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TheUWBchannel estimation andmultiuser detection problem are investigated.The information symbol and channel parameter are
considered as unknown variables. The multiuser detector and UWB channel estimator are designed jointly. For symbol detection,
the one-step predictor of channel parameter is used and the estimation error is treated as a multiplicative noise; then a Riccati
equation and a Lyapunov equation will be needed. If the transmitted symbols are uncorrelated and identically distributed random
variables with zero mean and unit variance, only a Riccati equation needs to be solved. For UWB channel estimation, the one-step
predictor of information symbol is used and the estimation error is also considered as a multiplicative noise. The solutions to the
above two problems are obtained by solving a couple of Riccati equations together with two Lyapunov equations.

1. Introduction

In the communications literature, a number of different
algorithms have been proposed for channel estimation prob-
lems with accurate models [1–19]. In [1], a subspace-based
estimation algorithm is developed. The algorithms in [2, 3]
are based on the maximum likelihood estimation method.
Due to the performance benefits of the Kalman algorithms,
manyworks have focused on theKalman-filter-based channel
estimation algorithms [13–15]. These algorithms require a
state-space model for the random process to be estimated.

As for the UWB channel, many different types of channel
models have been proposed. In general, the UWB propaga-
tion channel models are characterized by a dense multipath
propagation and the clustering phenomenon and can be clas-
sified as deterministic and statistical [17, 18]. Deterministic
models apply an electromagnetic simulation tool to obtain
exact propagation characteristics for a specified geometry.
Statistical models are normally less complex than the deter-
ministicmodels and can provide sufficiently accurate channel
information. In [20], three channel models were considered,
namely, the Rayleigh tap delay line model, the Δ-K model,
and the Saleh-Valenzuela (S-V) model. The comparisons
showed that the S-V model gives the best fit to the measured

channel characteristics. This double exponential channel
model is commonly used for UWB realistic indoor channel,
and the channel impulse response is given by
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The clustering channel model relies on two classes of the
parameters, namely, intercluster and intracluster parameters,
which characterize the cluster and multipath component,
respectively. In the above model, {𝐿
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are classified as the intercluster and intracluster parameters,
respectively. The distributions of the cluster arrive time 𝑇

𝑙
𝑐
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and the ray arrive time 𝜏
𝑙
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can be given by two Poisson
processes:
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(2)

where Λ and 𝜆 are mean cluster arrival rate and mean ray
arrival rate, respectively. The channel coefficients are defined
as follows:
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where 𝑝
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is equiprobable to ±1 to account for signal
inversion due to reflection; 𝛽

𝑙
𝑐
,𝑙
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correspond to the fading
associated with the 𝑙

𝑐
th ray of the 𝑙

𝑟
th cluster, which can be

modeled as a log-normal distribution:
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is given by
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whereΩ
0
is themean power of the first path of the first cluster.

The behavior of the averaged power delay profile is

𝐸 [

𝛽
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,𝑙
𝑟
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which reflect the exponential decay of each cluster.
With mapping, the above two-dimensional channel

model can be reduced to a one-dimensional channel model:

H (𝑡) =
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of the 𝑙th path relative to the first path; 𝛼𝑙 = 𝛼

𝑙
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𝑟

is the fading
coefficient of path 𝑙.

After mapping, the one-dimensional model can be dealt
with by using some conventional channel estimation algo-
rithm that is used for narrowband systems, such asmaximum
likelihood approach and least mean square approach. In this
paper, we will pursue a Kalman-filter-based approach with
information symbols unknown.

2. UWB System Model

In this paper, we consider a binaryDS-CDMAUWBcommu-
nication systemwith𝐾multiple access users.The transmitted
baseband signal of the 𝑘th user is given by [15, 16]

𝑥
𝑘 (𝑡) = √𝐴𝑘

∞

∑
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𝑏
𝑘 (𝑛) 𝑠𝑘 (𝑡 − 𝑛𝑇𝑠) , (8)

where𝐴
𝑘
is the transmitted bit energy,𝑇

𝑠
is symbol duration,

𝑏
𝑘
(𝑛) is themodulated information symbol of the 𝑘th user and

is chosen randomly from the set {−1, +1}, and 𝑠
𝑘
(𝑡) represents

the transmitted waveform and has the form

𝑠
𝑘 (𝑡) =

𝑁

∑
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𝑐
𝑘 (𝑖) 𝜓 (𝑡 − 𝑖𝑇𝑐) , (9)

where 𝑁 is the spreading gain, 𝑐
𝑘
(𝑖) is the spreading code of

the 𝑘th user with period 𝑁, and 𝜓(𝑡) is the real transmitted
monocycle waveform shape in the time interval 0 ≤ 𝑡 ≤ 𝑇

𝑐
,

that is, 𝜓(𝑡) = 0 if 𝑡 ∉ [0, 𝑇
𝑐
], and has energy (1/𝑁).

