappings such that

(i) for each 𝑥 ∈ 𝑋, 𝑇(𝑥) ⊆ 𝑃(𝑥);
(ii) for each 𝑢 ∈ 𝐷, 𝐻−1

(𝑢) is compactly open;
(iii) for each 𝑁 = {𝑢

0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩ and each

{𝑢
𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝑁,

𝑃 (𝜑
𝑁

(Δ
𝑘
))⋂(

𝑘

⋂

𝑗=0

𝐻
−1

(𝑢
𝑖𝑗
)) = 0; (4)

(iv) one of the following conditions holds:

(iv
1
) there exists 𝑁

0
∈ ⟨𝐷⟩ such that 𝑇(𝑋) \

𝐾 ⊆ ⋃
𝑢∈𝑁0

𝐻
−1

(𝑢) and for each 𝑁 =

{𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a compact

subset of 𝑌;
(iv

2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset 𝐿

𝑁

of 𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is an

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

𝐻
−1

(𝑢) . (5)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝐻(𝑦) = 0.

Proof. We proveTheorem 6 distinguishing the following two
cases.

Case (iv
1
). Assume (iv

1
) holds. Suppose that the conclusion

of Theorem 6 does not hold. Then for each 𝑦 ∈ 𝑇(𝑋)⋂𝐾,
𝐻(𝑦) ̸= 0 and hence, there exists 𝑢 ∈ 𝐻(𝑦); that is, 𝑦 ∈

𝐻
−1

(𝑢). Therefore, we have

𝑇(𝑋)⋂𝐾 ⊆ ⋃

𝑢∈𝐷

𝐻
−1

(𝑢) , (6)

which implies that 𝑇(𝑋)⋂𝐾 = ⋃
𝑢∈𝐷

(𝐻
−1

(𝑢)⋂𝑇(𝑋)⋂𝐾).
Since 𝑇(𝑋)⋂𝐾 is compact and each 𝐻

−1
(𝑢) is compactly

open by (ii), it follows that there exists 𝑁
1
∈ ⟨𝐷⟩ such that

𝑇(𝑋)⋂𝐾 = ⋃

𝑢∈𝑁1

(𝐻
−1

(𝑢)⋂𝑇(𝑋)⋂𝐾)

⊆ ⋃

𝑢∈𝑁1

𝐻
−1

(𝑢) .

(7)

By the first part of (iv
1
), we have

𝑇(𝑋) \ 𝐾 ⊆ ⋃

𝑢∈𝑁0

𝐻
−1

(𝑢) for some 𝑁
0
∈ ⟨𝐷⟩. (8)

Then it follows from (7) and (8) that

𝑇(𝑋) = (𝑇(𝑋) \ 𝐾)⋃(𝑇(𝑋)⋂𝐾) ⊆ ⋃

𝑢∈𝑁

𝐻
−1

(𝑢) , (9)

where 𝑁 = 𝑁
0
⋃𝑁

1
= {𝑢

0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩. By the

definition of 𝐹𝑊𝐶-spaces, there exists a set-valued mapping
𝜑
𝑁

: Δ
𝑛

→ 2
𝑋 with nonempty values. By the second part of

(iv
1
), 𝑇(𝜑

𝑁
(Δ

𝑛
)) is compact subset of 𝑌. By (9), we have

𝑇(𝜑
𝑁
(Δ

𝑛
)) ⊆ 𝑇(𝑋) ⊆ ⋃

𝑢∈𝑁

𝐻
−1

(𝑢) , (10)

and thus, 𝑇(𝜑
𝑁
(Δ

𝑛
)) = ⋃

𝑢∈𝑁
(𝐻

−1
(𝑢)⋂𝑇(𝜑

𝑁
(Δ

𝑛
))); that

is, {𝐻
−1

(𝑢)⋂𝑇(𝜑
𝑁
(Δ

𝑛
)) : 𝑢 ∈ 𝑁} is an open cover of

the compact set 𝑇(𝜑
𝑁
(Δ

𝑛
)). Let {𝜆

𝑖
}
𝑛

𝑖=0
be the partition of

unity subordinated to this cover and then define a mapping
𝜓 : 𝑇(𝜑

𝑁
(Δ

𝑛
)) → Δ

𝑛
by 𝜓(𝑦) = ∑

𝑛

𝑖=0
𝜆
𝑖
(𝑦)𝑒

𝑖
for each

𝑦 ∈ 𝑇(𝜑
𝑁
(Δ

𝑛
)). Clearly, 𝜓 is continuous and for each 𝑦 ∈

𝑇(𝜑
𝑁
(Δ

𝑛
)), we have

𝜓 (𝑦) = Σ
𝑗∈𝐽(𝑦)

𝜆
𝑗
(𝑦) 𝑒

𝑗
∈ Δ

|𝐽(𝑦)|−1
, (11)

where 𝐽(𝑦) ⊆ {0, 1, . . . , 𝑛} is defined by 𝐽(𝑦) = {𝑗 ∈

{0, 1, . . . , 𝑛} : 𝜆
𝑗
(𝑦) > 0}. Then we have

𝑗 ∈ 𝐽 (𝑦) ⇐⇒ 𝜆
𝑗
(𝑦) > 0

⇐⇒ 𝑦 ∈ 𝐻
−1

(𝑢
𝑗
)⋂𝑇(𝜑

𝑁
(Δ

𝑛
))

⇒ 𝑢
𝑗
∈ 𝐻 (𝑦) .

(12)

Define a set-valued mapping 𝑓 : 𝑇(𝜑
𝑁
(Δ

𝑛
)) → 2

𝑋 as
follows:

𝑓 (𝑦) = 𝜑
𝑁

(𝜓 (𝑦)) for each 𝑦 ∈ 𝑇(𝜑
𝑁
(Δ

𝑛
)). (13)
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Now, we show that for each 𝑦 ∈ 𝑌, 𝑋 \ 𝑇
−1

(𝑦) is an 𝐹𝑊𝐶-
subspace of (𝑋,𝐷; 𝜑

𝑁
) relative to 𝐻(𝑦). In fact, let 𝑁 =

{𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩ and {𝑢

𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝑁⋂𝐻(𝑦).

Then 𝑦 ∈ ⋂
𝑘

𝑗=0
𝐻

−1
(𝑢

𝑖𝑗
). By (iii), 𝑦 ∉ 𝑃(𝜑

𝑁
(Δ

𝑘
)); that is,

𝑃
−1

(𝑦)⋂𝜑
𝑁
(Δ

𝑘
) = 0. Therefore, we have 𝜑

𝑁
(Δ

𝑘
) ⊆ 𝑋 \

𝑃
−1

(𝑦). By (i), we know that 𝜑
𝑁
(Δ

𝑘
) ⊆ 𝑋 \ 𝑇

−1
(𝑦), which

implies that for each 𝑦 ∈ 𝑌, 𝑋 \ 𝑇
−1

(𝑦) is an 𝐹𝑊𝐶-subspace
of (𝑋,𝐷; 𝜑

𝑁
) relative to𝐻(𝑦). Hence, by (12) and (13), we have

𝑓 (𝑦) = 𝜑
𝑁

(𝜓 (𝑦)) ⊆ 𝜑
𝑁

(Δ
|𝐽(𝑦)|−1

) ⊆ 𝑋 \ 𝑇
−1

(𝑦)

∀𝑦 ∈ 𝑇 (𝜑
𝑁

(Δ
𝑛
)).

(14)

This shows that

𝑥 ∉ 𝑇
−1

(𝑦) ∀𝑦 ∈ 𝑇(𝜑
𝑁
(Δ

𝑛
)) and all 𝑥 ∈ 𝑓 (𝑦) . (15)

On the other hand, since 𝑇 ∈ B̃(𝑋,𝐷, 𝑌), it follows
that the composition mapping 𝜓 ∘ 𝑇|

𝜑𝑁(Δ 𝑛)
∘ 𝜑

𝑁
has a fixed

point 𝑧
0

∈ Δ
𝑛
; that is, 𝑧

0
∈ 𝜓 ∘ 𝑇|

𝜑𝑁(Δ 𝑛)
∘ 𝜑

𝑁
(𝑧

0
). Let

𝑦 ∈ 𝑇|
𝜑𝑁(Δ 𝑛)

(𝜑
𝑁
(𝑧

0
)) such that 𝑧

0
= 𝜓(𝑦). Choose𝑥 ∈ 𝜑

𝑁
(𝑧

0
)

such that

𝑦 ∈ 𝑇|
𝜑𝑁(Δ 𝑛)

(𝑥) ⊆ 𝑇(𝜑
𝑁
(Δ

𝑛
)). (16)

Then by (13) and (16), we have

𝑥 ∈ 𝜑
𝑁

(𝑧
0
) = 𝜑

𝑁
(𝜓 (𝑦)) = 𝑓 (𝑦) , 𝑥 ∈ 𝑇

−1
(𝑦) , (17)

which contradicts (15). Thus, there must exist a point 𝑦 ∈

𝐾⋂𝑇(𝑋) such that 𝐻(𝑦) = 0.

Case (iv
2
). Assume (iv

2
) holds. Suppose that the conclusion

of Theorem 6 is not true. Then by using the same method as
in Case (iv

1
), we have

𝑇(𝑋)⋂𝐾 ⊆ ⋃

𝑢∈𝐷

𝐻
−1

(𝑢) = 𝑌 \ ⋂

𝑢∈𝐷

(𝑌 \ 𝐻
−1

(𝑢)) , (18)

which implies that ⋂
𝑢∈𝐷

(𝐾⋂𝑇(𝑋)⋂(𝑌 \ 𝐻
−1

(𝑢))) = 0. By
(ii), we know that {𝐾⋂𝑇(𝑋)⋂(𝑌 \ 𝐻

−1
(𝑢)) : 𝑢 ∈ 𝐷} is a

family of closed sets in 𝐾. Thus, there exists 𝑁 ∈ ⟨𝐷⟩ such
that

0 = ⋂

𝑢∈𝑁

(𝑇 (𝑋)⋂𝐾⋂(𝑌 \ 𝐻
−1

(𝑢)))

= 𝑇 (𝑋)⋂𝐾⋂(⋂

𝑢∈𝑁

(𝑌 \ 𝐻
−1

(𝑢))) ;

(19)

that is, 𝑇(𝑋)⋂(⋂
𝑢∈𝑁

(𝑌 \ 𝐻
−1

(𝑢))) ⊆ 𝑌 \ 𝐾. By (iv
2
), there

exists a subset 𝐿
𝑁
of 𝐷 containing 𝑁 such that 𝑄(𝐿

𝑁
) is an

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

𝐻
−1

(𝑢) . (20)

Therefore, we have

(𝑇 ∘ 𝑄) (𝐿
𝑁
)⋂( ⋂

𝑢∈𝐿𝑁

(𝑌 \ 𝐻
−1

(𝑢)))

= (𝑇 ∘ 𝑄)(𝐿
𝑁
)⋂(𝑌 \ ⋃

𝑢∈𝐿𝑁

𝐻
−1

(𝑢))

⊆ (𝑇 ∘ 𝑄) (𝐿
𝑁
)⋂(𝑌 \ ((𝑇 ∘ 𝑄) (𝐿

𝑁
) \ 𝐾))

⊆ 𝐾.

(21)

Since (𝑇 ∘ 𝑄)(𝐿
𝑁
)⋂(⋂

𝑢∈𝐿𝑁
(𝑌 \ 𝐻

−1
(𝑢))) ⊆

𝑇(𝑋)⋂(⋂
𝑢∈𝑁

(𝑌 \ 𝐻
−1

(𝑢))) ⊆ 𝑌 \ 𝐾, it follows that
(𝑇 ∘ 𝑄)(𝐿

𝑁
)⋂(⋂

𝑢∈𝐿𝑁
(𝑌 \ 𝐻

−1
(𝑢))) = 0. Therefore, we have

(𝑇 ∘ 𝑄)(𝐿
𝑁
) ⊆ ⋃

𝑢∈𝐿𝑁

𝐻
−1

(𝑢) . (22)

Since (𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of𝑌, it follows from (ii)

and (22) that there exists 𝑀 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑚
} ∈ ⟨𝐿

𝑁
⟩ such

that

(𝑇 ∘ 𝑄)(𝐿
𝑁
) = ⋃

𝑢∈𝑀

((𝑇 ∘ 𝑄) (𝐿
𝑁
)⋂𝐻

−1
(𝑢)) . (23)

By the fact that 𝑄(𝐿
𝑁
) is an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑

𝑁
)

relative to 𝐿
𝑁
, we can see that the triple (𝑄(𝐿

𝑁
), 𝐿

𝑁
; 𝜑

𝑁
) is

also an 𝐹𝑊𝐶-space. Hence, there exists a set-valuedmapping
𝜑
𝑀

: Δ
𝑚

→ 2
𝑄(𝐿𝑁) with nonempty values. Assume that

{𝛽
𝑖
}
𝑚

𝑖=0
is the partition of unity subordinated to the open cover

{(𝑇 ∘ 𝑄)(𝐿
𝑁
)⋂𝐻

−1
(𝑢

𝑖
) : 0 ≤ 𝑖 ≤ 𝑚}. Then for every 𝑖 ∈

{0, 1, . . . , 𝑛}, we have

𝛽
𝑖
: (𝑇 ∘ 𝑄) (𝐿

𝑁
) → [0, 1] is continuous;

𝛽
𝑖
(𝑦) > 0 ⇐⇒ 𝑦 ∈ (𝑇 ∘ 𝑄)(𝐿

𝑁
)⋂𝐻

−1
(𝑢

𝑖
) ;

𝑚

∑

𝑖=0

𝛽
𝑖
(𝑦) = 1 for each 𝑦 ∈ (𝑇 ∘ 𝑄)(𝐿

𝑁
).

