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The shifted Jacobi-Gauss collocation (SJGC) scheme is proposed and implemented to solve the fractional neutral functional-
differential equations with proportional delays.The technique we have proposed is based upon shifted Jacobi polynomials with the
Gauss quadrature integration technique.Themain advantage of the shifted Jacobi-Gauss scheme is to reduce solving the generalized
fractional neutral functional-differential equations to a system of algebraic equations in the unknown expansion. Reasonable
numerical results are achieved by choosing few shifted Jacobi-Gauss collocation nodes. Numerical results demonstrate the accuracy,
and versatility of the proposed algorithm.

1. Introduction

Fractional differential equations (FDEs) have drawn the
interest of many researchers in recent years [1–6], due to
their useful applications in many fields of science. In fact,
we may observe several applications in electrochemistry, vis-
coelasticity, electromagnetic, control, plasma physics, porous
media, fluctuating environments, dynamical processes, and
so on. In consequence, fractional differential equations are
gainingmuch attention from the researchers. For some recent
developments on this subject, see [7–15].

In the last decade or so, comprehensive research has been
accomplished on the development of numerical algorithms
which are numerically stable for both linear and nonlinear
FDEs. Tripathi et al. [16] presented a new operational matrix
of hat functions to solve linear FDEs.The spectral taumethod
was proposed in [17] to achieve an accurate solution of linear
and nonlinear FDEs subject to multipoint conditions. In
[18], the author proposed Bernstein polynomial to design
a numerical algorithm for fractional Riccati equations. The
authors of [19] investigated the spline collocation method for
approximating the solution of nonlinear FDEs. Furthermore,
the author of [20] transformed the time-dependent space

FDE with variable coefficients into a system of ordinary
differential equations, which is then solved by a standard
numerical method. Baleanu et al. [21] developed the general-
ized Laguerre spectral tau and collocation approximations to
solve FDEs on the half line. In [22], Ma andHuang developed
spectral collocation method for solving linear fractional
integrodifferential equations. Yang and Huang [23] analyzed
and developed the Jacobi collocation scheme for pantograph
integrodifferential equations with fractional orders in finite
interval. In [24] Yin et al. proposed a new fractional-order
Legendre function with spectral method to solve partial
FDEs; based on the operational matrix of these functions, the
same authors developed their approach in combination with
variational iteration formula to solve a class of FDEs; see [25].
More recently, the Jacobi Galerkin method was extended in
[26] to solve stochastic FDEs.

Polynomial approximations can be quite useful for
expressing the solution of a differential equation. One such
approach would be the spectral methods. An advantage of
a spectral collocation method is that it gives high accurate
solutions with relatively fewer spatial grid nodes when com-
pared with other numerical techniques. In [27], the Jacobi
rational collocation scheme was proposed and developed to
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solve generalized pantograph equations. In [28], the authors
extended the application of Jacobi-Gauss-Lobatto collocation
approximation to solve (1 + 1) nonlinear Schrödinger equa-
tions. Also, the generalized Laguerre-Legendre collocation
method has been successfully applied to initial-boundary
value problems [29]. In [30], approximate solutions of nonlin-
ear Klein-Gordon and Sine-Gordon equations were provided
using the Chebyshev tau meshless scheme. For some recent
developments on spectral methods, see [31–34].

Neutral functional-differential equations play an impor-
tant role in the mathematical modeling of several phe-
nomena. It is well known that most of delay differential
equations cannot be solved exactly. Therefore, numerical
methods would be presented and developed to get approx-
imate solutions of these equations. In this direction, Ishi-
wata and Muroya [35] applied the rational approximation
scheme for solving a class of delay differential equations.
In [36], Chen and Wang implemented the variational itera-
tion scheme to obtain an analytical solution of the neutral
functional-differential equation. Very recently, Heydari et
al. [37] proposed a new numerical algorithm based on
the operational matrix formulation of Chebyshev cardinal
functions for solving delay differential equations arising
in electrodynamics. In this paper we propose a numerical
solution for a new class of delay differential equations,
namely, fractional neutral functional-differential equations
(FNFDEs) with proportional delay.