Note that the channel coefficient 𝛼𝑙 in (7) is fading with
respect to time 𝑡; the channel impulse response for the 𝑘th
user can be described by
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where 𝜏
𝑘,𝑙

is the time delay for the 𝑙th path of user 𝑘. Then
the received signal component from the 𝑘th user can be
represented as
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where ∗ denotes the convolution, and

𝑔
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𝐿
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𝛼
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The total received signal at the receiver is the superposition
of the signals of the𝐾 users, given by

𝑟 (𝑡) =

𝐾

∑

𝑘=0

𝑦
𝑘 (𝑡) + V (𝑡) , (13)

where V(𝑡) is a white Gaussian noise with zero mean. The
discrete-time signal is generated by sampling the output of a
pulse-matched filter (PMF) at the monocycle rate (as shown
in Figure 1) and given by [13]
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Figure 1: Received discrete-time signal.
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In this paper the multipath delay {𝜏
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interval and using ℎ𝑙
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(𝑛) to denote the channel parameter in

the 𝑛th symbol, then we have
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By collecting𝑁 successive samples, the channel output from
the 𝑘th user at the 𝑛th symbol can be expressed as

y
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where 𝐶0
𝑘
and 𝐶1

𝑘
are the signature sequence matrices with

dimension𝑁 × (𝐿 + 1) and have the forms
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and h
𝑘
(𝑛) is the parameter collection of all multipath compo-

nents

h
𝑘 (𝑛) = [ℎ

0

𝑘
(𝑛) ℎ

1

𝑘
(𝑛) ⋅ ⋅ ⋅ ℎ

𝐿

𝑘
(𝑛)]
𝑇

. (20)

The total received discrete-time signal of all users can be given
by

r (𝑛) = [𝑟 (𝑛𝑁) 𝑟 (𝑛𝑁 + 1) ⋅ ⋅ ⋅ 𝑟 (𝑛𝑁 + 𝑁 − 1)]𝑇

=

𝐾

∑

𝑘=1

y
𝑘 (𝑛) + k (𝑛) ,
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where

k (𝑛) = [V (𝑛𝑁) V (𝑛𝑁 + 1) ⋅ ⋅ ⋅ V (𝑛𝑁 + 𝑁 − 1)]𝑇,

V (𝑛𝑁 + 𝑗) = ∫
𝑛𝑇
𝑠
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𝑐

𝑛𝑇
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V (𝑡) 𝜓 (𝑡 − 𝑛𝑇𝑠 − 𝑗𝑇𝑐) 𝑑𝑡.

(22)

Considering that the channel parameters {ℎ𝑙
𝑘
(𝑛)} and the user

information symbols {𝑏
𝑘
(𝑛)} are unknown, in this paper, we

pursue a joint design method for user detection and channel
parameter estimation.

The problems investigated in this paper can be stated as
follows.

Problem I. Given the received signal sequence {r(𝑠)}𝑛
𝑠=0

, with
{h
𝑘
(𝑠), 𝑘 = 1, . . . , 𝐾}

𝑛

𝑠=0
not exactly known, find an optimal

symbol detector {�̂�
𝑘
(𝑛 | 𝑛), 𝑘 = 1, . . . , 𝐾} by using a priori

estimate {ĥ
𝑘
(𝑠 | 𝑠 − 1), 𝑘 = 1, . . . , 𝐾}

𝑛

𝑠=0
of channel parameter

which is recursively calculated in Problem-II.

Problem II. Given the received signal sequence {r(𝑠)}𝑛
𝑠=0

, with
the information symbol {𝑏

𝑘
(𝑠), 𝑘 = 1, . . . , 𝐾}

𝑛

𝑠=0
not exactly

known, find a channel estimator {ĥ
𝑘
(𝑛 | 𝑛), 𝑘 = 1, . . . , 𝐾} by

using a priori estimate {�̂�
𝑘
(𝑠 | 𝑠 − 1), 𝑘 = 1, . . . , 𝐾}

𝑛

𝑠=0
which is

recursively calculated in Problem-I.

Remark 1. In this section, we have adopted a signal model for
DS-CDMAcommunication systems similar to that in [15, 16].
Different from [15], in (7) the information symbol matrix is
unknown which will be detected together with the channel
parameter. In most relevant works, the information symbol
is considered known for channel estimation [14], or channel
parameter is known for user detection [12] and only few
works investigate a joint estimation scheme considering both
of the aforementioned unknown variables [13]. This paper
will propose a Kalman-filter-based joint design method for
multiuser detection and channel estimation.

Remark 2. The above two problems cannot be solved sep-
arately, because the channel parameters and information
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symbols are not exactly known. Different from [13], in
this paper the symbol detector and channel estimator are
designed simultaneously. The solutions of the detector and
channel estimatorwill be obtained via solving coupled Riccati
equations together with two Lyapunov equations.