(24)

Furthermore, we define a continuous mapping
𝜓 : (𝑇 ∘ 𝑄)(𝐿

𝑁
) → Δ

𝑚
by 𝜓(𝑦) = ∑

𝑚

𝑖=0
𝛽
𝑖
(𝑦)𝑒

𝑖
for each

𝑦 ∈ (𝑇 ∘ 𝑄)(𝐿
𝑁
). Let 𝑇

:= 𝑇|
𝑄(𝐿𝑁)

. Since 𝑇 ∈ B̃(𝑋,𝐷, 𝑌), it
follows that 𝑇


∈ B̃(𝑄(𝐿

𝑁
), 𝐿

𝑁
, 𝑌). Then the composition

𝜓 ∘ 𝑇

|
𝜑𝑀(Δ𝑚)

∘ 𝜑
𝑀

: Δ
𝑚

→ 2
Δ𝑚 has a fixed point 𝑧

0
∈ Δ

𝑚
;

that is, 𝑧
0

∈ 𝜓 ∘ 𝑇

|
𝜑𝑀(Δ𝑚)

∘ 𝜑
𝑀

(𝑧
0
). Let 𝑦 ∈ 𝑇


(𝜑

𝑀
(𝑧

0
)) such

that 𝑧
0
= 𝜓(𝑦). Then we have

𝑧
0
= 𝜓 (𝑦) = ∑

𝑗∈𝐽(𝑦)

𝛽
𝑗
(𝑦) 𝑒

𝑗
∈ Δ

|𝐽(𝑦)|−1
, (25)

where 𝐽(𝑦) = {𝑗 ∈ {0, 1, . . . , 𝑚} : 𝛽
𝑗
(𝑦) ̸= 0}. Let 𝐻

−1

:=

𝐻
−1

|
𝐿𝑁
. By (i) and (iii), for each 𝑁 = {𝑢

0
, 𝑢

1
, . . . , 𝑢

𝑚
} ∈ ⟨𝐿

𝑁
⟩

and each {𝑢
𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝑁, we have

𝑇

(𝜑

𝑀
(Δ

𝑘
))⋂(

𝑘

⋂

𝑗=0

𝐻
−1

(𝑢
𝑖𝑗
)) = 0; (26)
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thus, we have the following:

𝑦 ∈ 𝑇

(𝜑

𝑀
(𝜓 (𝑦)))

⊆ 𝑇

(𝜑

𝑀
(Δ

|𝐽(𝑦)|−1
))

⊆ ⋃

𝑗∈𝐽(𝑦)

(𝑌 \ 𝐻
−1

(𝑢
𝑗
)) .

(27)

Hence, there exists 𝑗 ∈ 𝐽(𝑦) such that 𝑦 ∉ 𝐻
−1

(𝑢
𝑗
). On

the other hand, by the definitions of 𝐽(𝑦) and of the partition
{𝛽

𝑖
}
𝑚

𝑖=0
, we have

𝑦 ∈ (𝑇 ∘ 𝑄) (𝐿
𝑁
)⋂𝐻

−1
(𝑢

𝑗
)

⊆ 𝐻
−1

(𝑢
𝑗
)

= 𝐻
−1

(𝑢
𝑗
) ,

(28)

which is a contradiction. Therefore, the conclusion of
Theorem 6 holds.

Remark 7. (iii) ofTheorem 6 can be replaced by the following
equivalent condition:

(iii) for each 𝑦 ∈ 𝑌, 𝑋 \ 𝑃
−1

(𝑦) is an 𝐹𝑊𝐶-subspace of
(𝑋,𝐷; 𝜑

𝑁
) relative to 𝐻(𝑦).

Proof. (iii) ⇒ (iii): let 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩ and

{𝑢
𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝑁⋂𝐻(𝑦). Then {𝑢

𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝐻(𝑦).

Thus, 𝑦 ∉ ⋃
𝑘

𝑗=0
𝑌 \ 𝐻

−1
(𝑢

𝑖𝑗
). Since 𝑃(𝜑

𝑁
(Δ

𝑘
)) ⊆ ⋃

𝑘

𝑗=0
(𝑌 \

𝐻
−1

(𝑢
𝑖𝑗
)) by (iii) ofTheorem 6, it follows that𝑦 ∉ 𝑃(𝜑

𝑁
(Δ

𝑘
));

that is, 𝑃−1
(𝑦)⋂𝜑

𝑁
(Δ

𝑘
) = 0. Therefore, we have 𝜑

𝑁
(Δ

𝑘
) ⊆

𝑋 \ 𝑃
−1

(𝑦), which implies that (iii) holds.
(iii) ⇒ (iii): let 𝑁 = {𝑢

0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩,

{𝑢
𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝑁, and 𝑦 ∈ 𝑃(𝜑

𝑁
(Δ

𝑘
)). Then there exists

𝑥 ∈ 𝜑
𝑁
(Δ

𝑘
) such that 𝑦 ∈ 𝑃(𝑥). Therefore, we get

𝑥 ∈ 𝑃
−1

(𝑦)⋂𝜑
𝑁

(Δ
𝑘
) ̸= 0. (29)

This means that 𝜑
𝑁
(Δ

𝑘
) ̸⊆ 𝑋 \ 𝑃

−1
(𝑦). By (iii), we have

{𝑢
𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ̸⊆ 𝑁⋂𝐻(𝑦) and hence, {𝑢

𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
}⋂

(𝐷 \ 𝐻(𝑦)) ̸= 0. Let 𝑑 ∈ {𝑢
𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
}⋂(𝐷 \ 𝐻(𝑦)). Then

𝑦 ∈ 𝑌 \ 𝐻
−1

(𝑑) ⊆ ⋃
𝑘

𝑗=0
(𝑌 \ 𝐻

−1
(𝑢

𝑖𝑗
)), which implies that

𝑃 (𝜑
𝑁

(Δ
𝑘
))⋂(

𝑘

⋂

𝑗=0

𝐻
−1

(𝑢
𝑖𝑗
)) = 0. (30)

Example 8. Let 𝑌 = (−1, +∞) be endowed with the
Euclidean topology. Let 𝐷 = [−4, 0] and (𝑋, 𝜏) =

([0, 4], {[0, 4], 0, [0, 1], [1, 2], [2, 3], [3, 4]}), where 𝜏 is a family
of subsets of 𝑋. It is easy to check that (𝑋, 𝜏) is not a
topological space. For simplicity, we will write 𝑋 instead of
(𝑋, 𝜏). Define a set-valued mappings 𝐻 : 𝑌 → 2

𝐷 such that

𝐻
−1

(𝑢) =

{

{

{

(−1, −𝑢 − 2)⋃ (3, +∞) , if − 4 ≤ 𝑢 ≤ −2,

(−1, 𝑢 + 2)⋃ (3, +∞) , if − 2 < 𝑢 ≤ 0,

(31)

which is open in𝑌.Therefore,𝐻−1 is compactly open-valued,
and hence, (ii) of Theorem 6 is satisfied. Furthermore, define
a set-valued mapping 𝑃 : 𝑋 → 2

𝑌 such that

𝑃
−1

(𝑦)

=

{{{{{

{{{{{

{

[1, 3] , if 𝑦 = 1,

[−𝑦 + 2, 1]⋃ [3, 𝑦 + 2] , if 1 < 𝑦 < 2,

[0, 1]⋃ [3, 4] , if 2 ≤ 𝑦 ≤ 3,

0, if 𝑦 ∈ (−1, 1)⋃ (3, +∞) .

(32)

Now, let 𝑇 : 𝑋 → 2
𝑌 be defined by

𝑇 (𝑥) =

{{{{{{{

{{{{{{{

{

[2, 3] , if 0 ≤ 𝑥 < 1,

[1, 3] , if 𝑥 = 1,

{1} , if 1 < 𝑥 < 3,

[1, 3] , if 𝑥 = 3,

[2, 3] , if 3 < 𝑥 ≤ 4.

(33)

Then we have 𝑇(𝑋) = [1, 3], which is compact subset of
𝑌. Let 𝐾 = 𝑇(𝑋). Then (iv

1
) of Theorem 6 is satisfied

automatically. In order to check (iii) of Theorem 6, for every
𝑁 = {𝑢

0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, we define a set-valued mapping

𝜑
𝑁

: Δ
𝑛

→ 2
𝑋 by 𝜑

𝑁
(𝑧) = {0, 4} for all 𝑧 ∈ Δ

𝑛
. Then

(𝑋,𝐷; 𝜑
𝑁
) forms an 𝐹𝑊𝐶-space. For each 𝑦 ∈ (−1, +∞), we

have

𝑋 \ 𝑃
−1

(𝑦)

=

{{{{{{{

{{{{{{{

{

[0, 1)⋃ (3, 4] , if 𝑦 = 1,

[0, −𝑦 + 2)⋃ (𝑦 + 2, 4]

⋃ (1, 3) , if 1 < 𝑦 < 2,

(1, 3) , if 2 ≤ 𝑦 ≤ 3

[0, 4] , if 𝑦 ∈ (−1, 1)⋃ (3, +∞) .

(34)

We can see that for each 𝑦 ∈ 𝑌, 𝑋 \ 𝑃
−1

(𝑦) is an
𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑

𝑁
) relative to 𝐻(𝑦). Therefore, by

Remark 7, we know that (iii) of Theorem 6 holds. Finally, we
show that, for each 𝑥 ∈ 𝑋, 𝑇(𝑥) ⊆ 𝑃(𝑥) and 𝑇 ∈ B̃(𝑋,𝐷, 𝑌).
By the definition of 𝑇, we can obtain 𝑇

−1
: 𝑌 → 2

𝑋 as
follows:

𝑇
−1

(𝑦) = {0 ≤ 𝑥 ≤ 4 : 𝑦 ∈ 𝑇 (𝑥)}

=

{{{{{{{

{{{{{{{

{

0, if − 1 < 𝑦 < 1,

[1, 3] , if 𝑦 = 1,

{1, 3} , if 1 < 𝑦 < 2,

[3, 4]⋃ [0, 1] , if 2 ≤ 𝑦 ≤ 3,

0, if 3 < 𝑦 < +∞.

(35)

Thus, we can easily see that 𝑇
−1

(𝑦) ⊆ 𝑃
−1

(𝑦) for each 𝑦 ∈

𝑌. Hence, for each 𝑥 ∈ 𝑋, 𝑇(𝑥) ⊆ 𝑃(𝑥). By using the same
method as in Example 4, we can prove that 𝑇 ∈ B̃(𝑋,𝐷, 𝑌).
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Therefore, all the hypotheses of Theorem 6 are satisfied. We
can see that there exists a point 𝑦 = 5/2 ∈ 𝑇(𝑋)⋂𝐾 such
that 𝐻(𝑦) = 0.

If 𝑇 = 𝑃 in Theorem 6, then Theorem 6 deduces the
following result.

Corollary 9. Let (𝑋,𝐷; 𝜑
𝑁
) be an FWC-space, 𝑌 a Hausdorff

topological space, and 𝐾 a nonempty compact subset of 𝑌. Let
𝐻 : 𝑌 → 2

𝐷, 𝑄 : 𝐷 → 2
𝑋, and 𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be set-

valued mappings such that

(i) for each 𝑢 ∈ 𝐷, 𝐻−1
(𝑢) is compactly open;

(ii) for each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩ and each

{𝑢
𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝑁,

𝑇 (𝜑
𝑁

(Δ
𝑘
))⋂(

𝑘

⋂

𝑗=0

𝐻
−1

(𝑢
𝑖𝑗
)) = 0; (36)

(iii) one of the following conditions holds:

(iii
1
) there exists 𝑁

0
∈ ⟨𝐷⟩ such that 𝑇(𝑋) \

𝐾 ⊆ ⋃
𝑢∈𝑁0

𝐻
−1

(𝑢) and for each 𝑁 =

{𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a compact

subset of 𝑌;
(iii

2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset
𝐿
𝑁

of 𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

𝐻
−1

(𝑢) . (37)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝐻(𝑦) = 0.

Taking 𝑋 = 𝐷 and 𝑄(𝑥) = {𝑥} in Corollary 9, we can
obtain the following result.

Corollary 10. Let (𝑋; 𝜑
𝑁
) be an FWC-space, 𝑌 a Hausdorff

topological space, and 𝐾 a nonempty compact subset of 𝑌. Let
𝐻 : 𝑌 → 2

𝑋 and 𝑇 ∈ B̃(𝑋, 𝑌) be set-valued mappings such
that

(i) for each 𝑥 ∈ 𝑋, 𝐻−1
(𝑥) is compactly open;

(ii) for each 𝑁 = {𝑥
0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩ and each

{𝑥
𝑖0
, 𝑥

𝑖1
, . . . , 𝑥

𝑖𝑘
} ⊆ 𝑁,

𝑇 (𝜑
𝑁

(Δ
𝑘
))⋂(

𝑘

⋂

𝑗=0

𝐻
−1

(𝑥
𝑖𝑗
)) = 0; (38)

(iii) one of the following conditions holds:

(iii
1
) there exists 𝑁

0
∈ ⟨𝑋⟩ such that 𝑇(𝑋) \

𝐾 ⊆ ⋃
𝑥∈𝑁0

𝐻
−1

(𝑥) and for each 𝑁 =

{𝑥
0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a compact

subset of 𝑌;

(iii
2
) for each 𝑁 ∈ ⟨𝑋⟩, there exists a subset 𝐿

𝑁
of 𝑋

containing 𝑁 such that 𝐿
𝑁
is an 𝐹𝑊𝐶-subspace

of (𝑋; 𝜑
𝑁
), 𝑇(𝐿

𝑁
) is a compact subset of 𝑌, and

𝑇(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑥∈𝐿𝑁

𝐻
−1

(𝑥) . (39)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝐻(𝑦) = 0.

3. Existence of Solutions to Variational
Relation Problem

In 2008, Luc [29] introduced a variational relation prob-
lem which unifies many equilibrium problems, optimization
problems, and variational or differential inclusion problems.
Since then, further studies on variational relation problems
were investigated by many authors; see, for example, [30–32]
and the references therein.

Let (𝑋; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space, 𝑌 a Hausdorff topological

space, 𝐾 a nonempty compact subset of 𝑌, and 𝑇 ∈ B̃(𝑋, 𝑌)

a set-valued mapping. In this section, we will study the
following variational relation problems in 𝐹𝑊𝐶-spaces.

(1) Let 𝑅 be a relation linking 𝑦 ∈ 𝑌 and 𝑥 ∈ 𝑋. Find
𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝑅(𝑦, 𝑥) holds for each 𝑥 ∈ 𝑋.

