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We consider the 3D MHD equations and prove that if one directional derivative of the fluid velocity, say, 𝜕
3
u ∈ 𝐿

𝑝
(0, 𝑇; 𝐿

𝑞
(R3)),

with 2/𝑝 + 3/𝑞 = 𝛾 ∈ [1, 3/2), 3/𝛾 ≤ 𝑞 ≤ 1/(𝛾 − 1), then the solution is in fact smooth. This improves previous results greatly.

1. Introduction

We consider the following three-dimensional (3D) magneto-
hydrodynamic (MHD) equations:

𝜕
𝑡
u + (u ⋅ ∇)u − (b ⋅ ∇) b − Δu + ∇𝑝 = 0,

𝜕
𝑡
b + (u ⋅ ∇) b − (b ⋅ ∇) u − Δb = 0,

∇ ⋅ u = ∇ ⋅ b = 0,

u (0) = u
0
, b (0) = b

0
.

(1)

Here, u and b are the fluid velocity and magnetic fields,
respectively; u

0
and b

0
are the corresponding initial data

satisfying the compatibility conditions

∇ ⋅ u
0

= ∇ ⋅ b
0

= 0; (2)

𝑝 is a scalar pressure. The MHD system (1) is a mathematical
model for electronically conducting fluids such as plasma and
salted water, which governs the dynamics of the fluid velocity
and the magnetic fields.

There have been extensive studies on (1). In particular,
Duvaut and Lions [1] constructed a class of global weak solu-
tions with finite energy, which is similar to the Leray-Hopf
weak solutions (see [2, 3]) for the Navier-Stokes equations
(b = 0 in (1)). However, the issue of uniqueness and regu-
larity for a given weak solution remains a challenging open
problem. Initiated by He and Xin [4] and Zhou [5], a lot of
literatures have been devoted to the study of conditionswhich
would ensure the smoothness of the solutions to (1) and

which involve only the fluid velocity field. Such conditions
are called regularity criteria. The readers, who are interested
in the regularity criteria for the Navier-Stokes equations, are
referred to [4–18] and references cited therein.

For the Navier-Stokes equations, the authors have estab-
lished that the regularity of the velocity in one direction
(say, 𝜕

3
u), one component of the velocity (say, 𝑢

3
), or some

other partial components of the velocity, velocity gradient,
velocity Hessian, vorticity, pressure, and so forth, would
guarantee the regularity of theweak solutions; see [19–29] and
references therein.Many of these regularity criteria have been
proved to be enjoyed by the MHD equations (1); see [30–33].
However, due to the strong coupling of the fluid velocity and
the magnetic fields, the scaling dimensions for the MHD
equations are not as good (large) as that for the Navier-Stokes
equations.

In this paper, we would like to improve the regularity
criterion

𝜕
3
u ∈ 𝐿
𝑝

(0, 𝑇; 𝐿
𝑞

(R3)) , with 2

𝑝
+

3

𝑞
= 1, 3 < 𝑞 ≤ ∞,

(3)

shown in [30].That is, we enlarge the scaling dimension from
1 to (almost) 3/2. Precisely, we show that the condition

𝜕
3
u ∈ 𝐿
𝑝

(0, 𝑇; 𝐿
𝑞

(R3)) , with 2

𝑝
+

3

𝑞
= 𝛾 ∈ [1,

3

2
) ,

3

𝛾
≤ 𝑞 ≤

1

𝛾 − 1
,

(4)
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is enough to ensure the smoothness of the solution. The key
idea is a multiplicative Sobolev inequality, which is in spirit
similar to that in [20]; see Lemma 2.

The rest of this paper is organized as follows. In Section 2,
we recall the weak formulation of (1) and establish the funda-
mental Sobolev inequality. Section 3 is devoted to stating and
proving the main result.

2. Preliminaries

In this section, we first recall the weak formulation of (1).