3. Multiuser Detector

In this section, a first-order state-space model is applied
to symbol detection for the proposed UWB system, where
the channel parameter is not exactly known. Then we can

employ the Kalman filter to estimate all users’ symbols
simultaneously. In view of (7), for multiuser detection the
total received discrete-time signal r(𝑛) can be expressed as

r (𝑛) = [𝑟 (𝑛𝑁) 𝑟 (𝑛𝑁 + 1) ⋅ ⋅ ⋅ 𝑟 (𝑛𝑁 + 𝑁 − 1)]𝑇

=

𝐾

∑

𝑘=1

y
𝑘 (𝑛) + k (𝑛)

= 𝐶𝐻 (𝑛) b (𝑛) + k (𝑛) ,

(23)

where

𝐶 = [𝐶
0

1
𝐶
0

2
⋅ ⋅ ⋅ 𝐶

0

𝐾
𝐶
1

1
𝐶
1

2
⋅ ⋅ ⋅ 𝐶

1

𝐾
] ,

𝐻 (𝑛) = diag {h
1 (𝑛) , h2 (𝑛) , . . . , h𝐾 (𝑛) , h1 (𝑛) , h2 (𝑛) , ⋅ ⋅ ⋅ , h𝐾 (𝑛)} ,

b (𝑛) = [𝑏1 (𝑛) 𝑏2 (𝑛) ⋅ ⋅ ⋅ 𝑏𝐾 (𝑛) 𝑏1 (𝑛 − 1) 𝑏2 (𝑛 − 1) ⋅ ⋅ ⋅ 𝑏𝐾 (𝑛 − 1)]
𝑇

.

(24)

Note the symbol vector b(𝑛) defined in (23); the first-order
non-Gaussian Markov transition model is defined as

b (𝑛 + 1) = Φb (𝑛) + w (𝑛) , (25)

where

Φ = [

[

0
𝐾,𝐾

0
𝐾,𝐾

𝐼
𝐾

0
𝐾,𝐾

]

]

,

w (𝑛) = [𝑏1 (𝑛 + 1) ⋅ ⋅ ⋅ 𝑏𝐾(𝑛 + 1) 01,𝐾]
𝑇

,

(26)

where 0
𝑚,𝑛

denotes the 𝑚 × 𝑛 all-zero matrix, and 𝐼
𝑚
is the

𝑚 × 𝑚 identity matrix; the noise vector w(𝑛) is white with
zero mean and covariance matrix

𝑄
𝑤 (𝑛) = 𝐸 {w (𝑛)w

𝑇
(𝑛)} . (27)

For the convenience of discussion, we first give the following
definitions.

Definition 3. For a given symbol 𝑛, let 𝜉(𝑛 | 𝑛 − 1) denote
the optimal estimation of 𝜉(𝑛), which is the projection of 𝜉(𝑛)
onto the linear space

L {r (0) ⋅ ⋅ ⋅ r (𝑛 − 1)} . (28)

Definition 4. For multiuser detection with unknown UWB
channel parameters, define

e
𝑏 (𝑛) ≜ r (𝑛) − r̂ (𝑛 | 𝑛 − 1) . (29)

For UWB channel estimation with unknown information
symbols, define

e
ℎ (𝑛) ≜ r (𝑛) − r̂ (𝑛 | 𝑛 − 1) , (30)

where r̂(𝑛 | 𝑛 − 1) is defined as in Definition 3.

As in the standard Kalman filtering, we define the one-
step prediction error covariance matrix of the information
symbol and channel parameter as

𝑃
𝑏 (𝑛) ≜ 𝐸 {b̃ (𝑛 | 𝑛 − 1) b̃

𝑇
(𝑛 | 𝑛 − 1)} ,

𝑃
ℎ (𝑛) ≜ 𝐸 {h̃ (𝑛 | 𝑛 − 1) h̃

𝑇
(𝑛 | 𝑛 − 1)} ,

(31)

where

b̃ (𝑛 | 𝑛 − 1) ≜ b (𝑛) − b̂ (𝑛 | 𝑛 − 1) ,
h̃ (𝑛 | 𝑛 − 1) ≜ h (𝑛) − ĥ (𝑛 | 𝑛 − 1) ,

(32)

where h(𝑛) is the stack of channel parameters of all users

h (𝑛) = [h𝑇
1
(𝑛) h𝑇

2
(𝑛) ⋅ ⋅ ⋅ h𝑇

𝐾
(𝑛)]
𝑇

, (33)

and b̂(𝑛 | 𝑛−1) and ĥ(𝑛 | 𝑛−1) are defined as in Definition 3.
Note that the elements ofUWBchannel parametermatrix

are unknown. In this section, we will use the one-step
prediction �̂�(𝑛 | 𝑛 − 1) instead of 𝐻(𝑛) and consider the
estimation error �̃�(𝑛 | 𝑛 − 1) as a multiplicative noise for
symbol detection. The optimal detector is given according to
the following theorem.