(2) Let 𝑍 be a nonempty set, 𝑄 : 𝑋 → 2
𝑍 a set-valued

mapping, and 𝑅 a relation linking 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍.
Find 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝑅(𝑦, 𝑧) holds for each
𝑥 ∈ 𝑋 and each 𝑧 ∈ 𝑄(𝑥).

By applying Corollary 10, we have the following existence
theorem of solutions to the variational relation problem in
𝐹𝑊𝐶-spaces.

Theorem 11. Let (𝑋; 𝜑
𝑁
) be an FWC-space, 𝑌 a Hausdorff

topological space, and 𝐾 a nonempty compact subset of 𝑌. Let
𝑇 ∈ B̃(𝑋, 𝑌) be a set-valued mapping and let 𝑅 be a relation
linking elements 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 such that

(i) for each 𝑥 ∈ 𝑋, the set {𝑦 ∈ 𝑌 : 𝑅(𝑦, 𝑥) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑}

is compactly open;
(ii) for each 𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, each

{𝑥
𝑖0
, 𝑥

𝑖1
, . . . , 𝑥

𝑖𝑘
} ⊆ 𝑁 and each 𝑦 ∈ 𝑇(𝜑

𝑁
(Δ

𝑘
)), there

exists 𝑗 ∈ {0, 1, . . . , 𝑘} such that 𝑅(𝑦, 𝑥
𝑖
𝑗

) holds;

(iii) one of the following conditions holds:

(iii
1
) there exists 𝑁

0
∈ ⟨𝑋⟩ such that 𝑇(𝑋) \ 𝐾 ⊆

⋃
𝑥∈𝑁0

{𝑦 ∈ 𝑌 : 𝑅(𝑦, 𝑥) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑} and for
each𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a

compact subset of 𝑌;
(iii

2
) for each 𝑁 ∈ ⟨𝑋⟩, there exists a subset 𝐿

𝑁
of 𝑋

containing 𝑁 such that 𝐿
𝑁
is an 𝐹𝑊𝐶-subspace

of (𝑋; 𝜑
𝑁
), 𝑇(𝐿

𝑁
) is a compact subset of 𝑌, and

𝑇(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑥∈𝐿𝑁

{𝑦 ∈ 𝑌 : 𝑅 (𝑦, 𝑥) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑} . (40)



The Scientific World Journal 7

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝑅(𝑦, 𝑥) holds for
each 𝑥 ∈ 𝑋.

Proof. Define a set-valued mapping 𝐻 : 𝑌 → 2
𝑋 by

𝐻(𝑦) = {𝑥 ∈ 𝑋 : 𝑅 (𝑦, 𝑥) does not hold} for each 𝑦 ∈ 𝑌.

(41)

By (i), for each 𝑥 ∈ 𝑋, 𝐻−1
(𝑥) is compactly open. By (ii), for

each 𝑁 = {𝑥
0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩ and each {𝑥

𝑖0
, 𝑥

𝑖1
, . . . , 𝑥

𝑖𝑘
} ⊆

𝑁, we have

𝑇 (𝜑
𝑁

(Δ
𝑘
)) ⊆

𝑘

⋃

𝑗=0

(𝑌 \ 𝐻
−1

(𝑥
𝑖𝑗
)) , (42)

which implies that

𝑇 (𝜑
𝑁

(Δ
𝑘
))⋂(

𝑘

⋂

𝑗=0

𝐻
−1

(𝑥
𝑖𝑗
)) = 0. (43)

By (iii), we know that one of the following conditions holds:

(a) there exists 𝑁
0

∈ ⟨𝑋⟩ such that 𝑇(𝑋) \ 𝐾 ⊆

⋃
𝑥∈𝑁0

𝐻
−1

(𝑥) and for each 𝑁 = {𝑥
0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈

⟨𝑋⟩, 𝑇(𝜑
𝑁
(Δ

𝑛
)) is a compact subset of 𝑌;

(b) for each 𝑁 ∈ ⟨𝑋⟩, there exists a subset 𝐿
𝑁

of 𝑋

containing 𝑁 such that 𝐿
𝑁
is an 𝐹𝑊𝐶-subspace of

(𝑋; 𝜑
𝑁
), 𝑇(𝐿

𝑁
) is a compact subset of 𝑌, and

𝑇(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑥∈𝐿𝑁

𝐻
−1

(𝑥) . (44)

Therefore, by Corollary 10, there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such
that 𝐻(𝑦) = 0; that is, 𝑅(𝑦, 𝑥) holds for each 𝑥 ∈ 𝑋.

By taking 𝑋 = 𝑌 and 𝑇(𝑥) = {𝑥} for every 𝑥 ∈ 𝑋 in
Theorem 11, we can obtain the following result.

Corollary 12. Let (𝑋; 𝜑
𝑁
) be an FWC-space and 𝐾 a

nonempty compact subset of 𝑋, where 𝑋 is a Hausdorff
topological space. Let 𝐼 ∈ B̃(𝑋,𝑋), where 𝐼 is the identity
mapping on 𝑋. Let 𝑅 be a relation linking elements 𝑥 ∈ 𝑋,
𝑦 ∈ 𝑋 such that

(i) for each 𝑥 ∈ 𝑋, the set {𝑦 ∈ 𝑋 :

𝑅(𝑦, 𝑥) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑} is compactly open;
(ii) for each 𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, each

{𝑥
𝑖0
, 𝑥

𝑖1
, . . . , 𝑥

𝑖𝑘
} ⊆ 𝑁 and each 𝑦 ∈ 𝜑

𝑁
(Δ

𝑘
), there

exists 𝑗 ∈ {0, 1, . . . , 𝑘} such that 𝑅(𝑦, 𝑥
𝑖
𝑗

) holds;

(iii) one of the following conditions holds:

(iii
1
) there exists 𝑁

0
∈ ⟨𝑋⟩ such that 𝑋 \ 𝐾 ⊆ ⋃

𝑥∈𝑁0

{𝑦 ∈ 𝑋 : 𝑅(𝑦, 𝑥) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑} and 𝜑
𝑁

:

Δ
𝑛

→ 2
𝑋 is a compact set-valued mapping for

each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩;

(iii
2
) for each 𝑁 ∈ ⟨𝑋⟩, there exists a compact subset
𝐿
𝑁
of 𝑋 containing 𝑁 such that 𝐿

𝑁
is an 𝐹𝑊𝐶-

subspace of (𝑋; 𝜑
𝑁
) and

𝐿
𝑁

\ 𝐾 ⊆ ⋃

𝑥∈𝐿𝑁

{𝑦 ∈ 𝑋 : 𝑅 (𝑦, 𝑥) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑} . (45)

Then there exists 𝑦 ∈ 𝐾 such that 𝑅(𝑦, 𝑥) holds for each
𝑥 ∈ 𝑋.

Corollary 13. Let (𝑋; 𝜑
𝑁
) be an FWC-space, where 𝑋 is a

Hausdorff compact topological space. Let 𝐼 ∈ B̃(𝑋,𝑋), where
𝐼 is the identity mapping on 𝑋. Let 𝑅 be a relation linking
elements 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 such that the following conditions hold:

(i) for each 𝑥 ∈ 𝑋, the set {𝑦 ∈ 𝑋 : 𝑅(𝑦, 𝑥) 𝑑𝑜𝑒𝑠

𝑛𝑜𝑡 ℎ𝑜𝑙𝑑} is compactly open;
(ii) for each 𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, each

{𝑥
𝑖0
, 𝑥

𝑖1
, . . . , 𝑥

𝑖𝑘
} ⊆ 𝑁 and each 𝑦 ∈ 𝜑

𝑁
(Δ

𝑘
), there

exists 𝑗 ∈ {0, 1, . . . , 𝑘} such that 𝑅(𝑦, 𝑥
𝑖
𝑗

) holds.

Then there exists 𝑦 ∈ 𝑋 such that 𝑅(𝑦, 𝑥) holds for each
𝑥 ∈ 𝑋.

Proof. Let 𝐾 = 𝑋. Then (iii
1
) of Corollary 12 is satisfied

automatically. Hence, the conclusion of Corollary 13 follows
from Corollary 12.

Remark 14. It is interesting to compare Corollary 13 with
Theorem 2.1 of Pu and Yang [32] in the following aspects: (1)
(i) of Corollary 13 is weaker than (i) ofTheorem 2.1 of Pu and
Yang [32], which can be stated as follows: for each 𝑥 ∈ 𝑋,
the set {𝑦 ∈ 𝑋 : 𝑅(𝑦, 𝑥) holds} is closed; (2) (ii) of Theorem
2.1 of Pu and Yang [32] can be stated as follows: for each
{𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, there exists a continuous mapping

𝜑
𝑁

: Δ
𝑛

→ 𝑋 such that, for each 𝜆 = {𝜆
0
, 𝜆

1
, . . . , 𝜆

𝑛
} ∈ Δ

𝑛
,

there exists 𝑖 ∈ 𝐽(𝜆) such that 𝑅(𝜑
𝑁
(𝜆), 𝑥

𝑖
) holds, where

𝐽(𝜆) = {𝑖 ∈ {0, 1, . . . , 𝑛} : 𝜆
𝑖

> 0}. By (ii) of Theorem 2.1
of Pu and Yang [32], we know that (𝑋, 𝜑

𝑁
) in Theorem 2.1 of

Pu and Yang [32] forms an 𝐹𝑊𝐶-space; (3) in Corollary 13,
the topological space 𝑋 needs not to have the fixed point
property, but 𝑋 in Theorem 2.1 of Pu and Yang [32] needs to
possess the fixed point property; (4) for the identity mapping
𝐼 on 𝑋 in Theorem 2.1 of Pu and Yang [32], we must have
𝐼 ∈ B̃(𝑋,𝑋). In fact, for every 𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩

and for every continuous mapping 𝜓 : 𝜑
𝑁
(Δ

𝑛
) → Δ

𝑛
,

the composition 𝜓 ∘ 𝜑
𝑁

: Δ
𝑛

→ Δ
𝑛
is continuous, where

𝜑
𝑁
coincides with the one in (ii) of Theorem 2.1 of Pu and

Yang [32]. Then by Brouwer fixed point theorem, there exists
𝑧
0

∈ Δ
𝑛
such that 𝑧

0
= 𝜓 ∘ 𝜑

𝑁
(𝑧

0
), which implies that

𝐼 ∈ B̃(𝑋,𝑋).

Theorem 15. Let (𝑋; 𝜑
𝑁
) be an FWC-space, 𝑌 a Hausdorff

topological space, 𝐾 a nonempty compact subset of 𝑌, and 𝑍

a nonempty set. Let 𝑇 ∈ B̃(𝑋, 𝑌), 𝑄 : 𝑋 → 2
𝑍 be set-valued

mappings and 𝑅 a relation linking elements 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍.
Assume that

(i) for each 𝑥 ∈ 𝑋, the set {𝑦 ∈ 𝑌 : 𝑃(𝑦)⋂𝑄(𝑥) ̸= 0}

is compactly open, where 𝑃 : 𝑌 → 2
𝑍 is defined by
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𝑃(𝑦) = {𝑧 ∈ 𝑍 : 𝑅(𝑦, 𝑧) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑} for each 𝑦 ∈

𝑌;
(ii) for each 𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, each

{𝑥
𝑖0
, 𝑥

𝑖1
, . . . , 𝑥

𝑖𝑘
} ⊆ 𝑁 and each 𝑦 ∈ 𝑇(𝜑

𝑁
(Δ

𝑘
)), there

exists 𝑗 ∈ {0, 1, . . . , 𝑘} such that 𝑅(𝑦, 𝑧) holds for each
𝑧 ∈ 𝑄(𝑥

𝑖
𝑗

);

(iii) one of the following conditions holds:

(iii
1
) there exists 𝑁

0
∈ ⟨𝑋⟩ such that 𝑇(𝑋) \ 𝐾 ⊆

⋃
𝑥∈𝑁0

{𝑦 ∈ 𝑌 : 𝑃(𝑦)⋂𝑄(𝑥) ̸= 0} and for each
𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a

compact subset of 𝑌;
(iii

2
) for each 𝑁 ∈ ⟨𝑋⟩, there exists a subset 𝐿

𝑁
of 𝑋

containing 𝑁 such that 𝐿
𝑁
is an 𝐹𝑊𝐶-subspace

of (𝑋; 𝜑
𝑁
), 𝑇(𝐿

𝑁
) is a compact subset of 𝑌, and

𝑇(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑥∈𝐿𝑁

{𝑦 ∈ 𝑌 : 𝑃 (𝑦)⋂𝑄 (𝑥) ̸= 0} . (46)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝑅(𝑦, 𝑧) holds for
each 𝑥 ∈ 𝑋 and each 𝑧 ∈ 𝑄(𝑥).

Proof. Let the relation �̃� on 𝑌 and 𝑋 be defined by �̃�(𝑦, 𝑥)

holds if and only if 𝑃(𝑦)⋂𝑄(𝑥) = 0. Then by (i), for each
𝑥 ∈ 𝑋, the set {𝑦 ∈ 𝑌 : �̃�(𝑦, 𝑥) does not hold} is compactly
open. By (ii), for each 𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, each

{𝑥
𝑖0
, 𝑥

𝑖1
, . . . , 𝑥

𝑖𝑘
} ⊆ 𝑁 and each 𝑦 ∈ 𝑇(𝜑

𝑁
(Δ

𝑘
)), there exists

𝑗 ∈ {0, 1, . . . , 𝑘} such that

𝑄(𝑥
𝑖
𝑗

) ⊆ {𝑧 ∈ 𝑍 : 𝑅 (𝑦, 𝑧) holds}

= 𝑍 \ {𝑧 ∈ 𝑍 : 𝑅 (𝑦, 𝑧) does not hold}

= 𝑍 \ 𝑃 (𝑦) ;

(47)

that is, 𝑄(𝑥
𝑖
𝑗

)⋂𝑃(𝑦) = 0. Thus, �̃�(𝑦, 𝑥
𝑖
𝑗

) holds. By (iii), we
know that one of the following conditions holds:

(a) there exists 𝑁
0

∈ ⟨𝑋⟩ such that 𝑇(𝑋) \ 𝐾 ⊆

⋃
𝑥∈𝑁0

{𝑦 ∈ 𝑌 : �̃�(𝑦, 𝑥) does not hold} and for each
𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is compact

subset of 𝑌;
(b) for each 𝑁 ∈ ⟨𝑋⟩, there exists a subset 𝐿

𝑁
of 𝑋

containing 𝑁 such that 𝐿
𝑁
is an 𝐹𝑊𝐶-subspace of

(𝑋; 𝜑
𝑁
) and

𝑇(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑥∈𝐿𝑁

{𝑦 ∈ 𝑌 : �̃� (𝑦, 𝑥) does not hold} , (48)

where 𝑇(𝐿
𝑁
) is a compact subset of 𝑌. Therefore, by

Theorem 11, there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that �̃�(𝑦, 𝑥)

holds for each 𝑥 ∈ 𝑋; that is, 𝑅(𝑦, 𝑧) holds for each 𝑥 ∈ 𝑋

and each 𝑧 ∈ 𝑄(𝑥).