The main aim of this paper is to design a suitable way to
approximate a new class of functional-differential equations
with fractional orders on the interval (0, 𝐿) using spectral
collocation method. The spectral shifted Jacobi-Gauss col-
location (SJGC) approximation is proposed to obtain the
numerical solution 𝑢

𝑁
(𝑡). The SJGC approximation, which is

more reliable, is employed to obtain approximate solution of
FNFDEs with leading fractional order 𝜃 (𝑚 − 1 < 𝜃 < 𝑚)

and 𝑚 initial conditions. We choose the (𝑁 − 𝑚 + 1) nodes
of the shifted Jacobi-Gauss interpolation on (0, 𝐿) as suitable
collocation nodes. The Legendre and Chebyshev collocation
approximations can be obtained as special cases from our
general approach. Finally, the validity and effectiveness of
the method are demonstrated by solving two numerical
examples. Numerical examples are presented in the form
of tables and graphs to make comparisons with the results
obtained by other methods and with the exact solutionsmore
easier.

In the next section, we present an overview of shifted
Jacobi polynomials and fractional calculus needed hereafter.
Section 3 is devoted to present and implement the collocation
scheme for solving FNFDEs with proportional delay using
Jacobi polynomials. In Section 4, we introduce two numerical
examples demonstrating the high accuracy and efficiency of
the present numerical algorithm.

2. Preliminaries

Here, we state some preliminaries of fractional calculus [38]
and some relevant properties of Jacobi polynomials. The
most commonly used definition of fractional integral is the
Riemann-Liouville operator.

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order 𝜃 (𝜃 > 0) is defined as

𝐽
𝜃
𝑓 (𝑡) =

1

Γ (𝜃)
∫
𝑡

0

(𝑡 − 𝑠)
𝜃−1

𝑓 (𝑠) 𝑑𝑠, 𝜃 > 0, 𝑡 > 0,

𝐽
0
𝑓 (𝑡) = 𝑓 (𝑡) .

(1)

Definition 2. The Caputo fractional derivatives of order 𝜃 are
defined as

𝐷
𝜃
𝑓 (𝑡) = 𝐽

𝑚−𝜃
𝐷
𝑚
𝑓 (𝑡)

=
1

Γ (𝑚 − 𝜃)
∫
𝑡

0

(𝑡 − 𝑠)
𝑚−𝜃−1 𝑑

𝑚

𝑑𝑠𝑚
𝑓 (𝑠) 𝑑𝑠,

𝑚 − 1 < 𝜃 < 𝑚, 𝑡 > 0,

(2)

where𝐷𝑚 is the classical differential operator of order𝑚.
Also

𝐷
𝜃
𝐶 = 0, (𝐶 is aconstant) , (3)

𝐷
𝜃
𝑡
𝜇

=

{{{{{{

{{{{{{

{

0,

for𝜇 ∈ 𝑁
0
, 𝜇 < ⌈𝜃⌉ ,

Γ (𝜇 + 1)

Γ (𝜇 + 1 − 𝜃)
𝑡𝜇−𝜃,

for𝜇 ∈ 𝑁
0
, 𝜇 ≥ ⌈𝜃⌉ or𝜇 ∉ 𝑁, 𝜇 > ⌊𝜃⌋ ,

(4)

where𝑁 = {1, 2, . . .} and𝑁
0
= {0, 1, 2, . . .}, while ⌈𝜃⌉ and ⌈𝜃⌉

are the floor and ceiling functions, respectively,
The Caputo’s fractional differentiation is a linear opera-

tion, similar to the integer-order differentiation

𝐷
𝜃
(𝜆𝑓 (𝑡) + 𝜂𝑔 (𝑡)) = 𝜆𝐷

𝜃
𝑓 (𝑡) + 𝜂𝐷

𝜃
𝑔 (𝑡) , (5)

where 𝜆 and 𝜂 are constants.
Let ] > −1, 𝜇 > −1 and let 𝑃(],𝜇)

𝑘
(𝑡) be the Jacobi

polynomial of degree 𝑘; then we get

𝑃
(],𝜇)
𝑘

(−𝑡) = (−1)
𝑘
𝑃
(],𝜇)
𝑘

(𝑡) ,

𝑃
(],𝜇)
𝑘

(−1) =
(−1)
𝑘
Γ (𝑘 + 𝜇 + 1)

𝑘!Γ (𝜇 + 1)
,

𝑃
(],𝜇)
𝑘

(1) =
Γ (𝑘 + ] + 1)
𝑘!Γ (] + 1)

.

(6)

Besides,

𝐷
𝑚
𝑃
(],𝜇)
𝑘

(𝑡) = 2
−𝑚

Γ (𝑚 + 𝑘 + ] + 𝜇 + 1)
Γ (𝑘 + ] + 𝜇 + 1)

𝑃
(]+𝑚,𝜇+𝑚)
𝑘−𝑚

(𝑡) . (7)

Let 𝑤(],𝜇)(𝑡) = (1 − 𝑡)
]
(1 + 𝑡)

𝜇; then we define the weighted
space 𝐿2

𝑤
(],𝜇)[−1, 1] as usual, equipped with the following

inner product and norm:

(𝑢, V)
𝑤
(],𝜇) = ∫

1

−1

𝑢 (𝑡) V (𝑡) 𝑤(],𝜇) (𝑡) 𝑑𝑡,

‖V‖
𝑤
(],𝜇) = (V, V)1/2

𝑤
(],𝜇) .