Theorem 5. Consider the discrete-time state-space signal
model (23) and (25); when the channel parameter matrix𝐻(𝑛)
is unknown, the information symbol detector is given by

b̂ (𝑛 | 𝑛) = [𝐼2𝐾 − 𝐾𝑏 (𝑛) 𝐶�̂� (𝑛 | 𝑛 − 1)] b̂ (𝑛 | 𝑛 − 1)
+ 𝐾
𝑏 (𝑛) r (𝑛) ,

(34)

where �̂�(𝑛 | 𝑛 − 1) is the one-step prediction of UWB channel
parameter obtained from the next section, and 𝐾

𝑏
(𝑛) is the

detector gain matrix

𝐾
𝑏 (𝑛) = 𝑃𝑏 (𝑛) �̂�

𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇
[𝑄
𝑏

𝑒
(𝑛)]
−1

, (35)
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where 𝑄𝑏
𝑒
(𝑛) is the covariance matrix of innovation e

𝑏
(𝑛)

𝑄
𝑏

𝑒
(𝑛) = 𝐶�̂� (𝑛 | 𝑛 − 1) 𝑃𝑏 (𝑛) �̂�

𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇

+ 𝐶([
𝑃
ℎ (𝑛) 𝑃ℎ (𝑛)

𝑃
ℎ (𝑛) 𝑃ℎ (𝑛)

] ∘ [∏

𝑏

(𝑛) ⊗ 𝐼𝐿+1])𝐶
𝑇

+ 𝑄V (𝑛) ,

(36)

where ∘ denotes the Hadamard product and ⊗ is the Kronecker
product. Π

𝑏
(𝑛) satisfies the following Lyapunov equation:

∏

𝑏

(𝑛 + 1) = Φ∏

𝑏

(𝑛)Φ
𝑇
+ 𝑄
𝑤 (𝑛) , (37)

where 𝑃
𝑏
(𝑛) is the symbol estimation error covariance matrix

and satisfies the following Riccati equation:

𝑃
𝑏 (𝑛 + 1) = Φ𝑃𝑏 (𝑛)Φ − Φ𝐾𝑏 (𝑛) 𝑄

𝑏

𝑒
(𝑛)𝐾
𝑇

𝑏
(𝑛)Φ + 𝑄𝑤 (𝑛) ,

(38)

where 𝑃
ℎ
(𝑛) is the UWB channel parameter estimation error

covariance matrix which will be calculated recursively in the
next section.The one-step prediction of the information symbol
is given by

b̂ (𝑛 + 1 | 𝑛) = Φb̂ (𝑛 | 𝑛) , (39)

which will be used for channel estimator design.

Proof. From Definition 3 we know that the a priori estimate
r̂(𝑛 | 𝑛 − 1) is the projection of r(𝑛) onto the linear space
L{r(0), . . . , r(𝑛 − 1)} and consider the channel parameter
matrix𝐻(𝑛) as an unknown variable; then we have

r̂ (𝑛 | 𝑛 − 1) = Proj {r (𝑛) | r (0) , . . . , r (𝑛 − 1)}
= 𝐶�̂� (𝑛 | 𝑛 − 1) b̂ (𝑛 | 𝑛 − 1) .

(40)

In view of (7) and Definition 4, we obtain

e
𝑏 (𝑛) = r (𝑛) − r̂ (𝑛 | 𝑛 − 1)

= 𝐶𝐻 (𝑛) b (𝑛) − 𝐶�̂� (𝑛 | 𝑛 − 1) b̂ (𝑛 | 𝑛 − 1) + k (𝑛)

= 𝐶�̂� (𝑛 | 𝑛 − 1) b̃ (𝑛 | 𝑛 − 1)

+ 𝐶�̃� (𝑛 | 𝑛 − 1) b (𝑛) + k (𝑛) .
(41)

It is apparent that e
𝑏
(𝑛) is with zeromean and 𝐸{e

𝑏
(𝑠)e
𝑏
(𝑗)} =

0 if 𝑠 ̸= 𝑗. The stochastic process {e
𝑏
(𝑠)}
𝑛

𝑠=0
is termed as

the innovation sequence associated with the received signal
sequence. The covariance matrix of e

𝑏
(𝑛), denoted as 𝑄𝑏

𝑒
(𝑛),

is calculated as follows:

𝑄
𝑏

𝑒
(𝑛) ≜ ⟨e (𝑛) , e (𝑛)⟩
= ⟨𝐶�̂� (𝑛 | 𝑛 − 1) b̃ (𝑛 | 𝑛 − 1)

+ 𝐶�̃� (𝑛 | 𝑛 − 1) b (𝑛) + k (𝑛) ,

𝐶�̂� (𝑛 | 𝑛 − 1) b̃ (𝑛 | 𝑛 − 1)

+𝐶�̃� (𝑛 | 𝑛 − 1) b (𝑛) + k (𝑛)⟩

= 𝐶�̂� (𝑛 | 𝑛 − 1) 𝑃𝑏 (𝑛) �̂�
𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇

+ 𝐶⟨�̃� (𝑛 | 𝑛 − 1) b (𝑛) ,

�̃� (𝑛 | 𝑛 − 1) b (𝑛)⟩𝐶𝑇 + 𝑄V (𝑛) ,

(42)

where ⟨, ⟩ denotes the inner product, and

⟨�̃� (𝑛 | 𝑛 − 1) b (𝑛) , �̃� (𝑛 | 𝑛 − 1) b (𝑛)⟩

= 𝐸

{�̃�,b}
{�̃� (𝑛 | 𝑛 − 1) b (𝑛) b𝑇 (𝑛) �̃�𝑇 (𝑛 | 𝑛 − 1)}

= 𝐸
{h̃,𝑏}

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

h̃
1 (𝑛 | 𝑛 − 1) 𝑏1 (𝑛)

...

h̃
𝐾 (𝑛 | 𝑛 − 1) 𝑏𝐾 (𝑛)

h̃
1 (𝑛 | 𝑛 − 1) 𝑏1 (𝑛 − 1)

...

h̃
𝐾 (𝑛 | 𝑛 − 1) 𝑏𝐾 (𝑛 − 1)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

h̃
1 (𝑛𝑛 − 1) 𝑏1 (𝑛)

...

h̃
𝐾 (𝑛𝑛 − 1) 𝑏𝐾 (𝑛)

h̃
1 (𝑛𝑛 − 1) 𝑏1 (𝑛 − 1)

...

h̃
𝐾 (𝑛𝑛 − 1) 𝑏𝐾 (𝑛 − 1)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}

}

= 𝐸

{h̃,𝑏}
[
𝑀
11 (𝑛) 𝑀12 (𝑛)

𝑀
𝑇

12
(𝑛) 𝑀22 (𝑛)

]

= [
𝑃
ℎ (𝑛) 𝑃ℎ (𝑛)

𝑃
ℎ (𝑛) 𝑃ℎ (𝑛)

] ∘ [∏

𝑏

(𝑛) ⊗ 𝐼𝐿+1] ,

(43)

where ∘ denotes the Hadamard product and ⊗ is the Kro-
necker product; Π

𝑏
(𝑛) denotes the inner product of symbol

vector b(𝑛), given by

∏

𝑏

(𝑛) ≜ ⟨b (𝑛) , b (𝑛)⟩ , (44)

and satisfies the following Lyapunov equation:

∏

𝑏

(𝑛 + 1) = Φ∏

𝑏

(𝑛 + 1)Φ
𝑇
+ 𝑄
𝑤 (𝑛) , (45)

where 𝑃
ℎ
(𝑛) is the parameter estimation error covariance

matrix which will be calculated recursively in the next
section. In the third step {𝑀

𝑖𝑗
(𝑛), 𝑖, 𝑗 = 1, 2} are as follows:
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𝑀
11 (𝑛) =

[
[
[
[
[
[
[
[

[

h̃
1
𝑏
2

1
(𝑛) h̃𝑇
1

h̃
1
𝑏
1 (𝑛) 𝑏2 (𝑛) h̃𝑇2 ⋅ ⋅ ⋅ h̃

1
𝑏
1 (𝑛) 𝑏𝐾 (𝑛) h̃𝑇𝐾

h̃
2
𝑏
2 (𝑛) 𝑏1 (𝑛) h̃𝑇1 h̃

2
𝑏
2

2
(𝑛) h̃𝑇
2

⋅ ⋅ ⋅ h̃
2
𝑏
2 (𝑛) 𝑏𝐾 (𝑛) h̃𝑇𝐾

...
... d

...

h̃
𝐾
𝑏
𝐾 (𝑛) 𝑏1 (𝑛) h̃𝑇1 h̃

𝐾
𝑏
𝐾 (𝑛) 𝑏2 (𝑛) h̃𝑇2 ⋅ ⋅ ⋅ h̃

𝐾
𝑏
2

𝐾
(𝑛) h̃𝑇
𝐾

]
]
]
]
]
]
]
]

]

,

𝑀
12 (𝑛) =

[
[
[
[
[
[
[
[

[

h̃
1
𝑏
1 (𝑛) 𝑏1 (𝑛 − 1) h̃𝑇1 h̃

1
𝑏
1 (𝑛) 𝑏2 (𝑛 − 1) h̃𝑇2 ⋅ ⋅ ⋅ h̃

1
𝑏
1 (𝑛) 𝑏𝐾 (𝑛 − 1) h̃𝑇𝐾

h̃
2
𝑏
2 (𝑛) 𝑏1 (𝑛 − 1) h̃𝑇1 h̃

2
𝑏
2 (𝑛) 𝑏2 (𝑛 − 1) h̃𝑇2 ⋅ ⋅ ⋅ h̃

2
𝑏
2 (𝑛) 𝑏𝐾 (𝑛 − 1) h̃𝑇𝐾

...
... d

...

h̃
𝐾
𝑏
𝐾 (𝑛) 𝑏1 (𝑛 − 1) h̃𝑇1 h̃

𝐾
𝑏
𝐾 (𝑛) 𝑏2 (𝑛 − 1) h̃𝑇2 ⋅ ⋅ ⋅ h̃

𝐾
𝑏
𝐾 (𝑛) 𝑏𝐾 (𝑛 − 1) h̃𝑇𝐾

]
]
]
]
]
]
]
]