Definition 1. Let (u
0
, b
0
) ∈ 𝐿
2
(R3) satisfying∇⋅u

0
= ∇⋅b

0
= 0,

𝑇 > 0 be given. A measurable pair (u
0
, b
0
) on (0, 𝑇) is said to

be a weak solution to (1) provided that

(1) (u, b) ∈ 𝐿
∞

(0, 𝑇; 𝐿
2
(R3)) ∩ 𝐿

2
(0, 𝑇; 𝐻

1
(R3));

(2) (1)
1,2

are satisfied in the sense of distributions;

(3) the energy inequality is given as

‖u (𝑡)‖
2

𝐿
2
(R3) + ‖b (𝑡)‖

2

𝐿
2
(R3)

+ 2 ∫

𝑡

0

(‖∇u (𝑠)‖
2

𝐿
2
(R3) + ‖∇b (𝑠)‖

2

𝐿
2
(R3)) 𝑑𝑠

≤
u0


2

𝐿
2
(R3) +

b0

2

𝐿
2
(R3),

(5)

for all 𝑡 ∈ [0, 𝑇].

Then a fundamental Sobolev inequality is given.

Lemma 2. Suppose that 𝑓, 𝑔 ∈ 𝐶
∞

𝑐
(R3); then, one has

∫
R3

𝑓

2𝑔


2
𝑑𝑥

≤ 𝐶
𝑓


(2𝑟−1)/𝑟

𝐿
𝛼
(R3)

𝜕
3
𝑓


1/𝑟

𝐿
𝑞
(R3)

𝑔

2(𝑟−1)/𝑟

𝐿
2
(R3)

(𝜕
1
, 𝜕
2
) 𝑔


2/𝑟

𝐿
2
(R3),

(6)

where 𝐶 is a generic constant independent of 𝑓 and 𝑔; 1 ≤ 𝛼,
𝑞 ≤ ∞, and 1 < 𝑟 ≤ ∞ satisfy

2𝑟 − 1

𝛼
+

1

𝑞
= 1. (7)

Proof . Consider the following

∫
R3

𝑓

2𝑔


2
𝑑𝑥

≤ ∫
R2

[max
𝑥
3

𝑓

2

⋅ ∫
R

𝑔

2
𝑑𝑥
3
] 𝑑𝑥
1

𝑑𝑥
2

≤ [∫
R2
max
𝑥
3

𝑓

2𝑟

𝑑𝑥
1

𝑑𝑥
2
]

1/𝑟

⋅ [∫
R2

(∫
R

𝑔

2
𝑑𝑥
3
)

𝑟/(𝑟−1)

𝑑𝑥
1

𝑑𝑥
2
]

(𝑟−1)/𝑟

(Hölder inequality)

≤ 𝐶[∫
R3

𝑓

2𝑟−1 𝜕3𝑓

 𝑑𝑥]

1/𝑟

⋅ ∫
R

(∫
R2

𝑔

2𝑟/(𝑟−1)

𝑑𝑥
1

𝑑𝑥
2
)

(𝑟−1)/𝑟

𝑑𝑥
3

(Minkowski inequality)

≤ 𝐶
𝑓


(2𝑟−1)/𝑟

𝐿
𝛼
(R3)

𝜕
3
𝑓


1/𝑟

𝐿
𝑞
(R3)

𝑔

2(𝑟−1)/𝑟

𝐿
2
(R3)

(𝜕
1
, 𝜕
2
)𝑔


2/𝑟

𝐿
2
(R3),

(8)

where in the last inequality we have used Hölder inequality
with

2𝑟 − 1

𝛼
+

1

𝑞
= 1 (9)

and the Gagliardo-Nirenberg inequality.

3. The Main Result and Its Proof

In this section, we state and prove our main regularity
criterion.

Theorem3. Let (u
0
, b
0
) ∈ 𝐿
2
(R3) satisfying∇⋅u

0
= ∇⋅b

0
= 0,

𝑇 > 0 be given. Assume that the measurable pair (u, b) is a
weak solution as in Definition 1 on (0, 𝑇). If

𝜕
3
u ∈ 𝐿
𝑝

(0, 𝑇; 𝐿
𝑞

(R3)) , 𝑤𝑖𝑡ℎ
2

𝑝
+

3

𝑞
= 𝛾 ∈ [1,

3

2
) ,

3

𝛾
≤ 𝑞 ≤

1

𝛾 − 1
,

(10)

then (u, b) ∈ 𝐶
∞

((0, 𝑇) × R3).

