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Exchange rate is one of the key variables in the international economics and international trade. Its movement constitutes one of
the most important dynamic systems, characterized by nonlinear behaviors. It becomes more volatile and sensitive to increasingly
diversified influencing factors with higher level of deregulation and global integrationworldwide. Facing the increasingly diversified
and more integrated market environment, the forecasting model in the exchange markets needs to address the individual and
interdependent heterogeneity. In this paper, we propose the heterogeneous market hypothesis- (HMH-) based exchange rate
modeling methodology to model the micromarket structure. Then we further propose the entropy optimized wavelet-based
forecasting algorithmunder the proposedmethodology to forecast the exchange ratemovement.Themultivariatewavelet denoising
algorithm is used to separate and extract the underlying data components with distinct features, which are modeled with
multivariate time series models of different specifications and parameters. The maximum entropy is introduced to select the best
basis and model parameters to construct the most effective forecasting algorithm. Empirical studies in both Chinese and European
markets have been conducted to confirm the significant performance improvement when the proposed model is tested against the
benchmark models.

1. Introduction

In the post-Bretton Woods era, the worldwide exchange
markets have shifted towards the more floating and volatile
era, which are characterized by high level of fluctuations and
risk exposures. Given its role as one of the most important
economic factors for the national economy in the increas-
ingly open and globalized economic system, the accurate
and reliable forecasting of the exchange rate movement
has profound impacts throughout different levels of the
economy, including government, enterprises, and academics
[1].

Theoretically numerous empirical studies have been con-
ducted to investigate the interrelationship and comovement
between the exchange markets and other markets, including
crude oil market, stock market, and bond market. For exam-
ple, Salisu and Mobolaji [2] found the statistical evidence of
bidirectional relationship between oil price and US-Nigeria

exchange rate [2]. Chkili and Nguyen [3] use a regime-
switching model to identify the dynamic linkages between
the exchange rates and stock market returns during both
calm and turbulent periods [3]. Hacker et al. [4] have found
new evidence of negative linkage between the exchange
rate and interest rate differentials in the wallet time scale
domain [4]. Meanwhile in the literature there is much less
attention paid to the exploration of linkage among different
exchange markets, which represent the essential theoretical
challenge. For example, Kim et al. [5] find that the conditional
correlation between Japanese Yen and other Asian economies
is decoupled and insignificant due to liquidity deterioration
and elevated risk aversions in the international capital market
[5]. But recent empirical studies suggest that the comovement
across markets, with transmission as one particular case,
turns out to be more complicated than what is assumed in
the traditional linear framework. This may stem from the
loss of information using the low frequency data and the

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 389598, 9 pages
http://dx.doi.org/10.1155/2014/389598



2 Mathematical Problems in Engineering

inferior methodology to analyze more accurately the cross
correlations.

Methodologically traditional linear structural models
have been effective in the forecasting of the exchange rate
movement over the medium to long time horizon, with
acceptable approximation accuracy and computational effi-
ciency, where the aggregated price behavior is comparably
stable and stationary. These include models in both asset and
monetary views as well as Keynesian view, regressionmodels,
cointegration and vector autoregressive models, multivariate
stochastic models, and so forth [6]. When it comes to the
shorter time horizon, these traditional models also have
largely failed to demonstrate the competent forecasting per-
formance in the empirical studies [6]. Part of the reasons can
be attributed to the nonlinear data characteristics revealed
in the recent empirical studies [7, 8]. Different distribution
free artificial intelligence techniques such as neural network
and support vector regressions, together with the innovative
optimization methods, have shown superior performance
under different circumstances [7, 9–11]. But they are mainly
black box in nature and offer little insights into the underlying
patterns as well as supporting theories behind.