(8)
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The set of Jacobi polynomials forms a complete 𝐿2
𝑤

],𝜇[−1, 1]-
orthogonal system, and

𝑃
(],𝜇)
𝑘



2

𝑤
(],𝜇)

= ℎ
(],𝜇)
𝑘

=
2]+𝜇+1Γ (𝑘 + ] + 1) Γ (𝑘 + 𝜇 + 1)

(2𝑘 + ] + 𝜇 + 1) Γ (𝑘 + 1) Γ (𝑘 + ] + 𝜇 + 1)
.

(9)

Let us define the shifted Jacobi polynomial of degree 𝑘 by
𝑃
(],𝜇)
𝐿,𝑘

(𝑡) = 𝑃
(],𝜇)
𝑘

((2𝑡/𝐿) − 1), 𝐿 > 0, and thanks to (6) and (7),
yield

𝐷
𝑞
𝑃
(],𝜇)
𝐿,𝑘

(0) =
(−1)
𝑘−𝑞

Γ (𝑘 + 𝜇 + 1) (𝑘 + ] + 𝜇 + 1)
𝑞

𝐿𝑞Γ (𝑘 − 𝑞 + 1) Γ (𝑞 + 𝜇 + 1)
, (10)

𝐷
𝑚
𝑃
(],𝜇)
𝐿,𝑘

(𝑡) =
Γ (𝑚 + 𝑘 + ] + 𝜇 + 1)
𝐿𝑚Γ (𝑘 + ] + 𝜇 + 1)

𝑃
(]+𝑚,𝜇+𝑚)
𝐿,𝑘−𝑚

(𝑡) . (11)

The shifted Jacobi polynomials of degree 𝑖 on the interval
[0, 𝐿] are given by

𝑃
(],𝜇)
𝐿,𝑖

(𝑡)

=

𝑖

∑
𝑘=0

(−1)
𝑖−𝑘

( (Γ (𝑖 + 𝜇 + 1) Γ (𝑖 + 𝑘 + ] + 𝜇 + 1) 𝑡𝑘)

× (Γ (𝑘 + 𝜇 + 1) Γ (𝑖 + ] + 𝜇 + 1)

×(𝑖 − 𝑘)!𝑘!𝐿
𝑘
)
−1

) 𝑖 = 0, 1, . . . .

(12)

Since the analytic form of 𝑃(],𝜇)
𝐿,𝑖

(𝑡) is given by (12), with
the use of (4), (5), and (12), we obtain

𝐷
𝜃
𝑃
(],𝜇)
𝐿,𝑖

(𝑡)

=

𝑖

∑
𝑘=0

(−1)
𝑖−𝑘

( (Γ (𝑖 + 𝜇 + 1) Γ (𝑖 + 𝑘 + ] + 𝜇 + 1))

× (Γ (𝑘 + 𝜇 + 1) Γ (𝑖 + ] + 𝜇 + 1)

×(𝑖 − 𝑘)!𝑘!𝐿
𝑘
)
−1

)𝐷
𝜃
𝑡
𝑘

=

𝑖

∑
𝑘=⌈𝜃⌉

(−1)
𝑖−𝑘

( (Γ (𝑖 + 𝜇 + 1) Γ (𝑖 + 𝑘 + ] + 𝜇 + 1))

× (Γ (𝑘 + 𝜇 + 1) Γ (𝑖 + ] + 𝜇 + 1)

×(𝑖 − 𝑘)!Γ (𝑘 − 𝜃 + 1) 𝐿
𝑘
)
−1

) 𝑡
𝑘−𝜃

,

𝑖 = ⌈𝜃⌉ , . . . , 𝑁.