Remark 16. (1) Theorem 15 generalizes Theorem 3.1 of Balaj
and Lin [30] in the following aspects: (a) The underlying

spaces of Theorem 15 and Theorem 3.1 of Balaj and Lin [30]
are 𝐹𝑊𝐶-spaces and convex spaces, respectively. It follows
from the previous analysis that 𝐹𝑊𝐶-spaces include convex
spaces as special cases; (b) The class of better admissible
mappings in Theorem 15 and Theorem 3.1 of Balaj and Lin
[30] are B̃(𝑋, 𝑌) and B(𝑋, 𝑌), respectively. By Remark 3,
we know that B(𝑋, 𝑌) is contained in B̃(𝑋, 𝑌); (c) 𝑍

in Theorem 15 does not possess any topological structure;
(d) 𝑇 in Theorem 15 needs not to be compact. In fact, if
𝑇 in Theorem 15 is compact, then we know that (iii

1
) of

Theorem 15 is satisfied by taking 𝐾 = 𝑇(𝑋); (e) (ii) of
Theorem 3.1 of Balaj and Lin [30] can be stated as follows: for
each 𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, each 𝑥 ∈ co{𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
}

and each 𝑦 ∈ 𝑇(𝑥), there exists 𝑗 ∈ {0, 1, . . . , 𝑛} such that
𝑅(𝑦, 𝑧)holds for all 𝑧 ∈ 𝑄(𝑥

𝑗
). (ii) of Theorem 15 is weaker

than (ii) of Theorem 3.1 of Balaj and Lin [30]. In fact, for
every𝑁 = {𝑥

0
, 𝑥

1
, . . . , 𝑥

𝑛
} ∈ ⟨𝑋⟩, we can define a continuous

mapping 𝜑
𝑁

: Δ
𝑛

→ co(𝑁) ⊆ 𝑋 by

𝜑
𝑁

(

𝑛

∑

𝑗=0

𝜆
𝑗
𝑒
𝑗
) =

𝑛

∑

𝑗=0

𝜆
𝑗
𝑥
𝑗

for each (𝜆
0
, 𝜆

1
, . . . , 𝜆

𝑛
) =

𝑛

∑

𝑗=0

𝜆
𝑗
𝑒
𝑗
∈ Δ

𝑛
.

(49)

Therefore, (𝑋; 𝜑
𝑁
) forms an 𝐹𝑊𝐶-space. On the basis of this

fact, we can see that (ii) of Theorem 3.1 of Balaj and Lin [30]
implies (ii) of Theorem 15.

(2) Theorem 15 is equivalent to Theorem 11. In fact, we
have shown thatTheorem 11 impliesTheorem 15. Conversely,
if 𝑋 = 𝑍 and 𝑄(𝑥) = {𝑥} for each 𝑥 ∈ 𝑋 in Theorem 15, then
Theorem 15 becomesTheorem 11.

Corollary 17. Let 𝑃 : 𝑌 → 2
𝑍 be defined by 𝑃(𝑦) = {𝑧 ∈ 𝑍 :

𝑅(𝑦, 𝑧) 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 ℎ𝑜𝑙𝑑} for each 𝑦 ∈ 𝑌.Theorem 15 is true if (i)
of Theorem 15 is replaced by one of the following conditions:

(i) for each 𝑧 ∈ 𝑄(𝑋), the set {𝑦 ∈ 𝑌 : 𝑅(𝑦, 𝑧) ℎ𝑜𝑙𝑑𝑠} is
compactly closed;

(ii) 𝑍 is a topological space, the set-valued mapping 𝑃 is
lower semicontinuous, and 𝑄 has open values.

Proof. Suppose that (i) is satisfied. Then ⋂
𝑧∈𝑄(𝑥)

{𝑦 ∈ 𝑌 :

𝑅(𝑦, 𝑧) holds} is compactly closed for each 𝑥 ∈ 𝑋. Thus, {𝑦 ∈

𝑌 : 𝑃(𝑦)⋂𝑄(𝑥) ̸= 0} = 𝑌 \ ⋃
𝑧∈𝑄(𝑥)

{𝑅(𝑦, 𝑧) does not hold} is
compactly open. If (ii) holds, then by the definition of a lower
semicontinuous set-valued mapping, for each 𝑥 ∈ 𝑋, the set
{𝑦 ∈ 𝑌 : 𝑃(𝑦)⋂𝑄(𝑥) ̸= 0} = 𝑌 \ {𝑦 ∈ 𝑌 : 𝑃(𝑦)⋂𝑄(𝑥) = 0} is
open and thus, compactly open.

4. Generalized Equilibrium Theorems

In recent years, many authors (see, e.g., [33–35] and the
references therein) studied one or more of the following
generalized equilibrium problems.

Let 𝐷 and 𝑍 be nonempty sets and 𝑌 a topological space.
Let 𝐿 : 𝑌 × 𝐷 → 2

𝑍 and 𝑊 : 𝑌 → 2
𝑍 be set-valued
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mappings. Find 𝑦 ∈ 𝑌 such that one of the following
situations occurs:

𝐿 (𝑦, 𝑢) ⊆ 𝑊(𝑦) for each 𝑢 ∈ 𝐷,

𝐿 (𝑦, 𝑢) ̸⊆ 𝑊 (𝑦) for each 𝑢 ∈ 𝐷,

𝐿 (𝑦, 𝑢)⋂𝑊(𝑦) ̸= 0 for each 𝑢 ∈ 𝐷,

𝐿 (𝑦, 𝑢)⋂𝑊(𝑦) = 0 for each 𝑢 ∈ 𝐷.

(50)

Let 𝐸 be another nonempty set, 𝐺 : 𝑌 → 2
𝐸 a set-valued

mapping, and 𝜉 : 𝐸 × 𝑌 × 𝐷 → 𝑍 a single-valued mapping.
The generalized implicit vector equilibriumproblem is to find
𝑦 ∈ 𝑌 such that, for each 𝑢 ∈ 𝐷, there exists 𝑠 ∈ 𝐺(𝑦)

satisfying 𝜉(𝑠, 𝑦, 𝑢) ∉ 𝑊(𝑦). For more details, the reader may
consult [35] and the references therein.

In this section, as applications of Theorem 6, we will
prove new existence theorems of solutions to generalized
equilibrium problems in 𝐹𝑊𝐶-spaces without any linear,
convex, and topological structure.

Theorem 18. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space,𝑌 a Hausdorff

topological space, 𝐾 a nonempty compact subset of 𝑌, and 𝑍

a nonempty set. Let 𝐽 : 𝑌 × 𝑋 → 2
𝑍, 𝐿 : 𝑌 × 𝐷 → 2

𝑍,
𝐹,𝑊 : 𝑌 → 2

𝑍, 𝑄 : 𝐷 → 2
𝑋, and 𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be

set-valued mappings such that

(i) for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑇(𝑥), 𝐽(𝑦, 𝑥) ⊆ 𝐹(𝑦);
(ii) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : 𝐿(𝑦, 𝑢) ⊆ 𝑊(𝑦)} is

compactly closed;
(iii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝐽(𝑦, 𝑥) ̸⊆ 𝐹(𝑦)} is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to the set {𝑢 ∈

𝐷 : 𝐿(𝑦, 𝑢) ̸⊆ 𝑊(𝑦)};
(iv) one of the following conditions holds:

(iv
1
) 𝑌\𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : 𝐿(𝑦, 𝑢) ̸⊆ 𝑊(𝑦)} for some

𝑁
0

∈ ⟨𝐷⟩ and for each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈

⟨𝐷⟩, 𝑇(𝜑
𝑁
(Δ

𝑛
)) is a compact subset of 𝑌;

(iv
2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset
𝐿
𝑁

of 𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : 𝐿 (𝑦, 𝑢) ̸⊆ 𝑊 (𝑦)} . (51)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝐿(𝑦, 𝑢) ⊆ 𝑊(𝑦)

for each 𝑢 ∈ 𝐷.

Proof. Define 𝑃 : 𝑋 → 2
𝑌 and 𝐻 : 𝑌 → 2

𝐷 by

𝑃 (𝑥) = {𝑦 ∈ 𝑌 : 𝐽 (𝑦, 𝑥) ⊆ 𝐹 (𝑦)} for each 𝑥 ∈ 𝑋,

𝐻 (𝑦) = {𝑢 ∈ 𝐷 : 𝐿 (𝑦, 𝑢) ̸⊆ 𝑊 (𝑦)} for each 𝑦 ∈ 𝑌.

(52)

By (i), we have 𝑇(𝑥) ⊆ 𝑃(𝑥) for each 𝑥 ∈ 𝑋. By (ii), for each
𝑢 ∈ 𝐷, 𝐻−1

(𝑢) is compactly open. Now, we show that (iii) of

Theorem 6 is satisfied. Suppose the contrary.Then there exist
𝑁 = {𝑢

0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩ and {𝑢

𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝑁 such

that

𝑃 (𝜑
𝑁

(Δ
𝑘
)) ∩ (

𝑘

⋂

𝑗=0

𝐻
−1

(𝑢
𝑖𝑗
)) ̸= 0, (53)

which implies that there exists 𝑦
∗

∈ 𝑃(𝜑
𝑁
(Δ

𝑘
)) such that

𝑦
∗

∈ 𝐻
−1

(𝑢
𝑖𝑗
) for each 𝑗 ∈ {0, 1, . . . , 𝑘}; that is, 𝑢

𝑖𝑗
∈ {𝑢 ∈

𝐷 : 𝐿(𝑦
∗
, 𝑢) ̸⊆ 𝑊(𝑦

∗
)}. By (iii), we have

𝜑
𝑁

(Δ
𝑘
) ⊆ {𝑥 ∈ 𝑋 : 𝐽 (𝑦

∗
, 𝑥) ̸⊆ 𝐹 (𝑦

∗
)} , (54)

which implies that

𝐽 (𝑦
∗
, 𝑥) ̸⊆ 𝐹 (𝑦

∗
) for each 𝑥 ∈ 𝜑

𝑁
(Δ

𝑘
) . (55)

Since 𝑦
∗

∈ 𝑃(𝜑
𝑁
(Δ

𝑘
)), it follows that there exists 𝑥 ∈ 𝜑

𝑁
(Δ

𝑘
)

such that 𝑦
∗

∈ 𝑃(𝑥); that is, 𝐽(𝑦
∗
, 𝑥) ⊆ 𝐹(𝑦

∗
), which

contradicts (55).Therefore, (iii) ofTheorem 6 holds. Suppose
that (iv

1
) of Theorem 18 is fulfilled. Then by (iv

1
) and the

definition of𝐻, we know that there exists𝑁
0
∈ ⟨𝐷⟩ such that

𝑌 \ 𝐾 ⊆ ⋃
𝑑∈𝑁0

𝐻
−1

(𝑑) and for each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈

⟨𝐷⟩, 𝑇(𝜑
𝑁
(Δ

𝑛
)) is a compact subset of 𝑌. Therefore, (iv

1
) of

Theorem 6 is satisfied. If (iv
2
) of Theorem 18 holds, then by

(iv
2
) and the definition of 𝐻 again, we know that for each

𝑁 ∈ ⟨𝐷⟩, there exists a subset 𝐿
𝑁
of 𝐷 containing 𝑁 such

that 𝑄(𝐿
𝑁
) is an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑

𝑁
) relative to 𝐿

𝑁

and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

𝐻
−1

(𝑢) , (56)

where (𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌. Therefore, (iv

2
)

of Theorem 6 is satisfied. Thus, all conditions of Theorem 6
are fulfilled. ByTheorem 6, there exists a point 𝑦 ∈ 𝑇(𝑋)⋂𝐾

such that𝐻(𝑦) = 0; that is, there exists a point 𝑦 ∈ 𝑇(𝑋)⋂𝐾

such that 𝐿(𝑦, 𝑢) ⊆ 𝑊(𝑦) for each 𝑢 ∈ 𝐷. This completes the
proof.

Remark 19. Theorem 18 generalizes Theorem 4.1 of Fang and
Huang [34] in the following aspects: (a) The underlying
spaces of Theorem 18 and Theorem 4.1 of Fang and Huang
[34] are 𝐹𝑊𝐶-spaces and 𝐹𝐶-spaces, respectively. By the
previous analysis, we know that 𝐹𝑊𝐶-spaces include 𝐹𝐶-
spaces as special cases; (b) The class of better admissible
mappings inTheorem 18 andTheorem 4.1 of Fang andHuang
[34] are B̃(𝑋,𝐷, 𝑌) andB(𝑋, 𝑌), respectively. By Remark 3,
we know thatB(𝑋, 𝑌) is contained in B̃(𝑋,𝐷, 𝑌); (c) (ii) of
Theorem 18 is weaker than (i) of Theorem 4.1 of Fang and
Huang [34]; (d) (iii) of Theorem 18 is weaker than (iii) of
Theorem 4.1 of Fang and Huang [34]; (e) (iv

2
) of Theorem 18

is weaker than (iv) of Theorem 4.1 of Fang and Huang
[34]. It should be emphasized that the proof of Theorem 18
is different from that of Theorem 4.1 of Fang and Huang
[34].

