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The generalized synchronization problem is studied in this paper for different chaotic systems with the aid of the direct design
method. Based on Lyapunov stability theory and matrix theory, some sufficient conditions guaranteeing the stability of a nonlinear
system with nonnegative off-diagonal structure are obtained. Then the control scheme is designed from the stable system by the
direct design method. Finally, two numerical simulations are provided to verify the effectiveness and feasibility of the proposed
method.

1. Introduction

As a very important topic in nonlinear science, chaos syn-
chronization has been studied extensively in both theory and
applications, such asmathematics, physics, biology, and engi-
neering community. Since the pioneering work of [1, 2] in
1990, many techniques have been successfully applied to the
synchronization of chaotic systems, for example, the time-
delay feedback control, adaptive control, backstepping con-
trol, sliding mode control, linear state feedback control, and
nonlinear control.Moreover, a variety of concepts of synchro-
nization has also been proposed including complete synchro-
nization [3, 4], phase synchronization [5], lag synchroniza-
tion [6], antisynchronization [7, 8], projective synchroniza-
tion [9, 10], cluster synchronization [11–13], and generalized
synchronization [14–19].

Generalized synchronization can be regarded as an exten-
sion of complete synchronization, antisynchronization, or
projective synchronization and it means that there exists a
functional relation between the states of two systems. It is
noted that the two systems may have different dimensions.
The generalized synchronization problem between two com-
plex networks with nonlinear coupling and time-varying
delay was developed in [18]. Two variants of generalized syn-
chronization between strictly different chaotic systems were
proposed in [19]. Reference [20] presented a new scheme

to achieve generalized synchronization between different
discrete-time chaotic (hyperchaotic) systems. Reference [21]
investigated the problem of chaos synchronization between
two different uncertain chaotic systems with input nonlinear-
ities. Acharyyaa and Amritkarb have briefly discussed some
recent developments in the study of generalized synchroniza-
tion in [22].

Recently, the direct design method [3, 10] is proposed to
investigate synchronization of chaotic systems. It presents an
easy procedure for selecting proper controllers and the simple
controller deriving from this method is easy to implement.
The idea of this method is to transform the original error sys-
tem into a stable systemunder a control scheme. It is clear that
the structure of stable system plays a key role in this method.
Liu et al. introduced the direct design method and realized
synchronization of chaotic systems based on the stable system
with tridiagonal structure [3]. Subsequently, Cai et al. studied
generalized projective synchronization of chaotic systems
based on the stable system with antisymmetric structure
[10]. In this paper, the direct design method is developed to
address generalized synchronization of different chaotic sys-
tems. The main contribution is to design a nonlinear control
scheme bymeans ofmatrix theory.The error dynamic system
is changed into a stable system with a special structure which
is different from the existing results in [3, 10].
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Figure 1: Schematic diagram of a drive-response configuration.
Here, the system 𝑥 is driving the system 𝑦.

The rest of this paper is organized as follows. In Section 2,
the problem is formulated under investigation. The main
result is given in Section 3. The stable system with nonnega-
tive off-diagonal structure is discussed and a control scheme
is presented by the direct design method. In Section 4,
numerical simulations are shown to illustrate and verify the
effectiveness of proposed theoretical results.Thepaper is con-
cluded in the last section.

The following notations are used throughout this paper.
𝑅
𝑛 denotes the 𝑛 dimensional Euclidean space. 𝑅𝑛×𝑛 is the set

of all 𝑛 × 𝑛 real matrices. For a vector 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

∈

𝑅
𝑛, 𝑥𝑇 represents the transpose of the vector 𝑥, ‖𝑥‖ =
(𝑥
𝑇

𝑥)
1/2, and 𝑥 > 0 if all entries 𝑥

𝑖
are positive. 𝜌(∙) is the

spectral radius of matrix ∙.