(13)

Now, approximate 𝑡𝑘−𝜃 by 𝑁 + 1 terms of shifted Jacobi
series; we have

𝑡
𝑘−𝜃

=

𝑁

∑
𝑗=0

𝑏
𝑗
𝑃
(],𝜇)
𝐿,𝑗

(𝑡) , (14)

where 𝑏
𝑗
is given from (18) with 𝑢(𝑥) = 𝑡𝑘−𝜃, and

𝑏
𝑗
=
𝐿]+𝜇−𝜃+1 Γ (𝑗 + 𝜇 + 1)

ℎ
(],𝜇)
𝑗

Γ (𝑗 + ] + 𝜇 + 1)

×

𝑗

∑
ℓ=0

(((−1)
𝑗−ℓ
Γ (𝑗 + ℓ + ] + 𝜇 + 1) Γ (] + 1)

× Γ (ℓ + 𝑘 − 𝜃 + ] + ℓ + 1))

× (Γ (ℓ + 𝜇 + 1) (𝑗 − ℓ)! (ℓ)!

× Γ (ℓ + 𝑘 − 𝜃 + ] + ℓ + 2Γ))−1) .

(15)

Employing (13)–(15) we get

𝐷
𝜃
𝑃
(],𝜇)
𝐿,𝑖

(𝑡) =

𝑁

∑
𝑗=0

𝑆
𝜃
(𝑖, 𝑗) 𝑃

(],𝜇)
𝐿,𝑗

(𝑡) , 𝑖 = ⌈𝜃⌉ , . . . , 𝑁, (16)

where 𝑆
𝜃
(𝑖, 𝑗) = ∑

𝑖

𝑘=⌈𝜃⌉
𝜗
𝑖𝑗𝑘
, and

𝜗
𝑖𝑗𝑘

= ((−1)
𝑖−𝑘
𝐿
]+𝜇−𝜃+1

Γ (𝑗 + 𝜇 + 1)

× Γ (𝑖 + 𝜇 + 1) Γ (𝑖 + 𝑘 + ] + 𝜇 + 1) )

× (ℎ
(],𝜇)
𝑗

Γ (𝑗 + ] + 𝜇 + 1) Γ (𝑘 + 𝜇 + 1)

×Γ (𝑖 + ] + 𝜇 + 1) Γ (𝑘 − 𝜃 + 1) (𝑖 − 𝑘)!)
−1

×

𝑗

∑
ℓ=0

(((−1)
𝑗−ℓ
Γ (𝑗 + ℓ + ] + 𝜇 + 1) Γ (] + 1)

× Γ (ℓ + 𝑘 − 𝜃 + ] + ℓ + 1) )

× (Γ (ℓ + 𝜇 + 1) (𝑗 − ℓ)! (ℓ)!

× Γ (ℓ + 𝑘 − 𝜃 + ] + ℓ + 2))−1) .

(17)

A function 𝑢(𝑡) ∈ 𝐿2
𝑤
(],𝜇)(0, 𝐿) may be expressed in terms

of shifted Jacobi polynomials as

𝑢 (𝑡) =

∞

∑
𝑗=0

𝑎
𝑗
𝑃
(],𝜇)
𝐿,𝑗

(𝑡) ,

𝑎
𝑗
=

1

ℎ
(],𝜇)
𝑘

∫
𝐿

0

𝑢 (𝑡) 𝑃
(],𝜇)
𝐿,𝑗

(𝑡) 𝑤
(],𝜇)

(𝑡) 𝑑𝑡, 𝑗 = 0, 1, 2, . . . .

(18)

In practice, only the first (𝑁 + 1) terms shifted Jacobi
polynomials are considered. Then we have

𝑢
𝑁 (𝑡) =

𝑁

∑
𝑗=0

𝑎
𝑗
𝑃
(],𝜇)
𝐿,𝑗

(𝑡) . (19)
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Next, let𝑤(],𝜇)
𝐿

(𝑡) = (𝐿−𝑡)
]
𝑡𝜇; thenwe define the weighted

space 𝐿2
𝑤
(],𝜇)
𝐿

[0, 𝐿] in the usual way, with the following inner
product and norm:

(𝑢, V)
𝑤
(],𝜇)
𝐿

= ∫
𝐿

0

𝑢 (𝑡) V (𝑡) 𝑤(],𝜇)
𝐿

(𝑡) 𝑑𝑡,

‖V‖
𝑤
(],𝜇)
𝐿

= (V, V)1/2
𝑤
(],𝜇)
𝐿

.