By using the same argument as in Theorem 18, we can
obtainTheorems 20, 22, and 23. We omit their proofs.
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Theorem20. Let (𝑋,𝐷; 𝜑
𝑁
) be an𝐹𝑊𝐶-space,𝑌 aHausdorff

topological space, 𝐾 a nonempty compact subset of 𝑌, and 𝑍 a
nonempty set. Let 𝐽 : 𝑌 × 𝑋 → 2

𝑍, 𝐿 : 𝑌 × 𝐷 → 2
𝑍,

𝐹,𝑊 : 𝑌 → 2
𝑍, 𝑄 : 𝐷 → 2

𝑋, and 𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be
set-valued mappings. Assume that

(i) for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑇(𝑥), 𝐽(𝑦, 𝑥) ̸⊆ 𝐹(𝑦);
(ii) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : 𝐿(𝑦, 𝑢) ̸⊆ 𝑊(𝑦)} is

compactly closed;
(iii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝐽(𝑦, 𝑥) ⊆ 𝐹(𝑦)} is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to the set {𝑢 ∈

𝐷 : 𝐿(𝑦, 𝑢) ⊆ 𝑊(𝑦)};
(iv) one of the following conditions holds:

(iv
1
) 𝑌\𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : 𝐿(𝑦, 𝑢) ⊆ 𝑊(𝑦)} for some

𝑁
0

∈ ⟨𝐷⟩ and for each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈

⟨𝐷⟩, 𝑇(𝜑
𝑁
(Δ

𝑛
)) is a compact subset of 𝑌;

(iv
2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset
𝐿
𝑁

of 𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : 𝐿 (𝑦, 𝑢) ⊆ 𝑊(𝑦)} . (57)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝐿(𝑦, 𝑢) ̸⊆ 𝑊(𝑦)

for each 𝑢 ∈ 𝐷.

Remark 21. Theorem 20 generalizes Theorem 4.3 of Fang
and Huang [34] in the following aspects: (a) The underlying
spaces of Theorem 18 and Theorem 4.3 of Fang and Huang
[34] are 𝐹𝑊𝐶-spaces and 𝐹𝐶-spaces, respectively. It follows
from the previous analysis that 𝐹𝑊𝐶-spaces include 𝐹𝐶-
spaces as special cases; (b) The class of better admissible
mappings inTheorem 18 andTheorem4.3 of Fang andHuang
[34] are B̃(𝑋,𝐷, 𝑌) andB(𝑋, 𝑌), respectively. It follows from
Remark 3 thatB(𝑋, 𝑌) is contained in B̃(𝑋,𝐷, 𝑌); (c) (ii) of
Theorem 18 is weaker than (i) and (ii) ofTheorem 4.3 of Fang
and Huang [34]; (d) (iii) of Theorem 18 is weaker than (v) of
Theorem 4.3 of Fang and Huang [34]; (e) (iv

2
) ofTheorem 18

is weaker than (vi) of Theorem 4.3 of Fang and Huang [34].

Theorem22. Let (𝑋,𝐷; 𝜑
𝑁
) be an𝐹𝑊𝐶-space,𝑌 aHausdorff

topological space, 𝐾 a nonempty compact subset of 𝑌, and 𝑍 a
nonempty set. Let 𝐽 : 𝑌 × 𝑋 → 2

𝑍, 𝐿 : 𝑌 × 𝐷 → 2
𝑍,

𝐹,𝑊 : 𝑌 → 2
𝑍, 𝑄 : 𝐷 → 2

𝑋, and 𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be
set-valued mappings. Assume that

(i) for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑇(𝑥), 𝐽(𝑦, 𝑥)⋂𝐹(𝑦) ̸= 0;
(ii) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : 𝐿(𝑦, 𝑢)⋂𝑊(𝑦) ̸= 0} is

compactly closed;
(iii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝐽(𝑦, 𝑥)⋂𝐹(𝑦) = 0} is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to the set {𝑢 ∈

𝐷 : 𝐿(𝑦, 𝑢)⋂𝑊(𝑦) = 0};
(iv) one of the following conditions holds:

(iv
1
) 𝑌 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : 𝐿(𝑦, 𝑢)⋂𝑊(𝑦) =

0} for some 𝑁
0

∈ ⟨𝐷⟩ and for each 𝑁 =

{𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a compact

subset of 𝑌;
(iv

2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset 𝐿

𝑁
of

𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is an

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : 𝐿 (𝑦, 𝑢)⋂𝑊(𝑦) = 0} .

(58)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝐿(𝑦, 𝑢)⋂

𝑊(𝑦) ̸= 0 for each 𝑢 ∈ 𝐷.

Theorem 23. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space,𝑌 aHausdorff

topological space, 𝐾 a nonempty compact subset of 𝑌, and 𝑍 a
nonempty set. Let 𝐽 : 𝑌 × 𝑋 → 2

𝑍, 𝐿 : 𝑌 × 𝐷 → 2
𝑍,

𝐹,𝑊 : 𝑌 → 2
𝑍, 𝑄 : 𝐷 → 2

𝑋, and 𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be
set-valued mappings. Assume that

(i) for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑇(𝑥), 𝐽(𝑦, 𝑥)⋂𝐹(𝑦) = 0;
(ii) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : 𝐿(𝑦, 𝑢)⋂𝑊(𝑦) = 0} is

compactly closed;
(iii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝐽(𝑦, 𝑥)⋂𝐹(𝑦) ̸= 0} is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to the set {𝑢 ∈

𝐷 : 𝐿(𝑦, 𝑢)⋂𝑊(𝑦) ̸= 0};
(iv) one of the following conditions holds:

(iv
1
) 𝑌 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : 𝐿(𝑦, 𝑢)⋂𝑊(𝑦) ̸= 0}

for some 𝑁
0

∈ ⟨𝐷⟩ and for each 𝑁 =

{𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a compact

subset of 𝑌;
(iv

2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset 𝐿

𝑁
of

𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is an

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : 𝐿 (𝑦, 𝑢)⋂𝑊(𝑦) ̸= 0} .

(59)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that
𝐿(𝑦, 𝑢)⋂𝑊(𝑦) = 0 for each 𝑢 ∈ 𝐷.

By Theorem 20, we can obtain the following existence
theorem of solutions to the generalized implicit vector equi-
librium problem.

Theorem24. Let (𝑋,𝐷; 𝜑
𝑁
) be an𝐹𝑊𝐶-space,𝑌 aHausdorff

topological space, 𝐾 a nonempty compact subset of 𝑌, and 𝑍 a
nonempty set. Let 𝐹,𝑊 : 𝑌 → 2

𝑍, 𝑄 : 𝐷 → 2
𝑋, and 𝑇 ∈

B̃(𝑋,𝐷, 𝑌) be set-valued mappings. Let 𝐸 be a nonempty set
and𝐺 : 𝑌 → 2

𝐸 a set-valuedmapping. Let 𝜁 : 𝐸×𝑌×𝑋 → 𝑍

and 𝜉 : 𝐸×𝑌×𝐷 → 𝑍 be two single-valuedmappings. Assume
that
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(i) for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑇(𝑥), 𝜁(𝐺(𝑦), 𝑦, 𝑥) ̸⊆

𝐹(𝑦);
(ii) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : 𝜉(𝐺(𝑦), 𝑦, 𝑢) ̸⊆ 𝑊(𝑦)}

is compactly closed;
(iii) for each𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝜁(𝐺(𝑦), 𝑦, 𝑥) ⊆ 𝐹(𝑦)} is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to the set {𝑢 ∈

𝐷 : 𝜉(𝐺(𝑦), 𝑦, 𝑢) ⊆ 𝑊(𝑦)};
(iv) one of the following conditions holds:

(iv
1
) 𝑌 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : 𝜉(𝐺(𝑦), 𝑦, 𝑢) ⊆

𝑊(𝑦)} for some 𝑁
0

∈ ⟨𝐷⟩ and for each 𝑁 =

{𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a compact

subset of 𝑌;
(iv

2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset
𝐿
𝑁

of 𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : 𝜉 (𝐺 (𝑦) , 𝑦, 𝑢) ⊆ 𝑊(𝑦)} .

(60)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that, for each 𝑢 ∈ 𝐷,
there exists 𝑠 ∈ 𝐺(𝑦) satisfying 𝜉(𝑠, 𝑦, 𝑢) ∉ 𝑊(𝑦).

Proof. Define two set-valued mappings 𝐽 : 𝑌 × 𝑋 → 2
𝑍 and

𝐿 : 𝑌 × 𝐷 → 2
𝑍 by

𝐽 (𝑦, 𝑥) = 𝜁 (𝐺 (𝑦) , 𝑦, 𝑥) = ⋃

𝑠∈𝐺(𝑦)

𝜁 (𝑠, 𝑦, 𝑥)

for each (𝑦, 𝑥) ∈ 𝑌 × 𝑋,

𝐿 (𝑦, 𝑢) = 𝜉 (𝐺 (𝑦) , 𝑦, 𝑢) = ⋃

𝑠∈𝐺(𝑦)

𝜉 (𝑠, 𝑦, 𝑢)

for each (𝑦, 𝑢) ∈ 𝑌 × 𝐷.

(61)

It is clear that all conditions of Theorem 20 are satisfied. By
Theorem 20, there exists a point 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that
𝐿(𝑦, 𝑢) = ⋃

𝑠∈𝐺(𝑦)
𝜉(𝑠, 𝑦, 𝑢) ̸⊆ 𝑊(𝑦) for each𝑢 ∈ 𝐷. Hence, for

each 𝑢 ∈ 𝐷, there exists 𝑠 ∈ 𝐺(𝑦) satisfying 𝜉(𝑠, 𝑦, 𝑢) ∉ 𝑊(𝑦).
This completes the proof.

Remark 25. (1) Theorem 24 generalizesTheorem 4.4 of Fang
and Huang [34] in the following aspects: (a) The under-
lying spaces of Theorem 18 and Theorem 4.4 of Fang and
Huang [34] are 𝐹𝑊𝐶-spaces and 𝐹𝐶-spaces, respectively. It
follows from the previous analysis that 𝐹𝑊𝐶-spaces include
𝐹𝐶-spaces as special cases; (b) the class B̃(𝑋,𝐷, 𝑌) in
Theorem 24 includes the class B(𝑌,𝑋) in Theorem 4.4 of
Fang and Huang [33] as a special case; (c) (ii) Theorem 24 is
weaker than (i) and (ii) of Theorem 4.4 of Fang and Huang
[34]. In fact, by the proof of Theorem 4.4 of Fang and Huang
[34], we can see that (i) and (ii) of Theorem 4.4 of Fang and
Huang [34] imply (ii) ofTheorem 24; (d) (iv

2
) ofTheorem 24

is weaker than (vi) of Theorem 4.4 of Fang and Huang [34].
We point out that Theorem 24 also generalizes Theorem 3.2

and Corollary 3.2 of Lee and Kum [35] from topological
vector spaces to 𝐹𝑊𝐶-spaces. We emphasis that 𝑋, 𝐷, 𝑍,
and 𝐸 in Theorem 24 do not possess any linear, convex, and
topological structure.

(2) Let 𝑍 and 𝐸 inTheorem 24 be two topological spaces.
Then byTheorem 4.4 of Fang and Huang [33], we can replace
(ii) of Theorem 24 by the following conditions:

(ii) the graph of 𝑊 is open in 𝑌 × 𝑍;
(ii) 𝐺 is upper semicontinuous on each compact subset of

𝑌with nonempty compact values and for each 𝑢 ∈ 𝐷,
𝜉(⋅, ⋅, 𝑢) is continuous on each compact subset of𝐸×𝑌.

Remark 26. The solution sets of generalized equilibrium
problems considered inTheorems 18, 20, and 22–24 are com-
pact subsets of 𝑇(𝑋)⋂𝐾. Indeed, by the proof of Theorems
6, 18, 20, and 22–24, we can see that these solution sets can
be represented by (𝑇(𝑋)⋂𝐾)⋂(⋂

𝑢∈𝐷
(𝑌 \ 𝐻

−1
(𝑢))), where

𝐻
−1

: 𝐷 → 2
𝑌 is a set-valued mapping with compactly open

values. Thus, these solution sets are compactly closed subsets
of the compact set 𝑇(𝑋)⋂𝐾. Therefore, the solution sets of
generalized equilibrium problems considered in Theorems
18, 20, and 22–24 are compact subsets of 𝑇(𝑋)⋂𝐾.

5. Applications

Let 𝐶 be a nonempty closed subset of a locally convex
semireflexive topological vector space 𝑋, and let 𝐹 be a real-
valued function on 𝐶 × 𝐶. In 1999, Isac et al. [36] first
raised the open problem of finding 𝑥 ∈ 𝐾 such that 𝑐

1
≤

𝐹(𝑥, 𝑦) ≤ 𝑐
2
for each 𝑦 ∈ 𝐶, where 𝑐

1
, 𝑐

2
are two real

numbers with 𝑐
1
≤ 𝑐

2
. Later, Li [37] introduced the concept of

extremal subsets and then, by using the Fan-KKM theorem
in topological vector spaces, he gave some positive answers
to this open problem mentioned above. Recently, Fakhar
and Zafarani [38] obtained an existence theorem of solutions
to the equilibrium problems with lower and upper bounds
under the setting of 𝐺-convex spaces.

In this section, we apply Theorem 18 to obtain existence
results of solutions to the equilibriumproblemwith lower and
upper bounds and minimax problem in 𝐹𝑊𝐶-spaces.