Proof. For any 𝜀 ∈ (0, 𝑇), we can find a 𝛿 ∈ (0, 𝜀) such that

(∇u (𝛿) , ∇b (𝛿)) ∈ 𝐿
2

(R3) (11)

since (u, b) ∈ 𝐿
2
(0, 𝑇; 𝐻

1
(R3)) as inDefinition 1. Our strategy

is to show that under condition (10) the weak solution is in
fact strong; that is,

(u, b) ∈ 𝐿
∞

(𝛿, 𝑇; 𝐻
1

(R3)) ∩ 𝐿
2

(𝛿, 𝑇; 𝐻
2

(R3)) , (12)

which would imply the smoothness of the solution via stan-
dard energy estimates and Sobolev embeddings. Due to the
arbitrariness of 𝜀, we complete the proof.

To prove (12), we multiply (1)
1
by −Δu and (1)

2
by −Δb to

get

1

2

𝑑

𝑑𝑡
[‖∇u‖

2

𝐿
2
(R3) + ‖∇b‖

2

𝐿
2
(R3)] + ‖Δu‖

2

𝐿
2
(R3) + ‖Δb‖

2

𝐿
2
(R3)

= ∫
R3

[(u ⋅ ∇) u] ⋅ Δu𝑑𝑥 − ∫
R3

[(b ⋅ ∇) b] ⋅ Δu𝑑𝑥

+ ∫
R3

[(u ⋅ ∇) b] ⋅ Δb𝑑𝑥 − ∫
R3

[(b ⋅ ∇) u] ⋅ Δb𝑑𝑥.

(13)
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Integration by parts formula together with the diver-
gence-free conditions ∇ ⋅ u = ∇ ⋅ b = 0 yields

− ∫
R3

[(b ⋅ ∇) b] ⋅ Δu𝑑𝑥 − ∫
R3

[(b ⋅ ∇) u] ⋅ Δb𝑑𝑥

= ∫
R3

[(𝜕
𝑖
b ⋅ ∇) b] ⋅ 𝜕

𝑖
u𝑑𝑥 + ∫

R3
[(𝜕
𝑖
b ⋅ ∇) u] ⋅ 𝜕

𝑖
b𝑑𝑥

= − ∫
R3

[(Δb ⋅ ∇) b + (𝜕
𝑖
b ⋅ ∇) 𝜕

𝑖
b] ⋅ u𝑑𝑥

− ∫
R3

[(𝜕
𝑖
b ⋅ ∇) 𝜕

𝑖
b] ⋅ u𝑑𝑥,

(14)

where we use the summation convention; that is, the repeated
index (say, 𝑖 here) is automatically summed over {1, 2, 3}.

Substituting (14) into (13) and using a simple Cauchy-
Schwarz inequality, we obtain

1

2

𝑑

𝑑𝑡
[‖∇u‖

2

𝐿
2
(R3) + ‖∇b‖

2

𝐿
2
(R3)] + ‖Δu‖

2

𝐿
2
(R3) + ‖Δb‖

2

𝐿
2
(R3)

≤ ∫
R3

|u| ⋅ |∇u| ⋅ |Δu| 𝑑𝑥 + 4 ∫
R3

|u| ⋅ |∇b| ⋅

∇
2b

𝑑𝑥

≤
1

2
∫
R3

|u|
2

⋅ |∇u|
2
𝑑𝑥 + ‖Δu‖

2

𝐿
2
(R3)

+ 𝐶
𝜀
∫
R3

|u|
2

⋅ |∇b|
2
𝑑𝑥 + 𝜀


∇
2b

2

𝐿
2
(R3),

(15)

where 0 < 𝜀 ≪ 1 is to be determined later on.
Due to the Calderón-Zygmund inequality,


∇
2b

2

𝐿
2
(R3) =

3

∑

𝑖,𝑗=1


𝑅
𝑖
𝑅
𝑗
Δb

2

𝐿
2
(R3) ≤ 𝐶

1‖Δb‖
2

𝐿
2
(R3), (16)

(𝑅
𝑗
being the Riesz transform) we may take that the 𝜀 in (15)

equals 1/2𝐶
1
to get

𝑑

𝑑𝑡
[‖∇u‖

2

𝐿
2
(R3) + ‖∇b‖

2

𝐿
2
(R3)] + ‖Δu‖

2

𝐿
2
(R3) + ‖Δb‖

2

𝐿
2
(R3)

≤ 𝐶 ∫
R3

|u|
2

⋅ |∇u|
2
𝑑𝑥 + 𝐶 ∫

R3
|u|
2

⋅ |∇b|
2
𝑑𝑥 ≡ 𝐼

1
+ 𝐼
2
.