(20)

The set of shifted Jacobi polynomials forms a complete
𝐿2
𝑤
(],𝜇)
𝐿

[0, 𝐿]-orthogonal system. Moreover, and due to (9), we
have


𝑃
(],𝜇)
𝐿,𝑘



2

𝑤
(],𝜇)
𝐿

= (
𝐿

2
)
]+𝜇+1

ℎ
(],𝜇)
𝑘

= ℎ
(],𝜇)
𝐿,𝑘

. (21)

3. Shifted Jacobi Collocation
Approximation for FNFDEs

In this section, we propose the shifted Jacobi collocation
method with the Jacobi-Gauss quadrature nodes to solve
numerically the following FNFDEs with proportional delay:

𝐷
𝜃
(𝑢 (𝑡) + 𝑎 (𝑡) 𝑢 (𝑝𝑚𝑡))

= 𝜇𝑢 (𝑡) +

𝑚−1

∑
𝑛=0

𝑏
𝑛 (𝑡) 𝐷

𝛾𝑛𝑢 (𝑝
𝑛
𝑡) + 𝑓 (𝑡) , 𝑡 ≥ 0,

(22)

with the initial conditions

𝑚−1

∑
𝑛=0

𝑐
𝑖𝑛
𝑢
(𝑛)
(0) = 𝜆

𝑖
, 𝑖 = 0, 1, . . . , 𝑚 − 1. (23)

Here, 𝑎 and 𝑏
𝑛
(𝑛 = 0, 1, . . . , 𝑚 − 1) are given analytical

functions, 𝑚 − 1 < 𝜃 ≤ 𝑚, 0 < 𝛾
0
< 𝛾
1
< ⋅ ⋅ ⋅ < 𝛾

𝑚−1
< 𝜃

and 𝜇, 𝑝
𝑛
, 𝑐
𝑖𝑛
, 𝜆
𝑖
denote given constants with 0 < 𝑝

𝑛
< 1 (𝑛 =

0, 1, . . . , 𝑚). By using the shifted Jacobi-Gauss collocation
method [39], we can approximate the fractional neutral
functional-differential equations with proportional delays,
without any artificial boundary and variable transformation.
Let us first introduce some basic notation that will be used in
the sequel.

Now we introduce the Jacobi-Gauss-Lobatto quadratures
in two different intervals (−1, 1), and (0, 𝐿). Denoting by
𝑡
(],𝜇)
𝑁,𝑗

(𝑡
(],𝜇)
𝐿,𝑁,𝑗

), 0 ⩽ 𝑗 ⩽ 𝑁, and 𝜛
(],𝜇)
𝑁,𝑗

(𝜛
(],𝜇)
𝐿,𝑁,𝑗

), (0 ≤ 𝑖 ≤ 𝑁),
the nodes and Christoffel numbers of the standard (shifted)
Jacobi-Gauss-Lobatto quadratures on (−1, 1), (0, 𝐿), respec-
tively. Therefore, we can deduce that

𝑡
(],𝜇)
𝐿,𝑁,𝑗

=
𝐿

2
(𝑡
(],𝜇)
𝑁,𝑗

+ 1) , 0 ≤ 𝑗 ≤ 𝑁,

𝜛
(],𝜇)
𝐿,𝑁,𝑗

= (
𝐿

2
)
]+𝜇+1

𝜛
(],𝜇)
𝑁,𝑗

, 0 ≤ 𝑗 ≤ 𝑁.

(24)

Let 𝑆
𝑁
(0, 𝐿) be the set of all polynomials of degree ≤ 𝑁; then,

for any 𝜙 ∈ 𝑆
2𝑁+1

(0, 𝐿), we have

∫
𝐿

0

𝑤
(],𝜇)
𝐿

(𝑡) 𝜙 (𝑡) 𝑑𝑡

= (
𝐿

2
)
]+𝜇+1

∫
1

−1

(1 − 𝑡)
]
(1 + 𝑡)

𝜇
𝜙(

𝐿

2
(𝑡 + 1)) 𝑑𝑡

= (
𝐿

2
)
]+𝜇+1 𝑁

∑
𝑗=0

𝜛
(],𝜇)
𝑁,𝑗

𝜙(
𝐿

2
(𝑡
(],𝜇)
𝑁,𝑗

+ 1))

=

𝑁

∑
𝑗=0

𝜛
(],𝜇)
𝐿,𝑁,𝑗

𝜙 (𝑡
(],𝜇)
𝐿,𝑁,𝑗

) .

(25)

We set

𝑆
𝑁 (0, 𝐿) = span {𝑃(],𝜇)

𝐿,0
(𝑡) , 𝑃
(],𝜇)
𝐿,1

(𝑡) , . . . , 𝑃
(],𝜇)
𝐿,𝑁

(𝑡)} , (26)

and the inner product and norm are defined as

(𝑢, V)
𝑤
(],𝜇)
𝑁

=

𝑁

∑
𝑗=0

𝑢 (𝑡
(],𝜇)
𝐿,𝑁,𝑗

) V (𝑡(],𝜇)
𝐿,𝑁,𝑗

) 𝜛
(],𝜇)
𝐿,𝑁,𝑗

,

‖𝑢‖
𝑤
(],𝜇)
𝑁

= √(𝑢, 𝑢)
𝑤
(],𝜇)
𝑁

.