Recent empirical studies on the fractal and multiscale
data characteristics indicate the emergence of multiscale
modeling as the important alternative [7]. Wavelet analysis,
as one popular multiscale modeling technique, has been
introduced to model not only horizontal dependency in
the time domain such as volatility clustering (conditional
heteroscedasticity) and long memory (slow decaying auto-
correlation) but also vertical dependency across time domain
simultaneously [12, 13]. For example, Tiwari et al. [14] identify
the comovement of oil price and Indian Rupee at higher
time scales, but not lower ones, using wavelet analysis [14].
Reboredo and Rivera-Castro [15] use the wavelet analysis
to disentangle the oil price-exchange rate relationship in
the time scale domain [15]. Orlov [16] tests for the time
varying exchange rate comovements at different time scales
[16]. Recently the emergence of this approach leads to the
emergence of the heterogeneous market hypothesis (HMH)
as the theoretical foundation to replace efficient market
hypothesis (EMH) to model the heterogenous data charac-
teristics. Methodologically this approach helps explain the
heterogeneity of the underlying data comovement and trans-
mission mechanism, behind the exhibited nonlinear data
characteristics. However, in the exchange rate forecasting lit-
erature, we have only witnessed limited attempts in modeling
the correlations and comovements among exchange markets
when constructing the forecasting algorithm.

In the meantime, the entropy theory has been used to
analyze the information content of the wavelet decomposed
multiscale data structure. Wavelet entropy, relative wavelet
entropy, and many other variants have been proposed in the
literature to calculate the entropy of the energy distribution in
the typical wavelet decomposition, as well as the cost function
for the best basis algorithm to choose the optimal basis for
wavelet packet transform [17, 18]. Xu et al. [19] use the mod-
ified wavelet entropy measure to differentiate between the
normal and hypertension states [19]. Samui and Samantaray
[20] incorporate the wavelet entropymeasure in constructing

the measuring index for islanding detection in distributed
generation [20]. Wang et al. [21] use best basis-based wavelet
packet entropy to extract feature in the decomposed structure
for the follow-up classification algorithm, which performs
well in EEG analysis for patient classification [21]. In the
forecasting field, the entropy maximization has recently been
proposed to select the best forecasters, but with much less
attention attracted in the literature. For example, Bessa et al.
[22] adopt the maximum entropy criteria in neural network
training and find it to provide more superior performance
than traditional mean square error (MSE) criteria in wind
power prediction [22].

In this paper we propose aninnovative entropy optimized
multivariate wavelet denoising model. Empirical studies are
conducted in the closely related Chinese and European
exchange markets to evaluate the additional value offered
by the incorporation of nonlinear multiscale cross-markets
correlations in the proposed algorithm. Our contributions
are threefold. Firstly we provide the empirical evidence of
multiscale heterogeneous data characteristics distinguish-
able by sizes. Secondly we incorporate this stylized fact in
the construction of the innovative wavelet denoising-based
forecasting algorithms. Thirdly we propose the maximum
entropy as a measure for in-sample performance to select
the best basis and decomposition level. To the best of our
knowledge, work in this paper is unique and amongst the
first in introducing the maximum entropy in forecasting the
exchange rate movement in the multiscale domain, to select
the best basis and parameters.

The rest of the paper proceeds as follows. Section 2
briefly reviewed the two relevant theories, that is,multivariate
wavelet denoising theory and the entropy theory, underlying
the proposed model. Section 3 proposes the multivariate
wavelet analysis to analyze the time varying correlations. We
further construct the multivariate wavelet denoising-based
exchange rate forecasting algorithm. In Section 4 we conduct
experiments to empirically test and confirm the performance
superiority of the proposed algorithm against the benchmark
models. Detailed analysis of experiment results is illustrated
as well. Section 5 concludes with summarizing remarks.

2. Multivariate Wavelet-Based Denoising
Theory and Entropy Theory

The ultimate goal of denoising is to set the right boundary
and remove the noises while preserving major data features.
In recent years wavelet denoising algorithm dominates more
traditional methods such as moving average filter, exponen-
tial smoothing filter, linear Fourier smoothing, and simple
nonlinear noise reduction, as it does not assume homoge-
neous error structure. For example, Kwon et al. [23] point out
the problems with existing denoising techniques as assuming
homogeneous error structure and they proposed wavelet
denoising method incorporating a variance change point
detection thresholdingmethod to deal with it in proteinmass
spectroscopy applications [23]. Boto-Giralda et al. [24] use
the stationary wavelet-based denoising methods to improve
the performance of traffic volume prediction models in
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intelligent transportation system [24]. Gao et al. [25] propose
an adaptive denoising algorithm and contend it to be superior
to wavelet-based approaches when applied to analysis of elec-
troencephalogram (EEG) signals contaminated with noises
[25]. Lotric and Dobnikar [26] and Lotric [27] integrate
the neural network with the wavelet denoising method to
optimize the denoising parameters dynamically and find the
performance improvement in prediction accuracy [26, 27].