]

,

𝑀
22 (𝑛) =

[
[
[
[
[
[
[

[

h̃
1
𝑏
2

1
(𝑛 − 1) h̃𝑇

1
h̃
1
𝑏
1 (𝑛 − 1) 𝑏2 (𝑛 − 1) h̃𝑇2 ⋅ ⋅ ⋅ h̃

1
𝑏
1 (𝑛 − 1) 𝑏𝐾 (𝑛 − 1) h̃𝑇𝐾

h̃
2
𝑏
2 (𝑛 − 1) 𝑏1 (𝑛 − 1) h̃𝑇1 h̃

2
𝑏
2

2
(𝑛 − 1) h̃𝑇

2
⋅ ⋅ ⋅ h̃
2
𝑏
2 (𝑛 − 1) 𝑏𝐾 (𝑛 − 1) ĥ𝑇𝐾

...
... d

...

h̃
𝐾
𝑏
𝐾 (𝑛 − 1) 𝑏1 (𝑛 − 1) h̃𝑇1 h̃

𝐾
𝑏
𝐾 (𝑛 − 1) 𝑏2 (𝑛 − 1) h̃𝑇2 ⋅ ⋅ ⋅ h̃

𝐾
𝑏
2

𝐾
(𝑛 − 1) h̃𝑇

𝐾

]
]
]
]
]
]
]

]

,

(46)

where, for the convenience, {h̃
𝑖
(𝑛 | 𝑛 − 1), 𝑖 = 1, . . . , 𝐾} have

been replaced by {h̃
𝑖
} without confusion. Then substituting

(43) into (42), we can get (36).
In terms of the definition of projection, we know that

b̂ (𝑛 + 1 | 𝑛) = Proj {b (𝑛 + 1) | r (0) , . . . , r (𝑛)} . (47)

From the linear estimation theory, the linear space spanned
by the innovation sequence {e

𝑏
(𝑠)}
𝑛

𝑠=0
contains the same

information as the one spanned by the received signal
sequence {r(𝑠)}𝑛

𝑠=0
; that is,

L {r (0) , . . . , r (𝑛)} =L {e
𝑏 (0) , . . . , e𝑏 (𝑛)} . (48)

Then the projection in (48) can be rewritten as

b̂ (𝑛 + 1 | 𝑛) = Proj {b (𝑛 + 1) | e𝑏 (0) , . . . , e𝑏 (𝑛)}
= Proj {Φb (𝑛) + w (𝑛) | e𝑏 (0) , . . . , e𝑏 (𝑛 − 1)}
+ Proj {Φb (𝑛) + w (𝑛) | e𝑏 (𝑛)}

= Φb̂ (𝑛 | 𝑛 − 1) + Φ𝐾𝑏 (𝑛) e𝑏 (𝑛) ,
(49)

where 𝐾
𝑏
(𝑛) is the parameter of the projection of b(𝑛) onto

e
𝑏
(𝑛), which yields the stationary point of the following error

Gramian matrix:

⟨b (𝑛) − 𝐾𝑏 (𝑛) e𝑏 (𝑛) , b (𝑛) − 𝐾𝑏 (𝑛) e𝑏 (𝑛)⟩ , (50)

and satisfies

𝐾
𝑏 (𝑛) 𝑄

𝑏

𝑒
(𝑛) = ⟨b (𝑛) , 𝑒𝑏 (𝑛)⟩
= ⟨b (𝑛) , 𝐶�̂� (𝑛 | 𝑛 − 1) b̃ (𝑛 | 𝑛 − 1)

+𝐶�̃� (𝑛 | 𝑛 − 1) b (𝑛) + k (𝑛)⟩

= 𝑃
𝑏 (𝑛) �̂�

𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇
.

(51)

Thus we have

𝐾
𝑏 (𝑛) = 𝑃𝑏 (𝑛) �̂�

𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇
[𝑄
𝑏

𝑒
(𝑛)]
−1

. (52)

In view of (52) and (53), it is apparent that we have

𝑃
𝑏 (𝑛 + 1) + Φ𝐾𝑏 (𝑛) 𝑄

𝑏

𝑒
(𝑛)𝐾
𝑇

𝑏
(𝑛)Φ = Φ𝑃𝑏 (𝑛)Φ + 𝑄𝑤 (𝑛) ,

(53)

which is (38).
In view of (49), the projection in (48) can be further given

by

b̂ (𝑛 + 1 | 𝑛) = Φb̂ (𝑛 | 𝑛 − 1) + Φ𝐾𝑏 (𝑛) e𝑏 (𝑛)
= Φ [𝐼

2𝐾
− 𝐾
𝑏 (𝑛) 𝐶�̂� (𝑛 | 𝑛 − 1)]

× b̂ (𝑛 | 𝑛 − 1) + Φ𝐾𝑏 (𝑛) r (𝑛)
= Φb̂ (𝑛 | 𝑛) ,

(54)

where we have defined detector as

b̂ (𝑛 | 𝑛) ≜ [𝐼2𝐾 − 𝐾𝑏 (𝑛) 𝐶�̂� (𝑛 | 𝑛 − 1)]