(27)

Obviously,

(𝑢, V)
𝑤
(],𝜇)
𝑁

= (𝑢, V)
𝑤
(],𝜇) , ∀𝑢, V ∈ 𝑆

2𝑁+1
. (28)

Thus, for any 𝑢 ∈ 𝑆
𝑁
(0, 𝐿), the norms ‖𝑢‖

𝑤
(],𝜇)
𝑁

and ‖𝑢‖
𝑤
(],𝜇)
𝑁

coincide.
Associating with this quadrature rule, we denote by 𝐼𝑃

(],𝜇)
𝐿

𝑁

the Jacobi-Gauss interpolation operator

𝐼
𝑃
(],𝜇)
𝐿

𝑁
𝑢 (𝑡
(],𝜇)
𝐿,𝑁,𝑗

) = 𝑢 (𝑡
(],𝜇)
𝐿,𝑁,𝑗

) , 0 ≤ 𝑘 ≤ 𝑁. (29)

The shifted Jacobi-Gauss collocation method for solving
(22) and (23) is to seek 𝑢

𝑁
(𝑥) ∈ 𝑆

𝑁
(0, 𝐿), such that

𝐷
𝜃
(𝑢 (𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

) + 𝑎 (𝑡
(],𝜇)
𝐿,𝑁− 𝑚,𝑘

) 𝑢 (𝑝
𝑚
𝑡
(],𝜇)
𝐿,𝑁− 𝑚,𝑘

))

= 𝜇𝑢 (𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

) +

𝑚−1

∑
𝑛=0

𝑏
𝑛
(𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

)𝐷
𝛾𝑛𝑢 (𝑝

𝑛
𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

)

+ 𝑓 (𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

) , 𝑘 = 0, 1, . . . , 𝑁 − 𝑚,

𝑚−1

∑
𝑛=0

𝑐
𝑖𝑛
𝑢
(𝑛)
(0) = 𝜆

𝑖
, 𝑖 = 0, 1, . . . , 𝑚 − 1.

(30)

We now derive the algorithm for solving (22) and (23). To
do this, let

𝑢
𝑁 (𝑡) =

𝑁

∑
ℎ=0

𝑎
ℎ
𝑃
(],𝜇)
𝐿,ℎ

(𝑡) , a = (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁
)
𝑇
. (31)
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We first approximate 𝐷𝜃𝑢(𝑡) and 𝐷𝛾𝑛𝑢(𝑡), 𝑛 = 0, 1, . . . ,
𝑚 − 1, using (31). By substituting this approximation in (22),
we get

𝐷
𝜃
(

𝑁

∑
ℎ=0

𝑎
ℎ
𝑃
(],𝜇)
𝐿,ℎ

(𝑡) + 𝑎 (𝑡)

𝑁

∑
ℎ=0

𝑎
ℎ
𝑃
(],𝜇)
𝐿,ℎ

(𝑝
𝑚
𝑡))

= 𝜇

𝑁

∑
ℎ=0

𝑎
ℎ
𝑃
(],𝜇)
𝐿,ℎ

(𝑡)

+

𝑚−1

∑
𝑛=0

𝑁

∑
ℎ=0

𝑎
ℎ
𝑏
𝑛 (𝑡) 𝐷

𝛾𝑛𝑃
(],𝜇)
𝐿,ℎ

(𝑝
𝑛
𝑡) + 𝑓 (𝑡) .

(32)

Making use of (16), we deduce that
𝑁

∑
ℎ=0

𝑁

∑
𝜎=0

𝑎
ℎ
𝑆
𝜃 (ℎ, 𝜎) 𝑃

(],𝜇)
𝐿,𝜎

(𝑡)

+ 𝑎 (𝑡)

𝑁

∑
ℎ=0

𝑁

∑
𝜎=0

𝑎
ℎ
𝑆
𝜃 (ℎ, 𝜎) 𝑃

(],𝜇)
𝐿,𝜎

(𝑝
𝑚
𝑡)

= 𝜇

𝑁

∑
ℎ=0

𝑎
ℎ
𝑃
(],𝜇)
𝐿,ℎ

(𝑡)

+

𝑚−1

∑
𝑛=0

𝑁

∑
ℎ=0

𝑁

∑
𝜎=0

𝑎
ℎ
𝑏
𝑛 (𝑡) 𝑆𝛾𝑛 (ℎ, 𝜎) 𝑃

(],𝜇)
𝐿,𝜎

(𝑝
𝑛
𝑡) + 𝑓 (𝑡) .