Generally the multivariate wavelet denoising algorithm
involves the following procedures.

(1) The original data series are projected into the general
higher-dimensional space 𝐿

2
(R𝑑) into different subspaces

characterized by scales using multivariate wavelet transform.
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For all 𝑓, 𝑔 ∈ L2(R2), the decomposition and recon-
struction in the two-dimensional case is defined as in (4),
respectively:
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+
, 𝑎 ̸= 0, 𝑏 ∈ R𝑛. In the 2-dimensional case, three

orthonormal wavelet bases, including horizontal wavelet
Ψ

horizontal
(𝑥, 𝑦), vertical wavelet Ψvertical

(𝑥, 𝑦), and diagonal
wavelet Ψdiagonal

(𝑥, 𝑦), are needed to produce subspaces [31].
When the data are of finite support, the discrete wavelet

transform would encounter the boundary distortion issue at
the edge of the data under analysis. Padding, that is, adding
extra data points to either left or last data, is one approach to
facilitate the transform. Different padding techniques exist,
including zero padding and symmetric padding [30].

(2) The separation between subspaces pairs (𝑉DN
𝑗

, 𝑉
𝑁
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)

and (𝑊DN
𝑗

,𝑊
𝑁

𝑗
) is achieved by applying the threshold chosen

specifically at different scales for different directions to either
suppress or shrink the wavelet coefficients. The denoised and
noise part are separated with finer details revealing patterns
at more microscales.

The dominant threshold selection rules include Univer-
sal, Minimaxi, and Steins unbiased risk estimate (SURE)
[32]. Different threshold selection rules have different targets
when setting the noise reduction target. For example, the
universal threshold selection rule aims to reduce the noises
at maximum level possible. The threshold is selected as 𝜂𝑈 =
𝜎̂√2 log𝑁, where 𝑁 is the number of wavelet coefficients
and 𝜎̂ is the estimate of the volatility level. When the sample
size 𝑁 is large and the data series are normally distributed,
the universal threshold gives the upper bound value to the
noise level in the data statistically. However, this method
achieves the maximal level of smoothness at the cost of lower
goodness-of-fit.The denoised data risk loses some important
data features. The Minimaxi threshold selection rule adopts
the function fitness criteria such as MSE. The denoised data
represent the best fit approximation to the original data,
retaining spikes and hikes. However, this is achieved at the
cost of lower function smoothness.

Themainstream shrinkage rules are hard and soft thresh-
old selection rules [32, 33]. The hard threshold selection
rule is the high pass filter, which suppresses the wavelet
coefficients below the chosen threshold values and leaves the
rest coefficients intact as follows:
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threshold value. The soft shrinkage rules focus on the signal
smoothing. It suppresses the wavelet coefficients below the
set threshold value and subtracts the threshold value from the
remaining wavelet coefficients. Compared to hard threshold
selection rules, the data processing following soft threshold
selection rules is smoother but loses the abrupt changes in
the original data. It filters the signal as follows:
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(3) Processed wavelet coefficients are reconstructed into
the unified data series using wavelet synthesis.

During the denoising process, there are unknown param-
eters that have significant impacts on the denoising per-
formance. Other than the statistical approach to quantify
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them, the information theoretic approach can be brought
in to quantify them as well. The entropy is a widely used
statistical measure of disorder and uncertainty, quantifying
the data randomness [34]. It also corresponds to a measure
of information content. For a stochastic time series system,
the classical Shannon entropy is defined as follows [35]:

𝑆 = ∫

∞

0

−𝑓 (𝑥) ln (𝑓 (𝑥)) 𝑑𝑥. (8)

The value of entropy lies between 0 and 1. The higher the
entropy is, the higher the level of disorder and uncertainty is.

3. An Entropy Optimized Multivariate Wavelet
Denoising-Based Exchange Rate Forecasting
Model (MWVAR)

Homogeneity and rationality are two basic assumptions
imposed in the traditional EMH behind major multivariate
exchange rate forecasting algorithms. To recognize the mul-
tiscale properties in the high frequency data, we propose
the HMH instead. In HMH, the heterogeneous market
microstructure is acknowledged explicitly, by assuming dif-
ferent investors strategy, scale, and time horizon, just to name
a few [36–42].