× b̂ (𝑛 | 𝑛 − 1) + 𝐾𝑏 (𝑛) r (𝑛) ,
(55)

which is (34).
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Remark 6. InTheorem 5, the UWB channel estimation error
�̃�(𝑛 | 𝑛 − 1) is considered as a multiplicative noise which
is in matrix form, and the transmitted symbols may be
colored and cross-correlated for different users.Their statistic
characteristics are represented in the Lyapunov equation
in (37). If the transmitted symbols are uncorrelated and
identically distributed random variables with zero mean
and unit variance, then the above result is equivalent to
that proposed in [13] where the channel estimation error is
considered as an additive noise.

Corollary 7. If one assumes the transmitted symbols are
uncorrelated and identically distributed random variables with
zero mean and unit variance, that is, 𝐸{b(𝑛)b𝑇(𝑛)} = 𝐼

2𝐾
, then

the information symbol detector is given by

b̂ (𝑛 | 𝑛) = [𝐼2𝐾 − 𝐾𝑏 (𝑛) 𝐶�̂� (𝑛 | 𝑛 − 1)]

× b̂ (𝑛 | 𝑛 − 1) + 𝐾𝑏 (𝑛) r (𝑛) ,
(56)

where

𝐾
𝑏 (𝑛) = 𝑃𝑏 (𝑛) �̂�

𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇
[𝑄
𝑏

𝑒
(𝑛)]
−1

,

𝑄
𝑏

𝑒
(𝑛) = 𝐶�̂� (𝑛 | 𝑛 − 1) 𝑃𝑏 (𝑛) �̂�

𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇

+ 𝐶([
𝑃
ℎ (𝑛) 0

0 𝑃
ℎ (𝑛)

] ∘ [𝐼
2𝐾
⊗ 𝐽
𝐿+1
])𝐶
𝑇

+ 𝑄V (𝑛) ,

𝑃
𝑏 (𝑛 + 1) = Φ𝑃𝑏 (𝑛)Φ − Φ𝐾𝑏 (𝑛) 𝑄

𝑏

𝑒
(𝑛)𝐾
𝑇

𝑏
(𝑛)Φ + 𝑄𝑤 (𝑛) ,

(57)

with 𝐽
𝐿+1

being the all-one matrix with dimension (𝐿+1)×(𝐿+
1) and 𝑄

𝑤
(𝑛) = [

𝐼
𝐾
0
𝐾,𝐾

0
𝐾,𝐾
0
𝐾,𝐾

].

Proof. Theproof is straightforward. Note that the transmitted
symbols are uncorrelated and identically distributed random
variables with zeromean and unit variance; thenwe can easily
obtain that Π

𝑏
(𝑛) = 𝐼

2𝐾
and 𝐸

{h̃,𝑏}{𝑀12} = 0. It is apparent
that 𝑄

𝑤
(𝑛) = [

𝐼
𝐾
0
𝐾,𝐾

0
𝐾,𝐾
0
𝐾,𝐾

].

4. Channel Estimator

For UWB channel estimation, the received discrete-time
signal in (23) can be reexpressed as

r (𝑛) = [𝑟 (𝑛𝑁) 𝑟 (𝑛𝑁 + 1) ⋅ ⋅ ⋅ 𝑟(𝑛𝑁 + 𝑁 − 1)]𝑇

=

𝐾

∑

𝑘=1

y
𝑘 (𝑛) + k (𝑛)

= 𝐶𝐵 (𝑛) h (𝑛) + k (𝑛) ,

(58)

where 𝐵(𝑛) is the information symbol matrix and is defined
as

𝐵 (𝑛) = [𝐵 (𝑛) 𝐵 (𝑛 − 1)]
𝑇

,

𝐵 (𝑛) = diag {𝑏
1 (𝑛) 𝐼𝐿+1, 𝑏2 (𝑛) 𝐼𝐿+1, . . . , 𝑏𝐾 (𝑛) 𝐼𝐿+1} ,

(59)

and h(𝑛) is as shown in (33), which can be modeled by using
a first-order autoregressive (AR) model as

h (𝑛 + 1) = Γh (𝑛) + u (𝑛) , (60)

where u(𝑛) is a white random variable with zero mean and
covariance matrix 𝑄

𝑢
(𝑛), and Γ is the channel correlation

matrix, given by

Γ = diag {𝑎0
1
, . . . , 𝑎

𝐿

1
, . . . , 𝑎

0

𝐾
, . . . , 𝑎

𝐿

𝐾
} , (61)

where the scalar factor {𝑎𝑙
𝑘
, 𝑘 = 1, . . . , 𝐾, 𝑙 = 0, . . . , 𝐿}

denotes the state transition coefficient of the 𝑘th user in the
𝑙th path. The above AR model for the channel parameter is
only an approximation to the actual statistics of these random
processes.