Theorem 27. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space and 𝐾 a

nonempty compact subset of a Hausdorff topological space 𝑌.
Let𝑄 : 𝐷 → 2

𝑋 and𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be set-valuedmappings.
Let 𝜇 and ] be real-valued functions on 𝑌 × 𝑋 and 𝑌 × 𝐷,
respectively. Let 𝑔 and ℎ be real-valued functions on𝑌 such that
𝑔(𝑦) ≤ ℎ(𝑦) for each 𝑦 ∈ 𝑌. Assume that

(i) for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑇(𝑥), 𝑔(𝑦) ≤ 𝜇(𝑦, 𝑥) ≤

ℎ(𝑦);
(ii) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : 𝑔(𝑦) ≤ ](𝑦, 𝑢) ≤ ℎ(𝑦)}

is compactly closed;
(iii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝜇(𝑦, 𝑥) >

ℎ(𝑦) 𝑜𝑟 𝜇(𝑦, 𝑥) < 𝑔(𝑦)} is an 𝐹𝑊𝐶-subspace of
(𝑋,𝐷; 𝜑

𝑁
) relative to the set {𝑢 ∈ 𝐷 : ](𝑦, 𝑢) >

ℎ(𝑦) 𝑜𝑟 ](𝑦, 𝑢) < 𝑔(𝑦)};
(iv) one of the following conditions holds:
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(iv
1
) 𝑌 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : ](𝑦, 𝑢) >

ℎ(𝑦) 𝑜𝑟 ](𝑦, 𝑢) < 𝑔(𝑦)} for some 𝑁
0

∈ ⟨𝐷⟩

and for each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩,

𝑇(𝜑
𝑁
(Δ

𝑛
)) is a compact subset of 𝑌;

(iv
2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset 𝐿

𝑁
of

𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is an

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾

⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : ] (𝑦, 𝑢) > ℎ (𝑦) 𝑜𝑟 ] (𝑦, 𝑢) < 𝑔 (𝑦)} .

(62)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝑔(𝑦) ≤ ](𝑦, 𝑢) ≤

ℎ(𝑦) for each 𝑢 ∈ 𝐷.

Proof. Let 𝑍 = R. Define three set-valued mappings 𝐽 : 𝑌 ×

𝑋 → 2
𝑍, 𝐿 : 𝑌 × 𝐷 → 2

𝑍, 𝐹 : 𝑌 → 2
𝑍, and 𝑊 : 𝑌 → 2

𝑍

as follows:

𝐽 (𝑦, 𝑥) = {𝜇 (𝑦, 𝑥)} for each (𝑦, 𝑥) ∈ 𝑌 × 𝑋,

𝐿 (𝑦, 𝑢) = {] (𝑦, 𝑢)} for each (𝑦, 𝑢) ∈ 𝑌 × 𝐷,

𝐹 (𝑦) = 𝑊(𝑦) = [𝑔 (𝑦) , ℎ (𝑦)] for each 𝑦 ∈ 𝑌.

(63)

It is clear that all conditions of Theorem 18 with 𝐹 = 𝑊 are
satisfied.Therefore, byTheorem 18 with 𝐹 = 𝑊, there exists a
point𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝐿(𝑦, 𝑢) ⊆ 𝑊(𝑦) for each 𝑢 ∈ 𝐷;
that is, 𝑔(𝑦) ≤ ](𝑦, 𝑢) ≤ ℎ(𝑦), for each 𝑢 ∈ 𝐷. This completes
the proof.

Remark 28. Theorem 27 generalizes Corollary 3.2 ofMitrović
and Merkle [39] in the following aspects: (1) The underlying
spaces of Theorem 27 and Corollary 3.2 in [39] are 𝐹𝑊𝐶-
spaces and Hausdorff compact topological vector spaces,
respectively. By the previous analysis, we know that 𝐹𝑊𝐶-
spaces include Hausdorff compact topological vector spaces
as special cases; (2) The condition that there are four func-
tions in Theorem 27 is more general than the condition that
there are three functions in Corollary 3.2 in [39]; (3) (ii) of
Theorem 27 is weaker than (1) of Corollary 3.2 of Mitrović
and Merkle [39]; (4) (iii) of Theorem 27 is weaker than (3)

of of Corollary 3.2 of Mitrović and Merkle [39]. We point
out that the proof of Theorem 27 is different from that of
Corollary 3.2 of Mitrović and Merkle [39].

Let 𝑔(𝑦) = 𝑐
1
and ℎ(𝑦) = 𝑐

2
for all 𝑦 ∈ 𝑌, where 𝑐

1
and 𝑐

2

are real numbers such that 𝑐
1

≤ 𝑐
2
. In this case, Theorem 27

deduces the following corollary.

Corollary 29. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space and 𝐾 a

nonempty compact subset of a Hausdorff topological space 𝑌.
Let𝑄 : 𝐷 → 2

𝑋 and𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be set-valuedmappings.
Let 𝜇 and ] be real-valued functions on 𝑌 × 𝑋 and 𝑌 × 𝐷,
respectively. Let 𝑐

1
and 𝑐

2
be two real numbers such that 𝑐

1
≤ 𝑐

2
.

Assume that

(i) for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑇(𝑥), 𝑐
1
≤ 𝜇(𝑦, 𝑥) ≤ 𝑐

2
;

(ii) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : 𝑐
1

≤ ](𝑦, 𝑢) ≤ 𝑐
2
} is

compactly closed;
(iii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝜇(𝑦, 𝑥) >

𝑐
2

𝑜𝑟 𝜇(𝑦, 𝑥) < 𝑐
1
} is an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑

𝑁
)

relative to the set {𝑢 ∈ 𝐷 : ](𝑦, 𝑢) > 𝑐
2

𝑜𝑟 ](𝑦, 𝑢) <

𝑐
1
};

(iv) one of the following conditions holds:

(iv
1
) 𝑌 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : ](𝑦, 𝑢) > 𝑐

2
𝑜𝑟 ](𝑦, 𝑢) <

𝑐
1
} for some 𝑁

0
∈ ⟨𝐷⟩ and for each 𝑁 =

{𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a compact

subset of 𝑌;
(iv

2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset 𝐿

𝑁
of

𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is an

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾

⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : ] (𝑦, 𝑢) > 𝑐
2

𝑜𝑟 ] (𝑦, 𝑢) < 𝑐
1
} .

(64)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝑐
1
≤ ](𝑦, 𝑢) ≤ 𝑐

2

for each 𝑢 ∈ 𝐷.

Another special case of Corollary 29, stated below, is the
case where 𝑐

1
= 𝑐

2
= 𝑐.

Corollary 30. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space and 𝐾 a

nonempty compact subset of a Hausdorff topological space 𝑌.
Let𝑄 : 𝐷 → 2

𝑋 and𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be set-valuedmappings.
Let 𝜇 and ] be real-valued functions on 𝑌 × 𝑋 and 𝑌 × 𝐷,
respectively. Let 𝑐 be a real number. Assume that

(i) for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑇(𝑥), 𝜇(𝑦, 𝑥) = 𝑐;
(ii) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : ](𝑦, 𝑢) = 𝑐} is

compactly closed;
(iii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝜇(𝑦, 𝑥) >

𝑐 𝑜𝑟 𝜇(𝑦, 𝑥) < 𝑐} is an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
)

relative to the set {𝑢 ∈ 𝐷 : ](𝑦, 𝑢) > 𝑐 𝑜𝑟 ](𝑦, 𝑢) < 𝑐};
(iv) one of the following conditions holds:

(iv
1
) 𝑌 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : ](𝑦, 𝑢) > 𝑐 𝑜𝑟 ](𝑦, 𝑢) <

𝑐} for some 𝑁
0

∈ ⟨𝐷⟩ and for each 𝑁 =

{𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a compact

subset of 𝑌;
(iv

2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset 𝐿

𝑁
of

𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is an

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾

⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : ] (𝑦, 𝑢) > 𝑐 𝑜𝑟 ] (𝑦, 𝑢) < 𝑐} .
(65)
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Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that ](𝑦, 𝑢) = 𝑐 for
each 𝑢 ∈ 𝐷.

Remark 31. It is interesting to compare Corollary 30 with
Corollary 3.1 of Li [37] in the following aspects: (1) the under-
lying spaces in Corollary 30 are 𝐹𝑊𝐶-spaces without any
linear, convex, and topological structure, which include the
corresponding underlying spaces (i.e, Hausdorff topological
vector spaces) in Corollary 3.1 of Li [37] as special cases; (2)
(i) of Corollary 30 is weaker than (i) of Corollary 3.1 of Li [37];
(3) (ii) of Corollary 30 is weaker than (iv) of Corollary 3.1 of
Li [37]; (4) (iii) of Corollary 30 is weaker than (ii) of Corollary
3.1 of Li [37]; (5) (iv) of Corollary 30 is neither stronger nor
weaker than (iii) of Corollary 3.1 of Li [37].

As a consequence of Corollary 29, we can obtain the
following corollary, which improves and generalizes Theo-
rems 2.3-2.4 of Verma [20], Theorem 2.6 of Verma [21], and
Corollary 3.4 of Fakhar and Zafarani [40].

Corollary 32. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space and 𝐾 a

nonempty compact subset of a Hausdorff topological space 𝑌.
Let𝑄 : 𝐷 → 2

𝑋 and𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be set-valuedmappings.
Let 𝜇

1
and ]

1
be real-valued functions on 𝑌 × 𝑋 and 𝑌 × 𝐷,

respectively. Let 𝑐 be a real number. Assume that
(i) for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑇(𝑥), 𝜇

1
(𝑦, 𝑥) ≤ 𝑐;

(ii) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : ]
1
(𝑦, 𝑢) ≤ 𝑐} is

compactly closed;
(iii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝜇

1
(𝑦, 𝑥) > 𝑐} is an

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to the set {𝑢 ∈ 𝐷 :

]
1
(𝑦, 𝑢) > 𝑐};

(iv) one of the following conditions holds:

(iv
1
) 𝑌 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : ]

1
(𝑦, 𝑢) > 𝑐} for some

𝑁
0

∈ ⟨𝐷⟩ and for each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈

⟨𝐷⟩, 𝑇(𝜑
𝑁
(Δ

𝑛
)) is a compact subset of 𝑌;

(iv
2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset
𝐿
𝑁

of 𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : ]
1
(𝑦, 𝑢) > 𝑐} . (66)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that ]
1
(𝑦, 𝑢) ≤ 𝑐 for

each 𝑢 ∈ 𝐷.

Proof. Define real-valued functions 𝜇 : 𝑌 × 𝑋 → R and
] : 𝑌 × 𝐷 → R by

𝜇 (𝑦, 𝑥) = 𝑒
𝜇1(𝑦,𝑥) for each (𝑦, 𝑥) ∈ 𝑌 × 𝑋,

] (𝑦, 𝑢) = 𝑒
]1(𝑦,𝑢) for each (𝑦, 𝑢) ∈ 𝑌 × 𝐷.

(67)

Taking 𝑐
1

= 0 and 𝑐
2

= 𝑒
𝑐 in Corollary 29, we can see that all

conditions of Corollary 29 are satisfied for 𝜇 and ].Therefore,
by Corollary 29, there exists a point 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that
0 ≤ ](𝑦, 𝑢) ≤ 𝑒

𝑐 for each 𝑢 ∈ 𝐷; that is, ]
1
(𝑦, 𝑢) ≤ 𝑐 for each

𝑢 ∈ 𝐷. This completes the proof.

Remark 33. (ii)-(iii) of Corollary 32 can be replaced by the
following conditions, respectively.

(ii) For every 𝑢 ∈ 𝐷, ]
1
(⋅, 𝑢) is lower semicontmuous on

each nonempty compact subset of 𝑌.

(iii) For every 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, every

{𝑢
𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝑁, and every 𝑦 ∈ 𝑌, we have

𝜇
1
(𝑦, 𝑥) ≥ min

0≤𝑗≤𝑘
]
1
(𝑦, 𝑢

𝑖𝑗
) for all 𝑥 ∈ 𝜑

𝑁
(Δ

𝑘
).

It is clear that (ii) implies (ii) of Corollary 32. Now, we
show that (iii) implies (iii) of Corollary 32. In fact, if (iii)
of Corollary 32 does not hold, then there exist 𝑦 ∈ 𝑌, 𝑁 =

{𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, and {𝑢

𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝑁 ∩ {𝑢 ∈ 𝐷 :

]
1
(𝑦, 𝑢) > 𝑐} such that 𝜑

𝑁
(Δ

𝑘
) ̸⊆ {𝑥 ∈ 𝑋 : 𝜇

1
(𝑦, 𝑥) > 𝑐}.

Hence, there exists 𝑥 ∈ 𝜑
𝑁
(Δ

𝑘
) such that 𝜇

1
(𝑦, 𝑥) ≤ 𝑐. Since

{𝑢
𝑖0
, 𝑢

𝑖1
, . . . , 𝑢

𝑖𝑘
} ⊆ 𝑁 ∩ {𝑢 ∈ 𝐷 : ]

1
(𝑦, 𝑢) > 𝑐}, we have

]
1
(𝑦, 𝑢

𝑖𝑗
) > 𝑐 for each 𝑗 ∈ {0, 1, . . . , 𝑘}. By (iii), we obtain

the following contradiction:

𝑐 ≥ 𝜇
1
(𝑦, 𝑥) ≥ min

0≤𝑗≤𝑘

]
1
(𝑦, 𝑢

𝑖𝑗
) > 𝑐. (68)

Therefore, (iii) of Corollary 32 must hold.

Remark 34. Theorem 6 is equivalent to Corollary 32. We first
show that Theorem 6 implies that Corollary 32. Define 𝑃 :

𝑋 → 2
𝑌 and 𝐻 : 𝑌 → 2

𝐷 by

𝑃 (𝑥) = {𝑦 ∈ 𝑌 : 𝜇
1
(𝑦, 𝑥) ≤ 𝑐} for each 𝑥 ∈ 𝑋,

𝐻 (𝑦) = {𝑢 ∈ 𝐷 : ]
1
(𝑦, 𝑢) > 𝑐} for each 𝑢 ∈ 𝐷.

(69)

By using the same method as in Theorem 18, we know that
(iii) ofTheorem 6 holds. We can see that the other conditions
of Theorem 6 are satisfied. Therefore, by Theorem 6, there
exists a point 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that 𝐻(𝑦) = 0, which
implies that ]

1
(𝑦, 𝑢) ≤ 𝑐 for each 𝑢 ∈ 𝐷.

Conversely, let 𝑐 ∈ R be given. Let us define two real-
valued functions 𝜇

1
: 𝑌 × 𝑋 → R and ]

1
: 𝑌 × 𝐷 → R

by

𝜇
1
(𝑦, 𝑥) = {

𝑐, 𝑦 ∈ 𝑃 (𝑥) ,

𝑐 + 1, 𝑦 ∉ 𝑃 (𝑥) ,

]
1
(𝑦, 𝑢) = {

𝑐, 𝑦 ∉ 𝐻
−1

(𝑢) ,

𝑐 + 1, 𝑦 ∈ 𝐻
−1

(𝑢) .