(17)

To further bound 𝐼
1
, 𝐼
2
, we introduce some notations.

Denote

𝑟 =
5

2
− 𝛾, (18)

𝛼 =
2𝑞 (2 − 𝛾)

𝑞 − 1
. (19)

Then, by (10), we have

𝑟 ∈ (1, ∞) , 𝛼 ∈ [2, 6] . (20)

Invoking Lemma 2 with 𝑞 as in (10), 𝑟 as in (18), and 𝛼 as in
(19), we may estimate 𝐼

1
as

𝐼
1

= 𝐶 ∫
R3

|u|
2

⋅ |∇u|
2
𝑑𝑥

≤ 𝐶‖u‖
(2𝑟−1)/𝑟

𝐿
𝛼
(R3)

𝜕
3
u
1/𝑟

𝐿
𝑞
(R3)‖∇u‖

2(𝑟−1)/𝑟

𝐿
2
(R3)


∇
2u

2/𝑟

𝐿
2
(R3)

≤ 𝐶‖u‖
(2𝑟−1)/(𝑟−1)

𝐿
𝛼
(R3)

𝜕
3
u
1/(𝑟−1)

𝐿
𝑞
(R3) ‖∇u‖

2

𝐿
2
(R3)

+
1

2𝐶
1


∇
2u

2

𝐿
2
(R3),

(21)

where 𝐶
1
is as in (16). Applying Hölder inequality with

2𝑞 (𝑟 − 1) − (𝑞𝛾 − 3)

2𝑞 (𝑟 − 1)
+

𝑞𝛾 − 3

2𝑞 (𝑟 − 1)
= 1,

𝑞𝛾 − 3

2𝑞 (𝑟 − 1)
=

𝑞𝛾 − 3

𝑞 (3 − 2𝛾)
∈ [0, 1] (by (18) and (10)) ,

(22)

(21) becomes

𝐼
1

≤ 𝐶‖u‖
2

𝐿
6
(R3)

𝜕
3
u
1/(𝑟−1)

𝐿
𝑞
(R3) ‖∇u‖

2

𝐿
2
(R3) +

1

2𝐶
1


∇
2u

2

𝐿
2
(R3),

(23)

when (𝑞𝛾 − 3)/2𝑞(𝑟 − 1) = 0, or

𝐼
1

≤ 𝐶 (‖u‖
((2𝑟−1)/(𝑟−1))⋅(2𝑞(𝑟−1)/(2𝑞(𝑟−1)−(𝑞𝛾−3)))

𝐿
𝛼
(R3)

+
𝜕
3
u
(1/(𝑟−1))⋅(2𝑞(𝑟−1)/(𝑞𝛾−3))

𝐿
𝑞
(R3) ) ‖∇u‖

2

𝐿
2
(R3)

+
1

2𝐶
1


∇
2u

2

𝐿
2
(R3)

= 𝐶 (‖u‖
2𝑞(2𝑟−1)/(2𝑞(𝑟−1)−(𝑞𝛾−3))

𝐿
𝛼
(R3) +

𝜕
3
u
2𝑞/(𝑞𝛾−3)

𝐿
𝑞
(R3) ) ‖∇u‖

2

𝐿
2
(R3)

+
1

2𝐶
1


∇
2u

2

𝐿
2
(R3),

(24)

when (𝑞𝛾 − 3)/2𝑞(𝑟 − 1) ∈ (0, 1), or

𝐼
1

≤ 𝐶‖u‖
(2𝑟−1)/(𝑟−1)

𝐿
2
(R3)

𝜕
3
u
2𝑞/(𝑞𝛾−3)

𝐿
𝑞
(R3) ‖∇u‖

2

𝐿
2
(R3)

+
1

2𝐶
1


∇
2u

2

𝐿
2
(R3),

(25)

when (𝑞𝛾 − 3)/2𝑞(𝑟 − 1) = 1.
Similarly, 𝐼

2
can be dominated as

𝐼
2

≤ 𝐶‖u‖
2

𝐿
6
(R3)