Following HMH framework, the exchange market
receives the joint influence frommarket agents with different
defining characteristics including investment strategies, time
horizons, and investment scales.

Based on the stylized facts, we make some simplifying
assumptions: (1) investment strategies within each time
horizon are homogeneous and (2) investment strategies
across time scales are mutually independent. Then based
on the aforementioned theoretical framework, we propose
the entropy optimized multivariate wavelet denoising-based
exchange rate forecasting algorithm. It involves the following
steps.

(1) Suppose that the return of the exchange markets are
the sum of common latent factors and the individual latent
factors; the multivariate wavelet denoising algorithm is used
to separate data from noise using particular wavelet families.
By decomposing data into the multiscale domain, data and
noises are separated based on their different characteristics
across scales with noise smaller in scales. Thus more subtle
distinction between data and noise can be set.

(2) The denoised and noise data are supposed to be
following some particular stochastic process.The conditional
mean matrix for the denoised data and noise data is modeled
by employing the particular conditional time series models.
In this paper, we adopt vector autoregressive (VAR) processes
as follows:

𝑦
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where 𝑦
𝑡
is the conditional mean at time 𝑡, 𝑦

𝑡−𝑖
is the lag 𝑚

returns with parameter 𝜙
𝑖
, and 𝜀

𝑡−𝑗
is the lag 𝑛 residuals in

the previous period with parameter 𝜃
𝑗
.

VAR is chosen over more theoretically sound vector
autoregressive moving average (VARMA) model in this

paper due to the following reasons: firstly there is lack of
authoritative methodology to uniquely identify and estimate
VARMA model, although some initial attempts have been
made [43]. VAR is still by far the most well established
and applied multivariate time series models in the literature.
Secondly any invertible vector ARMA can be approximated
by VAR with infinite order [44]. We use the information
criteria (IC) to determine the optimal specification for the
VAR model. Typical IC includes akaike information criteria
(AIC) and Bayesian information criteria (BIC).

(3) Using the in-sample data, different criteria such as
MSE and entropy can be used to determine the model
specifications and parameters. The minimization of MSE
corresponds to the minimization of error variance. The
entropy maximization corresponds to the maximization of
information content in the predictors and higher general-
izability. Given the predicted random variable 𝑌̂ ∈ 𝑅

𝑛,
generated with the unknown data generating process (DGP)
with unknown parameters and the observation 𝑌 ∈ 𝑅

𝑛, the
Shannon entropy of predictor is defined as follows:

𝐻(𝑌̂) = 𝐸 [− log𝑝 (𝑌̂)] = −∫
𝑅
𝑛

𝑝 (𝑌) log𝑌 (𝑌) 𝑑𝑥, (10)

where 𝐻(𝑌̂) refers to the Shannon entropy of the predictor
𝑌̂, 𝑝(𝑥) refers to the probability density function (PDF). The
objective is tomaximize the𝐻(𝑌̂) of themeasurable function
𝑌 by adjusting different parameters of forecasting algorithm
that produces 𝑌̂.

(4)With the chosenmodel specifications and parameters,
the forecast matrix is reconstructed from the individual
forecasts, both denoised and noise parts. Thus the mean
matrix can be aggregated from the individual mean matrix
forecasts.

4. Empirical Studies

4.1. Experiment Settings. We choose the US Dollar against
Chinese Renminbi (RMB) and US Dollar against European
Euro (Euro) exchange rates to construct the data set for
the empirical studies. The dataset in the empirical studies
extends from 23 July 2007 to 30August 2013.The starting date
is chosen as the Chinese government changes its exchange
rate policy from the fixed pegging to US Dollar to a basket
of currency. This has significant impact on the exchange
rate movement, shifting into a different regime and evolving
based on different underlying mechanism with wider bands
as well as higher level of fluctuations. The end date is set
to include the latest data available when the research was
conducted. The dataset is preprocessed for recording errors
and to remove the records when the readings are interrupted
due to holiday breaks in either market. This results in 1533
daily observations. Since there is no consensus on the division
of dataset, either in the machine learning or econometric
literature [45], when dividing the dataset, we follow the
common criteria that reserves at least 60%data as the training
set and retain sufficiently large size of the test set for the results
to be statistically valid [46]. The dataset is divided into three
subdataset, that is, the training set for the proposed wavelet
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Table 1: Descriptive statistics and statistical tests.