(70)

We can see that 𝜇
1

and ]
1

satisfy all conditions of
Corollary 32. Therefore, by Corollary 32, there exists a point
𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that ]

1
(𝑦, 𝑢) ≤ 𝑐 for each 𝑢 ∈ 𝐷; that is,

𝑦 ∉ 𝐻
−1

(𝑢) for each 𝑢 ∈ 𝐷, which implies that 𝐻(𝑦) = 0.

Corollary 35. Let (𝑋,𝐷; 𝜑
𝑁
), 𝑌 be as in Theorem 27, and let

𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be a compact set-valued mapping. Let 𝜇
1
and

]
1
be real-valued functions on 𝑌 × 𝑋 and 𝑌 × 𝐷, respectively.

Let 𝑐 be a real number. Assume that

(i) for each 𝑥 ∈ 𝑋 and each 𝑦 ∈ 𝑇(𝑥), 𝜇
1
(𝑦, 𝑥) ≤ 𝑐;
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(ii) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : ]
1
(𝑦, 𝑢) ≤ 𝑐} is

compactly closed;
(iii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝜇

1
(𝑦, 𝑥) > 𝑐} is an

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to the set {𝑢 ∈ 𝐷 :

]
1
(𝑦, 𝑢) > 𝑐}.

Then there exists 𝑦 ∈ 𝑇(𝑋) such that ]
1
(𝑦, 𝑢) ≤ 𝑐 for each

𝑢 ∈ 𝐷.

Proof. Define a set-valued mapping 𝑄 : 𝐷 → 2
𝑋 by 𝑄(𝑢) =

𝑋 for each 𝑢 ∈ 𝐷. For each 𝑁 ∈ ⟨𝐷⟩, let 𝐿
𝑁

= 𝐷.
Let𝐾 = 𝑇(𝑋).Then (iv

2
) of Corollary 32 is satisfied automat-

ically. Therefore, the conclusion of Corollary 35 follows from
Corollary 32.

Remark 36. Corollary 35 generalizes Theorem 3.3 of Tan
[41] in the following aspects: (1) The underlying spaces of
Corollary 35 are 𝐹𝑊𝐶-spaces which containG-convex spaces
adopted in Theorem 3.3 of Tan [41]; (2) There are two
functions in Corollary 35, but there is only one function in
Theorem 3.3 of Tan [41]; (3) the condition that each 𝐺-co(𝐴)

is compact in Theorem 3.3 of Tan [41] is dropped; (4) (ii) of
Corollary 35 is weaker than (1) of Theorem 3.3 of Tan [41].
In fact, the lower semicontinuity of a function implies (ii) of
Corollary 35; (5) combining Proposition 2.1 of Tan [41] and
Remark 2.1, we can see that (iii) of Corollary 35 isweaker than
(2) of Theorem 3.3 of Tan [41]. Corollary 35 also generalizes
Theorem 3.1 of Zeng et al. [33] from topological vector spaces
to 𝐹𝑊𝐶-spaces without any linear, convex, and topological
structure. The comparison details between Corollary 35 and
Theorem 3.1 of Zeng et al. [33] are left up to the reader to
finish.

Theorem 37. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space and 𝐾 a

nonempty compact subset of a Hausdorff topological space 𝑌.
Let𝑄 : 𝐷 → 2

𝑋 and𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be set-valuedmappings.
Let 𝜇

1
and ]

1
be real-valued functions on 𝑌 × 𝑋 and 𝑌 × 𝐷,

respectively. Let 𝑐 be a real number. Assume that

(i) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : ]
1
(𝑦, 𝑢) ≤ 𝑐} is

compactly closed;
(ii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝜇

1
(𝑦, 𝑥) > 𝑐} is an

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to the set {𝑢 ∈ 𝐷 :

]
1
(𝑦, 𝑢) > 𝑐};

(iii) one of the following conditions holds:

(iii
1
) 𝑌 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : ]

1
(𝑦, 𝑢) > 𝑐} for some

𝑁
0

∈ ⟨𝐷⟩ and for each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈

⟨𝐷⟩, 𝑇(𝜑
𝑁
(Δ

𝑛
)) is a compact subset of 𝑌;

(iii
2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset
𝐿
𝑁

of 𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : ]
1
(𝑦, 𝑢) > 𝑐} . (71)

Then we have the following alternatives:

(a) there exist 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇(𝑥) such that 𝜇
1
(𝑦, 𝑥) > 𝑐;

(b) there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that ]
1
(𝑦, 𝑢) ≤ 𝑐 for

each 𝑢 ∈ 𝐷.

Proof. If (a) is false, then it follows that for each 𝑥 ∈ 𝑋 and
each 𝑦 ∈ 𝑇(𝑥), 𝜇

1
(𝑦, 𝑥) ≤ 𝑐. Hence, by Corollary 32, there

exists a point 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that ]
1
(𝑦, 𝑢) ≤ 𝑐 for each

𝑢 ∈ 𝐷. This completes the proof.

Theorem 38. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space and 𝐾 a

nonempty compact subset of a Hausdorff topological space 𝑌.
Let𝑄 : 𝐷 → 2

𝑋 and𝑇 ∈ B̃(𝑋,𝐷, 𝑌) be set-valuedmappings.
Let 𝜇

1
and ]

1
be real-valued functions on 𝑌 × 𝑋 and 𝑌 × 𝐷,

respectively. Assume that sup
𝑥∈𝑋,𝑦∈𝑇(𝑥)

𝜇
1
(𝑦, 𝑥) < +∞ and the

following conditions hold:
(i) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : ]

1
(𝑦, 𝑢) ≤

sup
𝑥∈𝑋,𝑦∈𝑇(𝑥)

𝜇
1
(𝑦, 𝑥)} is compactly closed;

(ii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝜇
1
(𝑦, 𝑥) >

sup
𝑥∈𝑋,𝑦∈𝑇(𝑥)

𝜇
1
(𝑦, 𝑥)} is an 𝐹𝑊𝐶-subspace of

(𝑋,𝐷; 𝜑
𝑁
) relative to the set {𝑢 ∈ 𝐷 : ]

1
(𝑦, 𝑢) >

sup
𝑥∈𝑋,𝑦∈𝑇(𝑥)

𝜇
1
(𝑦, 𝑥)};

(iii) either

(iii
1
) 𝑌 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : ]

1
(𝑦, 𝑢) >

sup
𝑥∈𝑋,𝑦∈𝑇(𝑥)

𝜇
1
(𝑦, 𝑥)} for some 𝑁

0
∈ ⟨𝐷⟩ and

for each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
))

is a compact subset of 𝑌 or
(iii

2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset
𝐿
𝑁

of 𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾

⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : ]
1
(𝑦, 𝑢) > sup

𝑥∈𝑋,𝑦∈𝑇(𝑥)

𝜇
1
(𝑦, 𝑥)} .

(72)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that ]
1
(𝑦, 𝑢) ≤

sup
𝑥∈𝑋,𝑦∈𝑇(𝑥)

𝜇
1
(𝑦, 𝑥) for each 𝑢 ∈ 𝐷. In particular, we have

inf
𝑦∈𝐾∩𝑇(𝑋)

sup
𝑢∈𝐷

]
1
(𝑦, 𝑢) ≤ sup

𝑥∈𝑋,𝑦∈𝑇(𝑥)
𝜇
1
(𝑦, 𝑥).

Proof. Let 𝑐 = sup
𝑥∈𝑋,𝑦∈𝑇(𝑥)

𝜇
1
(𝑦, 𝑥). By the definition of 𝑐,

(a) of Theorem 37 does not hold. Hence, (b) of Theorem 37
is satisfied. So, there exists a point 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such
that ]

1
(𝑦, 𝑢) ≤ 𝑐 for each 𝑢 ∈ 𝐷. In particular, we

have inf
𝑦∈𝐾∩𝑇(𝑋)

sup
𝑢∈𝐷

]
1
(𝑦, 𝑢) ≤ sup

𝑥∈𝑋,𝑦∈𝑇(𝑥)
𝜇
1
(𝑦, 𝑥). This

completes the proof.

Remark 39. By setting 𝜇


1
= −𝜇

1
and ]

1
= −]

1
and

adjusting the corresponding conditions of Theorem 38, we
know that Theorem 38 can be restated with the conclusion
that there exists a point 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that ]

1
(𝑦, 𝑢) ≥

inf
𝑥∈𝑋,𝑦∈𝑇(𝑥)

𝜇


1
(𝑦, 𝑥) for each 𝑢 ∈ 𝐷. In particular, we

have sup
𝑦∈𝐾∩𝑇(𝑋)

inf
𝑢∈𝐷

]
1
(𝑦, 𝑢) ≥ inf

𝑥∈𝑋,𝑦∈𝑇(𝑥)
𝜇


1
(𝑦, 𝑥).Thus,

Theorem 38 generalizes Theorem 3 of Yuan [28] from Haus-
dorff topological vector spaces to 𝐹𝑊𝐶-spaces.
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If 𝑇 in Theorem 38 is a single-valued mapping, then we
have the following corollary.

Corollary 40. Let (𝑋,𝐷; 𝜑
𝑁
), 𝐾, 𝑌, and 𝑄 be as in

Theorem 27. Let 𝑇 ∈ B̃(𝑌,𝐷,𝑋) be a single-valued mapping.
Let 𝜇

1
and ]

1
be real-valued functions on 𝑌 × 𝑋 and 𝑌 × 𝐷,

respectively. Assume that sup
𝑥∈𝑋

𝜇
1
(𝑇(𝑥), 𝑥) < +∞ and the

following conditions hold:

(i) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑌 : ]
1
(𝑦, 𝑢) ≤

sup
𝑥∈𝑋

𝜇
1
(𝑇(𝑥), 𝑥)} is compactly closed;

(ii) for each 𝑦 ∈ 𝑌, the set {𝑥 ∈ 𝑋 : 𝜇
1
(𝑦, 𝑥) >

sup
𝑥∈𝑋

𝜇
1
(𝑇(𝑥), 𝑥)} is an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑

𝑁
)

relative to the set {𝑢 ∈ 𝐷 : ]
1
(𝑦, 𝑢) >

sup
𝑥∈𝑋

𝜇
1
(𝑇(𝑥), 𝑥)};

(iii) either

(iii
1
) 𝑌 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑌 : ]

1
(𝑦, 𝑢) >

sup
𝑥∈𝑋

𝜇
1
(𝑇(𝑥), 𝑥)} for some 𝑁

0
∈ ⟨𝐷⟩ and for

each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩, 𝑇(𝜑

𝑁
(Δ

𝑛
)) is a

compact subset of 𝑌 or
(iii

2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset
𝐿
𝑁

of 𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is

an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
,

(𝑇 ∘ 𝑄)(𝐿
𝑁
) is a compact subset of 𝑌, and

(𝑇 ∘ 𝑄)(𝐿
𝑁
) \ 𝐾

⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑌 : ]
1
(𝑦, 𝑢) > sup

𝑥∈𝑋

𝜇
1 (𝑇 (𝑥) , 𝑥)} .

(73)

Then there exists 𝑦 ∈ 𝑇(𝑋)⋂𝐾 such that ]
1
(𝑦, 𝑢) ≤

sup
𝑥∈𝑋

𝜇
1
(𝑇(𝑥), 𝑥) for each 𝑢 ∈ 𝐷. In particular, we have

inf
𝑦∈𝐾∩𝑇(𝑋)

sup
𝑢∈𝐷

]
1
(𝑦, 𝑢) ≤ sup

𝑥∈𝑋
𝜇
1
(𝑇(𝑥), 𝑥).

By taking 𝑋 = 𝑌 and 𝑇(𝑥) = {𝑥} for all 𝑥 ∈ 𝑋, we can
obtain the following result from Corollary 40.

Corollary 41. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space, where 𝑋 is

a Hausdorff topological space. Let 𝐾 be a nonempty compact
subset of 𝑋. Let 𝑄 : 𝐷 → 2

𝑋 be a set-valued mapping and
let 𝐼

𝑋
∈ B̃(𝑋,𝐷,𝑋), where 𝐼

𝑋
is the identity mapping on

𝑋. Let 𝜇
1
and ]

1
be real-valued functions on 𝑋 × 𝑋 and

𝑋 × 𝐷, respectively. Assume that sup
𝑥∈𝑋

𝜇
1
(𝑥, 𝑥) < +∞ and

the following conditions hold:

(i) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑋 : ]
1
(𝑦, 𝑢) ≤

sup
𝑥∈𝑋

𝜇
1
(𝑥, 𝑥)} is compactly closed;

(ii) for each 𝑦 ∈ 𝑋, the set {𝑥 ∈ 𝑋 : 𝜇
1
(𝑦, 𝑥) >

sup
𝑥∈𝑋

𝜇
1
(𝑥, 𝑥)} is an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑

𝑁
)

relative to the set {𝑢 ∈ 𝐷 : ]
1
(𝑦, 𝑢) > sup

𝑥∈𝑋
𝜇
1
(𝑥, 𝑥)};

(iii) either

(iii
1
) 𝑋 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑋 : ]

1
(𝑦, 𝑢) >

sup
𝑥∈𝑋

𝜇
1
(𝑥, 𝑥)} for some 𝑁

0
∈ ⟨𝐷⟩ and 𝜑

𝑁
:

Δ
𝑛

→ 2
𝑋 is a compact set-valued mapping for

each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩ or

(iii
2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset 𝐿

𝑁
of

𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is a compact

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
and

𝑄(𝐿
𝑁
) \ 𝐾 ⊆ ⋃

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑋 : ]
1
(𝑦, 𝑢) > sup

𝑥∈𝑋

𝜇
1 (𝑥, 𝑥)} .

(74)

Then there exists 𝑦 ∈ 𝐾 such that ]
1
(𝑦, 𝑢) ≤

sup
𝑥∈𝑋

𝜇
1
(𝑥, 𝑥) for each 𝑢 ∈ 𝐷. In particular, we have

inf
𝑦∈𝐾

sup
𝑢∈𝐷

]
1
(𝑦, 𝑢) ≤ sup

𝑥∈𝑋
𝜇
1
(𝑥, 𝑥).