𝜕
3
u
1/(𝑟−1)

𝐿
𝑞
(R3) ‖∇b‖

2

𝐿
2
(R3)

+
1

2𝐶
1


∇
2b

2

𝐿
2
(R3),

(26)
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when (𝑞𝛾 − 3)/2𝑞(𝑟 − 1) = 0, or

𝐼
2

≤ 𝐶 (‖u‖
((2𝑟−1)/(𝑟−1))⋅(2𝑞(𝑟−1)/(2𝑞(𝑟−1)−(𝑞𝛾−3)))

𝐿
𝛼
(R3)

+
𝜕
3
u
(1/(𝑟−1))⋅(2𝑞(𝑟−1)/(𝑞𝛾−3))

𝐿
𝑞
(R3) ) ‖∇b‖

2

𝐿
2
(R3)

+
1

2𝐶
1


∇
2b

2

𝐿
2
(R3)

= 𝐶 (‖u‖
2𝑞(2𝑟−1)/(2𝑞(𝑟−1)−(𝑞𝛾−3))

𝐿
𝛼
(R3)

+
𝜕
3
u
2𝑞/(𝑞𝛾−3)

𝐿
𝑞
(R3) ) ‖∇b‖

2

𝐿
2
(R3)

+
1

2𝐶
1


∇
2b

2

𝐿
2
(R3),

(27)

when (𝑞𝛾 − 3)/2𝑞(𝑟 − 1) ∈ (0, 1), or

𝐼
2

≤ 𝐶‖u‖
(2𝑟−1)/(𝑟−1)

𝐿
2
(R3)

𝜕
3
u
2𝑞/(𝑞𝛾−3)

𝐿
𝑞
(R3) ‖∇b‖

2

𝐿
2
(R3)

+
1

2𝐶
1


∇
2b

2

𝐿
2
(R3),

(28)

when (𝑞𝛾 − 3)/2𝑞(𝑟 − 1) = 1.
Thus, if 𝑞 = 3/𝛾, then, combing (23) and (26), we deduce

from (17) that

𝑑

𝑑𝑡
[‖∇u‖

2

𝐿
2
(R3) + ‖∇b‖

2

𝐿
2
(R3)]

+
1

2
[‖Δu‖

2

𝐿
2
(R3) + ‖Δb‖

2

𝐿
2
(R3)]

≤ 𝐶‖u‖
2

𝐿
6
(R3)

𝜕
3
u
1/(𝑟−1)

𝐿
𝑞
(R3)

× [‖∇u‖
2

𝐿
2
(R3) + ‖∇b‖

2

𝐿
2
(R3)] .

(29)

Applying Gronwall inequality and noting that u ∈

𝐿
2
(𝛿, 𝑇; 𝐻

1
(R3)) as in Definition 1, we obtain (12) as

desired.
If 3/𝛾 < 𝑞 < 1/(𝛾 − 1), we gather (24) and (27) into (17) to

get

𝑑

𝑑𝑡
[‖∇u‖

2

𝐿
2
(R3) + ‖∇b‖

2

𝐿
2
(R3)]

+
1

2
[‖Δu‖

2

𝐿
2
(R3) + ‖Δb‖

2

𝐿
2
(R3)]

≤ 𝐶 [‖u‖
2𝑞(2𝑟−1)/(2𝑞(𝑟−1)−(𝑞𝛾−3))

𝐿
𝛼
(R3) +

𝜕
3
u
𝑝

𝐿
𝑞
(R3)]

× [‖∇u‖
2

𝐿
2
(R3) + ‖∇b‖

2

𝐿
2
(R3)] .