Statistics 𝑃Euro 𝑃RMB 𝑟Euro 𝑟RMB

Mean 1.3706 0.1503 0 0.0001
Max 1.6010 0.1636 0.0461 0.0059
Min 1.1957 0.1315 −0.0303 −0.0087
Std 0.0877 0.0079 0.0071 0.0011
Skewness 0.5550 −0.2730 0.2650 −0.1982
Kurtosis 2.6664 2.4969 5.6767 9.4280
𝑝JB 0.0010 0.0010 0.0010 0.0010

denoising VAR model (36%), the model tuning set to select
the best basis and relevant parameters (24%), and the test
set for the out-of-sample test to evaluate the performance of
different models (40%). We perform one day ahead forecast
using rolling-window method.

Descriptive statistics for data characteristics are listed in
Table 1.

Where 𝑃Euro and 𝑃RMB refer to the price of both euro
and RMB. 𝑝JB refers to the P value of the JB test statistics.
Descriptive statistics in Table 1 show some interesting styl-
ized facts. The market exhibits considerable fluctuations, as
suggested by the significant volatility level. The distribution
of the market price is fat-tail and leptokurtic, as suggested
by significant skewness and kurtosis levels. There is also
high level of market risk exposure due to extreme events
in the market, as reflected in the significant kurtosis level.
Themarket return also deviates from the normal distribution
and exhibits nonlinear dynamics; this is further confirmed
by the rejection of Jarque-Bera test of normality [47, 48]. As
autocorrelation and partial autocorrelation function indicate
the trend factors, the daily prices are log differenced at the first
order to remove them as in 𝑦

𝑡
= ln(𝑝

𝑡
/(𝑝
𝑡−1
)). We further

calculate the descriptive statistics on the return data and
find it to approximate the normal distribution, as indicated
by the four moments. The kurtosis appears to deviate from
the normal level, which indicates that the market exhibits
significant abnormal return changes event. Besides, since the
null hypothesis of JB test is rejected, this further indicates that
the market return contains unknown nonlinear dynamics,
not easily captured by traditional linear models.

4.2. Empirical Analysis of Dynamic Behaviors. The exchange
markets are subject to increasingly frequent and abrupt
external shocks such as the subprime crisis and European
debt crisis, which are illustrated in the plot of returns of both
Chinese Renminbi and European Euro as in Figures 1 and 2.

This is where 𝑟rmb,𝑖, 𝑖 = 1, 2, 3 refers to the RMB returns
over period 𝑖. 𝑟euro,𝑖, 𝑖 = 1, 2, 3 refers to the Euro returns over
period 𝑖. The three periods refer to July, 2007 to May, 2009;
May, 2009 to December, 2011; and December, 2011 to August,
2013. It can be seen from Figures 1 and 2 and Table 2 that
returns in both markets share some common features while
demonstrating their unique characteristics. Both markets are
subject to the influences of the subprime crisis fromFebruary,
2007 and spread to May, 2009 and European debt crisis from
December, 2009 to December, 2011. Meanwhile individually
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Figure 2: Returns of USD/Euro.

each market is subject to the influences of some unique
external forces. As shown in Figure 1, Renminbi market has
much lower level of fluctuations than the Euro markets,
subject to tighter control of the central bank. As shown in
Figure 2, the European debt crisis has much stronger impact
on the Euro markets than Renminbi market. Generally the
impact of subdebt crisis is larger than the European debt crisis
for both markets. Meanwhile, as shown in both figures, both
markets are subject to some common latent factors. Both
markets demonstrate the obvious jump behaviours around
2008, when they are subject to the subprime crisis.

We further calculate the cross correlations between two
exchange markets, using the roll windows of size 252 and
plotting the results in Figure 3.

It can be seen from Figure 3 that the correlations are
dynamically changing, over different periods at the signifi-
cant level. Taking subprime crisis and European debt crisis
as the marking events, we further calculated the descriptive
statistics of correlations for three periods and listed the results
in Table 3.