Similar to multiuser detection, for the UWB channel
estimation the symbol matrix is treated as an unknown
variable and uses the one-step prediction 𝐵(𝑛 | 𝑛 − 1) instead
of 𝐵(𝑛) and considers the estimation error 𝐵(𝑛 | 𝑛 − 1) as
a multiplicative noise for channel estimation. The optimal
estimation is given according to the following theorem.

Theorem 8. Consider the discrete-time state-space signal
model (60) and (62); when the information symbolmatrix𝐵(𝑛)
is unknown, the channel estimator is given by

ĥ (𝑛 | 𝑛) = [𝐼𝐾(𝐿+1) − 𝐾ℎ (𝑛) 𝐶𝐵 (𝑛 | 𝑛 − 1)] ĥ (𝑛 | 𝑛 − 1)
+ 𝐾
ℎ (𝑛) r (𝑛) ,

(62)

where 𝐵(𝑛 | 𝑛 − 1) is the one-step prediction of information
symbol obtained from the previous section, and 𝐾

ℎ
(𝑛) is the

estimator gain matrix:

𝐾
ℎ (𝑛) = 𝑃ℎ (𝑛) 𝐵

𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇
[𝑄
ℎ

𝑒
(𝑛)]
−1

, (63)

where 𝑄ℎ
𝑒
(𝑛) is the covariance matrix of innovation e

ℎ
(𝑛):

𝑄
ℎ

𝑒
(𝑛) = 𝐶𝐵 (𝑛 | 𝑛 − 1) 𝑃ℎ (𝑛) 𝐵

𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇

+ 𝐶([
Π
ℎ (𝑛) Πℎ (𝑛)

Π
ℎ (𝑛) Πℎ (𝑛)

] ∘ [𝑃
𝑏 (𝑛) ⊗ 𝐼𝐿+1])𝐶

𝑇

+ 𝑄V (𝑛) ,

(64)

where 𝑃
𝑏
(𝑛) is the information symbol estimation error covari-

ance matrix which is obtained in the previous section, and
Π
ℎ
(𝑛) satisfies the following Lyapunov equation:

∏

ℎ

(𝑛 + 1) = Γ∏

ℎ

(𝑛) Γ
𝑇
+ 𝑄
𝑢 (𝑛) , (65)

where 𝑃
𝑏
(𝑛) is the channel estimation error covariance matrix

and satisfies the following Riccati equation:

𝑃
ℎ (𝑛 + 1) = Φ𝑃ℎ (𝑛)Φ − Γ𝐾ℎ (𝑛) 𝑄

ℎ

𝑒
(𝑛)𝐾
𝑇

ℎ
(𝑛) Γ + 𝑄𝑢 (𝑛) .

(66)

The one-step prediction of the information symbol is given by

ĥ (𝑛 + 1 | 𝑛) = Γĥ (𝑛 | 𝑛) , (67)

which will be used for the design of the user detector.
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Figure 2: The proposed algorithm structure.

Proof. Consider the information symbol matrix 𝐵(𝑛) as an
unknown variable; then we have

r̂ (𝑛 | 𝑛 − 1) = 𝐶𝐵 (𝑛 | 𝑛 − 1) ĥ (𝑛 | 𝑛 − 1) . (68)

In view of (7) and Definition 4, we obtain

e
ℎ (𝑛) = 𝐶𝐵 (𝑛 | 𝑛 − 1) h̃ (𝑛 | 𝑛 − 1)

+ 𝐶𝐵 (𝑛 | 𝑛 − 1) h (𝑛) + k (𝑛) .
(69)

It is apparent that e
ℎ
(𝑛) is with zeromean and𝐸{e

ℎ
(𝑠)e
ℎ
(𝑗)} =

0 if 𝑠 ̸= 𝑗. The covariance matrix of e
ℎ
(𝑛) is denoted as 𝑄ℎ

𝑒
(𝑛).

The following proof of this theorem is very similar to that
of Theorem 5, so we omit it here.

Remark 9. Different from [7, 10], for UWB channel estima-
tion, the users’ symbols are also considered as unknown vari-
ables in this paper. The one-step prediction of symbol matrix
is used, and the estimation error is treated as a multiplicative
noise in matrix form. The detector and channel estimator
are designed jointly and cannot be solved separately. The
algorithm structure is as shown in Figure 2.

5. Conclusions

The information symbol and channel parameter are conside-
red as unknown variables in this paper. The multiuser dete-
ctor and UWB channel estimator are designed jointly. For
symbol detection, the one-step predictor of channel parame-
ter is used and the estimation error is treated as a multiplica-
tive noise; then a Riccati equation and a Lyapunov equation
will be needed. If the transmitted symbols are uncorrelated
and identically distributed random variables with zero mean
and unit variance, only a Riccati equation needs to be solved.
For UWB channel estimation, the one-step predictor of
information symbol is used and the estimation error is also
considered as a multiplicative noise. The solutions to the
above two problems are obtained by solving a couple of
Riccati equations together with two Lyapunov equations.
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