(30)

To deduce (12) by applying Gronwall inequality to (30), we
need only to show that

u ∈ 𝐿
2𝑞(2𝑟−1)/(2𝑞(𝑟−1)−(𝑞𝛾−3))

(𝛿, 𝑇; 𝐿
𝛼

(R3)) . (31)

This is indeed true. First, simple interpolation inequality
together with the fact that

u ∈ 𝐿
∞

(𝛿, 𝑇; 𝐿
2

(R3)) ∩ 𝐿
2

(𝛿, 𝑇; 𝐻
1

(R3)) (32)

yields

u ∈ 𝐿
𝑎

(𝛿, 𝑇; 𝐿
𝑏

(R3)) , with 2

𝑎
+

3

𝑏
=

3

2
, 2 ≤ 𝑏 ≤ 6. (33)

Second, the integrability indices as in (31) satisfy

2𝑞 (𝑟 − 1) − (𝑞𝛾 − 3)

𝑞 (2𝑟 − 1)
+

3

𝛼
=

𝑞 (3 − 2𝛾) − (𝑞𝛾 − 3)

2𝑞 (2 − 𝛾)

+
3 (𝑞 − 1)

2𝑞 (2 − 𝛾)
=

3

2
,

(34)

and 𝛼 ∈ (2, 6), by (18) and (19).
If, however, 𝑞 = 1/(𝛾 − 1), then (𝑞𝛾 − 3)/2𝑞(𝑟 − 1) = 1,

and, combining (25) and (28), we deduce from (17) that

𝑑

𝑑𝑡
[‖∇u‖

2

𝐿
2
(R3) + ‖∇b‖

2

𝐿
2
(R3)]

+
1

2
[‖Δu‖

2

𝐿
2
(R3) + ‖Δb‖

2

𝐿
2
(R3)]

≤ 𝐶‖u‖
(2𝑟−1)/(𝑟−1)

𝐿
2
(R3)

𝜕
3
u
𝑝

𝐿
𝑞
(R3) [‖∇u‖

2

𝐿
2
(R3) + ‖∇b‖

2

𝐿
2
(R3)] ,

(35)

where we recall𝑝 = 2𝑞/(𝑞𝛾−3) from (10). Applying Gronwall
inequality and noting that u ∈ 𝐿

∞
(𝛿, 𝑇; 𝐿

2
(R3)) as in

Definition 1, we obtain (12) as desired.
The proof of Theorem 3 is completed.
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Lineairé, vol. 24, no. 3, pp. 491–505, 2007.

[18] Y. Zhou, “Regularity criteria in terms of pressure for the 3-D
Navier-Stokes equations in a generic domain,” Mathematische
Annalen, vol. 328, no. 1-2, pp. 173–192, 2004.

[19] C. S. Cao, “Sufficient conditions for the regularity to the 3D
Navier-Stokes equations,” Discrete and Continuous Dynamical
Systems. Series A, vol. 26, no. 4, pp. 1141–1151, 2010.

[20] C. Cao and E. S. Titi, “Global regularity criterion for the 3D
Navier-Stokes equations involving one entry of the velocity
gradient tensor,” Archive for Rational Mechanics and Analysis,
vol. 202, no. 3, pp. 919–932, 2011.

[21] C. S. Cao and E. S. Titi, “Regularity criteria for the three-
dimensional Navier-Stokes equations,” Indiana University
Mathematics Journal, vol. 57, no. 6, pp. 2643–2661, 2008.

[22] Z. Zhang, D. Zhong, and L. Hu, “A new regularity criterion for
the 3D Navier-Stokes equations via two entries of the velocity
gradient tensor,” Acta Applicandae Mathematicae, vol. 129, pp.
175–181, 2014.

[23] Z. Zhang, F. Alzahrani, T. Hayat, and Y. Zhou, “Two new reg-
ularity criteria for the Navier-Stokes equations via two entries

of the velocity Hessian tensor,” Applied Mathematics Letters,
vol. 37, pp. 124–130, 2014.

[24] Z. Zhang, “A Serrin-type regularity criterion for the Navier-
Stokes equations via one velocity component,” Communications
on Pure and Applied Analysis, vol. 12, no. 1, pp. 117–124, 2013.

[25] Z. L. Zhang, Z. A. Yao, P. Li, C. C. Guo, and M. Lu, “Two new
regularity criteria for the 3D Navier-Stokes equations via two
entries of the velocity gradient tensor,” Acta Applicandae Math-
ematicae, vol. 123, pp. 43–52, 2013.

[26] Y. Zhou, “A new regularity criterion for the Navier-Stokes
equations in terms of the gradient of one velocity component,”
Methods and Applications of Analysis, vol. 9, no. 4, pp. 563–578,
2002.

[27] Y. Zhou, “A new regularity criterion for weak solutions to the
Navier-Stokes equations,” Journal de Mathématiques Pures et
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