It can be seen from both Figure 3 and Table 3 that for
periods 1 and 3, the correlation is positive and relatively stable.
The correlations turn negative for period 2, accompanied by
significant fluctuations.Within period two, there are frequent
regime-switching behaviors. For example, the correlation
from November, 2007 to August, 2009 is mainly affected
by subprime crisis. The other result from European debt
crisis is as follows. We see that from November, 2009 to
December, 2010, the correlation stays at the positive level,
subject to the positive measures taken by the European
Union. Then, during December, 2010 and August, 2011, the
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Table 2: Descriptive statistics and statistical tests.

Statistics 𝑟rmb,1 𝑟rmb,2 𝑟rmb,3 𝑟euro,1 𝑟euro,2 𝑟euro,3

Minimum −0.0087 −0.0060 −0.0029 −0.0303 −0.0237 −0.0158
Maximum 0.0046 0.0059 0.0039 0.0461 0.0238 0.0196
Mean 0.0002 0.0001 0.0001 −0.0001 0 0
Standard deviation 0.0012 0.0011 0.00094435 0.0087 0.0070 0.0054
Kurtosis 9.2450 10.7865 5.1886 6.2843 3.4396 3.7204
Skewness −0.7236 −0.0094 0.4462 0.5609 −0.0970 0.1224
𝑝JB 0.0010 0.0010 0.0010 0.0010 0.0434 0.0109
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Figure 3:Dynamic correlations betweenUSD/RMBandUSD/Euro.

Table 3: Descriptive statistics of cross correlations.

Statistics 𝜌
1

𝜌
2

𝜌
3

Minimum −0.6171 −0.4471 0.3941
Maximum 0.9417 0.8911 0.7987
Mean −0.0175 0.3139 0.6762
Standard deviation 0.5574 0.4575 0.0972
Kurtosis 1.7873 1.6746 3.0009
Skewness 0.5717 −0.2462 −0.9368
𝑝JB 0.0019 0.001 0.0011

correlation becomes negative again because of the second
wave of European debt crisis. In general, we find that
the correlations of Renminbi and Euro exhibit significant
fluctuating behaviors over different periods. They are stable
over relatively short periods of time and shift frequently
between different regimes. This observation also implies that
the time varying features of correlations are the results from
the joint influences of common latent factors such as the
global financial crisis, as well as the individual risk factor such
as China’s tight exchange rate bands.

4.3. Experiment Results. To evaluate the performance of the
proposed algorithm against the benchmark ones, we useMSE
to measure its predicative accuracy and Clark West test of
equal predictive accuracy to test the statistical significance of
the predictive accuracy [49, 50].

MSEs for the benchmark vector random walk (VRW)
and VAR model are 3.8774

(×10
−5
)
and 3.8737

(×10
−5
)
. Then

the wavelet denoising VAR model is applied to the testing
data to investigate the effects of different parameters on the

model performance. Different combinations of parameters
choices are pooled into the parameters pool, including
two shrinkage rules (i.e., hard and soft shrinkage rules),
decomposition levels up to scale 9, and 2 wavelet families
includingDaubechies 2 andCoiflet 2.The universal threshold
is used during the denoising process. The model orders for
VAR (𝑟, 𝑚) processes are determined following AIC and BIC
minimization principle.

Experiment results in Table 4 further confirm that the
forecasting accuracy of the proposed wavelet denotingmodel
is sensitive to the wavelet parameters used to denoise the
original data. Some of the wavelet parameters can improve
the forecasting performance to the level that beats the
traditional benchmark models significantly. For example, the
wavelet denoising VAR outperforms both VRW and VAR
model when Coiflet 2 wavelet is used for both hard and soft
shrinkage rules.

Different criteria can then be used to determine the
model specifications and parameters. Following the MSE
minimization principle when identifying the appropriate
model specifications, the chosen model specifications from
results in Table 4 are Coiflet 2 wavelet family with hard
threshold strategy at decomposition level 7.

Meanwhile, we propose the entropy maximization prin-
ciple as the criteria when identifying the appropriate model
specifications. Experiment results for different model specifi-
cations and parameters are listed in Table 5.

From results in Table 5, the chosen model specifications
are Coiflet 2, with hard threshold strategy at decomposition
level 3.