(33)

Also, by substituting (31) in (23) we obtain
𝑚−1

∑
𝑛=0

𝑀

∑
𝑓=0

𝑎
𝑖𝑛
𝐷
(𝑛)
𝑃
(],𝜇)
𝐿,𝑓

(0) = 𝜆
𝑖
. (34)

Now, we collocate (33) at the (𝑁 − 𝑚 + 1) shifted Jacobi-
Gauss interpolation points, yielding
𝑁

∑
ℎ=0

𝑁

∑
𝜎=0

𝑎
ℎ
𝑆
𝜃 (ℎ, 𝜎) 𝑃

(],𝜇)
𝐿,𝜎

(𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

) + 𝑎 (𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

)

×

𝑁

∑
ℎ=0

𝑁

∑
𝜎=0

𝑎
ℎ
𝑆
𝜃 (ℎ, 𝜎) 𝑃

(],𝜇)
𝐿,𝜎

(𝑝
𝑚
𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

)

= 𝜇

𝑁

∑
ℎ=0

𝑎
ℎ
𝑃
(],𝜇)
𝐿,ℎ

(𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

)

+

𝑚−1

∑
𝑛=0

𝑁

∑
ℎ= 0

𝑁

∑
𝜎= 0

𝑎
ℎ
𝑏
𝑛
(𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

) 𝑆
𝛾𝑛

× (ℎ, 𝜎) 𝑃
(],𝜇)
𝐿,𝜎

(𝑝
𝑛
𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

)

+ 𝑓 (𝑡
(],𝜇)
𝐿,𝑁−𝑚,𝑘

) .

(35)

Next (34), after using (10), can be written as

𝑚−1

∑
𝑛=0

𝑀

∑
𝑓=0

(−1)
𝑞
𝑎
𝑖𝑛

(−1)
𝑓−𝑞

Γ (𝑓 + 𝜇 + 1) (𝑓 + ] + 𝜇 + 1)
𝑞

𝐿𝑞Γ (𝑓 − 𝑞 + 1) Γ (𝑞 + 𝜇 + 1)
= 𝜆
𝑖
.

(36)

Table 1: Absolute errors using SJGC method at 𝑁 = 16 for
Example 3.

𝑥 ] = 𝜇 = −1/2 ] = 𝜇 = 0 ] = 𝜇 = 1/2

0.5 1.040 ⋅ 10
−3

2.799 ⋅ 10
−3

2.393 ⋅ 10
−4

1.0 1.025 ⋅ 10−3 4.986 ⋅ 10−3 2.967 ⋅ 10−4

1.5 4.512 ⋅ 10−3 4.006 ⋅ 10−3 6.043 ⋅ 10−4

2.0 3.660 ⋅ 10−3 2.487 ⋅ 10−3 1.693 ⋅ 10−4

2.5 7.554 ⋅ 10
−3

3.817 ⋅ 10
−3

8.245 ⋅ 10
−4

3.0 2.356 ⋅ 10−3 2.975 ⋅ 10−3 5.338 ⋅ 10−4

3.5 8.775 ⋅ 10−3 8.662 ⋅ 10−3 6.166 ⋅ 10−4

4.0 4.706 ⋅ 10
−3

5.449 ⋅ 10
−3

3.453 ⋅ 10
−4

4.5 3.180 ⋅ 10−3 2.261 ⋅ 10−3 8.389 ⋅ 10−5

5.0 6.099 ⋅ 10−3 1.002 ⋅ 10−2 2.260 ⋅ 10−3

Finally, relations (35) and (36) generate (𝑁 + 1) set of
algebraic equations which can be solved for the unknown
coefficients 𝑎

𝑗
, 𝑗 = 0, 1, 2, . . . , 𝑁, by using any standard solver

technique.

4. Numerical Results

In this section, two fractional neutral functional-differential
equations with proportional delays are solved by the SJGC
method. We implement the method presented in this paper
for these two examples to demonstrate the accuracy and
capability of the proposed algorithm.

Example 3. Consider the following FNFDEs with propor-
tional delay:

𝑢
1/2

(𝑡) = −𝑢 (𝑡) +
1

4
𝑢 (

𝑡

3
) +

1

3
𝑢
1/2

(
𝑡

3
) + 𝑔 (𝑡) ,

𝑢 (0) = 1, 𝑡 ∈ [0, 5] ,

(37)

where

𝑔 (𝑡) =
1

Γ (1/2)
∫
𝑡

0

(𝑡 − 𝑠)
−1/2

𝑒
𝑠
𝑑𝑠

+ 𝑒
𝑡
−
1

4
𝑒
𝑡/3

−
1

3Γ (1/2)
∫
𝑡

0

(𝑡 − 𝑠)
−1/2

𝑒
𝑠/3
𝑑𝑠,

(38)

and the exact solution is given by 𝑢(𝑡) = 𝑒𝑡.