Remark 42. Corollary 41 generalizes Corollary 5 of Jin and
Cheng [42] in the following aspects: (1) The underlying
spaces of Corollary 41 are 𝐹𝑊𝐶-spaces which include L-
convex spaces adopted in Corollary 5 of Jin and Cheng
[42] as special cases; (2) the condition that each 𝐻(𝐴) in
Corollary 5 of Jin and Cheng [42] is compact is dropped;
(3) (i) of Corollary 41 is weaker than (i) of Corollary 5 of
Jin and Cheng [42]. In fact, the condition that a function is
lower semicontinuous on compact subset of 𝑋 implies (i) of
Corollary 41; (4) it is easy to verify that (ii) of Corollary 41
is weaker than (ii) of Corollary 5 of Jin and Cheng [42]; (5)
(iii) of Corollary 41 is weaker than (iii) of Corollary 5 of Jin
and Cheng [42]. Additionally, Corollary 41 is quite differen7t
from Theorem 1 of Kim [43] because the underlying spaces
of Theorem 1 of Kim [43] are Hausdorff topological vector
spaces and the conditions of Theorem 1 of Kim [43] are
different from that of Corollary 41.

Corollary 43. Let (𝑋,𝐷; 𝜑
𝑁
) be an 𝐹𝑊𝐶-space, where 𝑋 is

a Hausdorff topological space. Let 𝐾 be a nonempty compact
subset of 𝑋. Let 𝑄 : 𝐷 → 2

𝑋 be a set-valued mapping
and let 𝐼

𝑋
∈ B̃(𝑋,𝐷,𝑋), where 𝐼

𝑋
is the identity mapping

on 𝑋. Let 𝜇
1
and ]

1
be real-valued functions on 𝑋 × 𝑋 and

𝑋×𝐷, respectively. Assume that inf
𝑥∈𝑋

𝜇
1
(𝑥, 𝑥) > −∞ and the

following conditions hold:
(i) for each 𝑢 ∈ 𝐷, the set {𝑦 ∈ 𝑋 : ]

1
(𝑦, 𝑢) ≥

inf
𝑥∈𝑋

𝜇
1
(𝑥, 𝑥)} is compactly closed;

(ii) for each 𝑦 ∈ 𝑋, the set {𝑥 ∈ 𝑋 : 𝜇
1
(𝑦, 𝑥) <

inf
𝑥∈𝑋

𝜇
1
(𝑥, 𝑥)} is an 𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑

𝑁
)

relative to the set {𝑢 ∈ 𝐷 : ]
1
(𝑦, 𝑢) < inf

𝑥∈𝑋
𝜇
1
(𝑥, 𝑥)};

(iii) either

(iii
1
) 𝑋 \ 𝐾 ⊆ ⋃

𝑢∈𝑁0
{𝑦 ∈ 𝑋 : ]

1
(𝑦, 𝑢) <

inf
𝑥∈𝑋

𝜇
1
(𝑥, 𝑥)} for some 𝑁

0
∈ ⟨𝐷⟩ and 𝜑

𝑁
:

Δ
𝑛

→ 2
𝑋 is a compact set-valued mapping for

each 𝑁 = {𝑢
0
, 𝑢

1
, . . . , 𝑢

𝑛
} ∈ ⟨𝐷⟩ or

(iii
2
) for each 𝑁 ∈ ⟨𝐷⟩, there exists a subset 𝐿

𝑁
of

𝐷 containing 𝑁 such that 𝑄(𝐿
𝑁
) is a compact

𝐹𝑊𝐶-subspace of (𝑋,𝐷; 𝜑
𝑁
) relative to 𝐿

𝑁
and

𝑄(𝐿
𝑁
) \ 𝐾 ⊆ ⋂

𝑢∈𝐿𝑁

{𝑦 ∈ 𝑋 : ]
1
(𝑦, 𝑢) < inf

𝑥∈𝑋

𝜇
1 (𝑥, 𝑥)} . (75)

Then there exists𝑦 ∈ 𝐾 such that ]
1
(𝑦, 𝑢) ≥ inf

𝑥∈𝑋
𝜇
1
(𝑥, 𝑥)

for each 𝑢 ∈ 𝐷. In particular, we have sup
𝑦∈𝐾

inf
𝑢∈𝐷

]
1
(𝑦, 𝑢) ≥

inf
𝑥∈𝑋

𝜇
1
(𝑥, 𝑥).
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Proof. By setting 𝜇


1
= −𝜇

1
and ]

1
= −]

1
, we can see that the

conclusion of Corollary 43 holds from Corollary 41.

Theorem 44. Let (𝑌; 𝜑
1

𝑁1
) and (𝑋; 𝜑

2

𝑁2
) be two 𝐹𝑊𝐶-spaces,

where 𝑋 and 𝑌 are two Hausdorff topological spaces. Let 𝑇 ∈

B̃(𝑌×𝑋, 𝑌×𝑋) be a compact set-valued mapping, where (𝑌×

𝑋; 𝜑
1

𝑁1
× 𝜑

2

𝑁2
) is an 𝐹𝑊𝐶-space defined as in Lemma 5. Let 𝜇

1

be a real-valued function on 𝑌 × 𝑋. Assume that

(i) for each (𝑧, 𝑤) ∈ 𝑌 × 𝑋, each (𝑦, 𝑥) ∈ 𝑇(𝑧, 𝑤), and
each 𝛼 ∈ R, 𝜇

1
(𝑧, 𝑥) ≤ 𝛼 or 𝜇

1
(𝑦, 𝑤) ≥ 𝛼;

(ii) for each (𝑧, 𝑤) ∈ 𝑌 × 𝑋 and each 𝛼 ∈ R, the sets {𝑥 ∈

𝑋 : 𝜇
1
(𝑧, 𝑥) ≤ 𝛼} and {𝑦 ∈ 𝑌 : 𝜇

1
(𝑦, 𝑤) ≥ 𝛼} are

compactly closed;
(iii) for each 𝑥 ∈ 𝑋 and each 𝛼 ∈ R, the set {𝑧 ∈ 𝑌 :

𝜇
1
(𝑧, 𝑥) > 𝛼} is an 𝐹𝑊𝐶-subspace of (𝑌; 𝜑

1

𝑁1
);

(iv) for each 𝑦 ∈ 𝑌 and each 𝛼 ∈ R, the set {𝑤 ∈ 𝑋 :

𝜇
1
(𝑦, 𝑤) < 𝛼} is an 𝐹𝑊𝐶-subspace of (𝑋; 𝜑

2

𝑁2
).

Then inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝜇
1
(𝑦, 𝑥) = sup

𝑦∈𝑌
inf

𝑥∈𝑋
𝜇
1
(𝑦, 𝑥).

Proof. It is clear that the following inequality

inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝜇
1
(𝑦, 𝑥) ≥ sup

𝑦∈𝑌

inf
𝑥∈𝑋

𝜇
1
(𝑦, 𝑥) (76)

is always true. In order to prove that the equality holds, it
suffices to show the following inequality:

inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝜇
1
(𝑦, 𝑥) ≤ sup

𝑦∈𝑌

inf
𝑥∈𝑋

𝜇
1
(𝑦, 𝑥) . (77)

Suppose the contrary. Then we have

inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝜇
1
(𝑦, 𝑥) > sup

𝑦∈𝑌

inf
𝑥∈𝑋

𝜇
1
(𝑦, 𝑥) . (78)

It follows that there exists 𝛼 ∈ R such that
inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝜇
1
(𝑦, 𝑥) > 𝛼 > sup

𝑦∈𝑌

inf
𝑥∈𝑋

𝜇
1
(𝑦, 𝑥) , (79)

which shows that for each (𝑦, 𝑥) ∈ 𝑌×𝑋, there exists (𝑦, 𝑥) ∈

𝑌 × 𝑋 such that

𝜇
1
(𝑦, 𝑥) > 𝛼, 𝜇

1
(𝑦, 𝑥) < 𝛼. (80)

Following themethod in the proof ofTheorem4.4 of Tan [41],
we define the real-valued function 𝜐 : (𝑌×𝑋)×(𝑌×𝑋) → R

by

𝜐 ((𝑦, 𝑥) , (𝑧, 𝑤)) =

{{

{{

{

1, if 𝜇
1 (𝑧, 𝑥) > 𝛼,

𝜇
1
(𝑦, 𝑤) < 𝛼,

0, otherwise.
(81)

By (i) and the definition of 𝜐, for each (𝑧, 𝑤) ∈ 𝑌 × 𝑋, each
(𝑦, 𝑥) ∈ 𝑇(𝑧, 𝑤), we have 𝜐((𝑦, 𝑥), (𝑧, 𝑤)) ≤ 0. For each
(𝑧, 𝑤) ∈ 𝑌 × 𝑋, we have

{(𝑦, 𝑥) ∈ 𝑌 × 𝑋 : 𝜐 ((𝑦, 𝑥) , (𝑧, 𝑤)) ≤ 0}

= (𝑌 × {𝑥 ∈ 𝑋 : 𝜇
1 (𝑧, 𝑥) ≤ 𝛼})

⋃({𝑦 ∈ 𝑌 : 𝜇
1
(𝑦, 𝑤) ≥ 𝛼} × 𝑋) .

(82)

Then by (ii), we know that for each (𝑧, 𝑤) ∈ 𝑌 × 𝑋, the set
{(𝑦, 𝑥) ∈ 𝑌 × 𝑋 : 𝜐((𝑦, 𝑥), (𝑧, 𝑤)) ≤ 0} is compactly closed.

Now,we show that for each (𝑦, 𝑥) ∈ 𝑌×𝑋, the set {(𝑧, 𝑤) ∈

𝑌×𝑋 : 𝜐((𝑦, 𝑥), (𝑧, 𝑤)) > 0} is an 𝐹𝑊𝐶-space of (𝑌×𝑋; 𝜑
1

𝑁1
×

𝜑
2

𝑁2
). In fact, for each (𝑦, 𝑥) ∈ 𝑌 × 𝑋, we have the following:

{(𝑧, 𝑤) ∈ 𝑌 × 𝑋 : 𝜐 ((𝑦, 𝑥) , (𝑧, 𝑤)) > 0}

= ({𝑧 ∈ 𝑌 : 𝜇
1 (𝑧, 𝑥) > 𝛼} × 𝑋)

⋂(𝑌 × {𝑤 ∈ 𝑋 : 𝜇
1
(𝑦, 𝑤) < 𝛼}) .

(83)

Then by (iii) and (iv), for each 𝑁 = 𝑁
1

× 𝑁
2

=

{(𝑧
0
, 𝑤

0
), (𝑧

1
, 𝑤

1
), . . . , (𝑧

𝑛
, 𝑤

𝑛
)} ∈ ⟨𝑌 × 𝑋⟩ and each

{(𝑧
𝑖0
, 𝑤

𝑖0
), (𝑧

𝑖1
, 𝑤

𝑖1
), . . . , (𝑧

𝑖𝑘
, 𝑤

𝑖𝑘
)} ⊆ {(𝑧, 𝑤) ∈ 𝑌 × 𝑋 :

𝜐((𝑦, 𝑥), (𝑧, 𝑤)) > 0} ∩ 𝑁, we have

𝜑
1

𝑁1
(Δ

𝑘
) ⊆ {𝑧 ∈ 𝑌 : 𝜇

1 (𝑧, 𝑥) > 𝛼} ,

𝜑
2

𝑁2
(Δ

𝑘
) ⊆ {𝑤 ∈ 𝑋 : 𝜇

1
(𝑦, 𝑤) < 𝛼} .

(84)

Since 𝜑
𝑁
(Δ

𝑘
) = 𝜑

1

𝑁1
(Δ

𝑘
) × 𝜑

2

𝑁2
(Δ

𝑘
), it follows from (84) that

𝜑
𝑁

(Δ
𝑘
) ⊆ 𝑌 × {𝑤 ∈ 𝑋 : 𝜇

1
(𝑦, 𝑤) < 𝛼} ,

𝜑
𝑁

(Δ
𝑘
) ⊆ {𝑧 ∈ 𝑌 : 𝜇

1 (𝑧, 𝑥) > 𝛼} × 𝑋.

(85)

Therefore, we have 𝜑
𝑁
(Δ

𝑘
) ⊆ {(𝑧, 𝑤) ∈ 𝑌 × 𝑋 :

𝜐((𝑦, 𝑥), (𝑧, 𝑤)) > 0}, which implies that for each (𝑦, 𝑥) ∈

𝑌 × 𝑋, the set {(𝑧, 𝑤) ∈ 𝑌 × 𝑋 : 𝜐((𝑦, 𝑥), (𝑧, 𝑤)) > 0} is an
𝐹𝑊𝐶-subspace of (𝑌 × 𝑋; 𝜑

1

𝑁1
× 𝜑

2

𝑁2
). Thus, by Corollary 35

with 𝑋 = 𝐷 and 𝜇
1

= ]
1
, there exists (𝑦, 𝑥) ∈ 𝑇(𝑌 × 𝑋) such

that 𝜐((𝑦, 𝑥), (𝑧, 𝑤)) ≤ 0 for each (𝑧, 𝑤) ∈ 𝑌 × 𝑋. Hence, for
each (𝑧, 𝑤) ∈ 𝑌×𝑋, either𝜇

1
(𝑧, 𝑥) ≤ 𝛼 or𝜇

1
(𝑦, 𝑤) ≥ 𝛼, which

contradicts (80). Therefore, we have inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝜇
1
(𝑦, 𝑥) =

sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝜇
1
(𝑦, 𝑥). This completes the proof.

Remark 45. Theorem 44 generalizes Theorem 4.4 of Tan
[41] in the following aspects: (a) The underlying spaces of
Theorem 44 are 𝐹𝑊𝐶-spaces which containG-convex spaces
adopted in Theorem 4.4 of Tan [41]; (b) the assumption that
each 𝐺-co(𝐴) and each 𝐺-co(𝐵) in Theorem 4.4 of Tan [41]
are compact is dropped; (c) (ii) ofTheorem 44 is weaker than
(1) and (2) of Theorem 4.4 of Tan [41]; (d) (iii) and (iv) of
Theorem 44 are weaker than (3) of Theorem 4.4 of Tan [41].
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