Experiment results in Table 6 show that the proposed
algorithm outperforms the benchmark VRW and VAR
model, in terms of predictive accuracy.The ClarkWest test of
equal predictive accuracy suggests that the performance gap
is significant at 7% confidence level against the VRW model
and 13% confidence level against VAR model. Meanwhile,
experiment results also show that adopting the proposed
entropy measure during the model parameter determina-
tion would lead to lower MSE and higher P value for its
statistical significance performance out-of-sample compared
to the currently dominant MSE measure. Out-of-sample
performance comparisons for the proposed MWVAR using
different criteria during the model parameter determination
in-sample suggest that using the proposed entropy measure
leads to improved model performance out-of-sample. The
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Table 4: MSE of MWVAR with different wavelet parameters and
model specifications.

Wavelets 𝐷𝑏2
𝐻

𝐷𝑏2
𝑆

𝐶𝑜𝑖𝑓𝑙𝑒𝑡2
𝐻

𝐶𝑜𝑖𝑓𝑙𝑒𝑡2
𝑆

(×10
−5
) (×10

−5
) (×10

−5
) (×10

−5
)

1 3.8863 3.8766 3.8660 3.8704
2 3.8757 3.8696 3.8524 3.8622
3 3.8771 3.8650 3.8529 3.8604
4 3.8814 3.8688 3.8531 3.8611
5 3.8816 3.8726 3.8524 3.8604
6 3.8817 3.8728 3.8528 3.8594
7 3.8818 3.8729 3.8517 3.8599
8 3.8819 3.8741 3.8519 3.8594
9 3.8818 3.8746 3.8519 3.8573
Average 3.8810 3.8719 3.8539 3.8612

Table 5: Entropy of MWVAR prediction with different wavelet
parameters and model specifications.

Wavelets 𝐷𝑏2
𝐻

𝐷𝑏2
𝑆

𝐶𝑜𝑖𝑓𝑙𝑒𝑡2
𝐻

𝐶𝑜𝑖𝑓𝑙𝑒𝑡2
𝑆

(×10
−5
) (×10

−5
) (×10

−5
) (×10

−5
)

1 3.3462 1.9278 0.5385 0.9922
2 3.7502 3.0319 2.1602 2.3601
3 3.9625 3.1196 2.5694 2.7095
4 3.8269 3.1158 2.5220 2.5955
5 3.8084 3.2815 2.4967 3.1538
6 3.8023 3.4627 2.4291 3.2342
7 3.8048 3.5441 2.5636 3.4439
8 3.8031 3.6604 2.5646 3.4929
9 3.7963 3.7501 2.5565 3.6166

Table 6: Performance evaluation based on MSE.

MSE (×10−5) 𝑃CW,RW 𝑃CW,VAR

VRW 2.9557 N/A 0.1017
VAR 2.9518 N/A N/A
MWVARMSE 2.9481 0.0796 0.1537
MWVAREntropy 2.9472 0.0671 0.1222

proposedMWVAR algorithm has achieved the lower MSE in
general, compared with the algorithm performance using in-
sample MSE as the criteria.

The performance improvement is attributed to the anal-
ysis of latent risk structure in the multiscale domain using
wavelet analysis, aswell as the best basis andparameters selec-
tion based on entropy maximization principle. These results
further imply that the exchange rate data is complicated
processes with a mixture of underlying DGPs of different
natures.Theremay be redundant representation of the under-
lying latent structure since there lacks explicit and analytic
solutions. The determination of best basis and parameters,
heterogeneous in nature, hold the key to further performance
improvement andmore thorough understanding of theDGPs
during the modeling process.

5. Conclusions

In this paper, we propose the HMH-based theoretical frame-
work for exchange rate forecasting. Under the proposed
theoretical framework we further propose the multivariate
wavelet-based exchange rate forecasting algorithm, as one
particular implementation. We find that the exchange rate
behaviors are affected by noises and main trends, which have
different characteristics. The separation of noises and data
need to be conducted in a multiscale manner to recover the
useful data for further modeling by VARmodel. Results from
empirical studies using the USD against RMB and Euro, as
the typical pair, confirm the performance improvement of the
proposedmodels, against the benchmarkmodels.Work done
in this paper suggests that the more accurate separation of
data and noises leads to better behaved data and higher level
of model generalizability.
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