Table 1 lists the results obtained by the shifted Jacobi
collocation method in terms of absolute errors at 𝑁 = 16

with ] = 𝜇 = −1/2 (first kind shifted Chebyshev collocation
method), ] = 𝜇 = 0 (shifted Legendre collocation method),
and ] = 𝜇 = 1/2 (second kind shifted Chebyshev collocation
method). In the case of ] = 1/2, 𝜇 = −1/2, the approximate
solution by the presented method is shown in Figure 1, to
make it easier to compare with the analytic solution.
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Figure 1: Graph of exact solution and approximate solution for ] =
1/2, 𝜇 = −1/2 at𝑁 = 16 for Example 3.

Table 2: Absolute errors using SJGC method at 𝑁 = 16 for
Example 4.

𝑥 ] = 𝜇 = 3/2 ] = 𝜇 = 0 ] = 𝜇 = −1/2

0.1 1.462 ⋅ 10−5 3.794 ⋅ 10−5 2.092 ⋅ 10−5

0.2 7.095 ⋅ 10−5 1.641 ⋅ 10−4 9.636 ⋅ 10−5

0.3 1.717 ⋅ 10
−4

3.733 ⋅ 10
−4

1.947 ⋅ 10
−4

0.4 3.355 ⋅ 10−4 6.819 ⋅ 10−4 3.394 ⋅ 10−4

0.5 5.649 ⋅ 10−4 1.134 ⋅ 10−3 6.780 ⋅ 10−4

0.6 8.468 ⋅ 10
−4

1.705 ⋅ 10
−3

1.203 ⋅ 10
−3

0.7 1.183 ⋅ 10−3 2.411 ⋅ 10−3 1.650 ⋅ 10−3

0.8 1.592 ⋅ 10−3 3.201 ⋅ 10−3 1.934 ⋅ 10−3

0.9 2.083 ⋅ 10
−3

4.128 ⋅ 10
−3

2.295 ⋅ 10
−3

1.0 2.681 ⋅ 10−3 1.790 ⋅ 10−3 2.903 ⋅ 10−3

Example 4. Consider the following FNFDEs with propor-
tional delay:

𝑢
5/2

(𝑡) = 𝑢 (𝑡) + 𝑢
1/2

(
𝑡

2
) + 𝑢
3/2

(
𝑡

3
)

+
1

2
𝑢
5/2

(
𝑡

4
) +

Γ (5)

Γ (5/2)
𝑡
3/2

−
Γ (4)

Γ (3/2)
𝑡
1/2

− 𝑥
4

+ 𝑡
3
−

Γ (5)

Γ (9/2)
(
𝑡

2
)
7/2

+
Γ (4)

Γ (7/2)
(
𝑡

2
)
5/2

−
Γ (5)

Γ (7/2)
(
𝑡

3
)
5/2

+
Γ (4)

Γ (5/2)
(
𝑡

3
)
3/2

−
Γ (5)

2Γ (5/2)
(
𝑡

4
)
3/2

+
Γ (4)

2Γ (3/2)
(
𝑡

4
)
1/2

, 𝑡 ∈ [0, 1] ,

(39)

subject to

𝑢 (0) = 0, 𝑢

(0) = 0, 𝑢


(0) = 0, (40)

with exact solution 𝑢(𝑡) = 𝑡4 − 𝑡3.
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Figure 2: Graph of exact solution and approximate solution for ] =
𝜇 = 1/2 at𝑁 = 16 for Example 4.

In Table 2, we list the absolute errors obtained by the
shifted Jacobi collocation method, with several values of ], 𝜇
and at 𝑁 = 16. It is clear that, for all Jacobi polynomi-
als parameters, the results are stable. Meanwhile, Figure 2
presents the SJGC solution with ] = 𝜇 = 1/2 at 𝑁 = 16 and
exact solution, which are found to be in excellent agreement.

5. Conclusion

In this paper, we have proposed a numerical algorithm to
solve a class of fractional delay differential equations. The
Jacobi collocation approximation was developed to solve
this problem. A number of collocation techniques can be
obtained as special cases from the proposed technique.
Numerical results were given to demonstrate the accuracy
and applicability of the presented method.
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