2. Problem Description and Preliminaries

In this section, generalized synchronization between two
coupled chaotic systems is introduced.The concept of gener-
alized synchronizationwas first proposed for unidirectionally
coupled systems, that is, systems coupled in a drive response
configuration, by Rulkov et al. [14] (see Figure 1). Consider a
system in the form of

�̇� = 𝑓 (𝑥) , (1)

where 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
]
𝑇

∈ 𝑅
𝑚 is the state vector, 𝑓(⋅) :

𝑅
𝑚

→ 𝑅
𝑚 is a continuous function. Equation (1) is regarded

as a drive system. Then the controlled response system is
described by

̇𝑦 = 𝐴𝑦 + 𝑔 (𝑦) + 𝑢, (2)

where 𝑦 = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
]
𝑇

∈ 𝑅
𝑛, 𝐴 ∈ 𝑅𝑛×𝑛 is a state matrix,

𝑔(⋅) : 𝑅
𝑛

→ 𝑅
𝑛 is a nonlinear continuous function, and 𝑢 is

referred to a control scheme to be designed later.

Definition 1 (see [16]). Given a vector map 𝜑 : 𝑅𝑚 → 𝑅
𝑛, if

systems (1) and (2) satisfy

lim
𝑡→∞





𝑦 − 𝜑 (𝑥)





= 0, (3)

then we say that system (1) achieves generalized synchroniza-
tion with system (2).

Define the error variable 𝑒 = 𝑦−𝜑(𝑥), where 𝜑 is continu-
ously differentiable; then the dynamical error system is writ-
ten as

̇𝑒 = 𝐴𝑦 + 𝑔 (𝑦) − 𝐷𝜑 (𝑥) 𝑓 (𝑥) + 𝑢

= 𝐴𝑒 + 𝑔 (𝑒 + 𝜑 (𝑥)) + 𝐴𝜑 (𝑥)

− 𝐷𝜑 (𝑥) 𝑓 (𝑥) + 𝑢,

(4)

where𝐷𝜑(𝑥) is the Jacobian matrix of the map 𝜑(𝑥); that is,

𝐷𝜑 (𝑥) =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜕𝜑
1
(𝑥)

𝜕𝑥
1

𝜕𝜑
1
(𝑥)

𝜕𝑥
2

⋅ ⋅ ⋅

𝜕𝜑
1
(𝑥)

𝜕𝑥
𝑚

𝜕𝜑
2
(𝑥)

𝜕𝑥
1

𝜕𝜑
2
(𝑥)

𝜕𝑥
2

⋅ ⋅ ⋅

𝜕𝜑
2
(𝑥)

𝜕𝑥
𝑚

...
... d

...

𝜕𝜑
𝑛
(𝑥)

𝜕𝑥
1

𝜕𝜑
𝑛
(𝑥)

𝜕𝑥
2

⋅ ⋅ ⋅

𝜕𝜑
𝑛
(𝑥)

𝜕𝑥
𝑚

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (5)

In fact, system (1) achieving generalized synchronization
with system (2) is equivalent to the asymptotical stability of
the error system (4) at 𝑒 = 0. Hence, the essential problem
here is how to choose a control scheme 𝑢 to make system (4)
asymptotically stable at the origin.

Some necessary results [23, 24] in matrix theory are
needed to derive our main results.

Lemma 2. Matrix 𝑄 is a nonsingular M-matrix under one of
the following conditions, and the conditions are all equivalent:

(i) the eigenvalues of 𝑄 have positive real parts;
(ii) there exists a positive diagonal matrix 𝑆 such that𝑄𝑆 +
𝑆𝑄
𝑇 is strictly diagonally dominant and hence also

positive definite.

Lemma 3. For any matrix 𝑄 ∈ Z, the following statements
are equivalent to each other:

(i) 𝑄 is a singular M-matrix with “Property c”;
(ii) there exists a symmetric positive definitematrix𝑊 such

that𝑊𝑄+𝑄𝑇𝑊 is positive semidefinite; that is, matrix
−𝑄 is Lyapunov stable.

Lemma 4. If 𝑄 ∈ Z and if there exists vector Γ > 0 such that
𝑄Γ ≥ 0, then 𝑄 is a singular M-matrix with “Property c.”

3. Main Results

In this section, we focus on the stability of a nonlinear sys-
tem with nonnegative off-diagonal structure. Then a control
scheme is proposed by the direct design method.

Consider the following system with state dependent
coefficients described by

�̇� = 𝐷 (𝑧) 𝑧, (6)

where 𝑧 = [𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
]
𝑇

∈ 𝑅
𝑛 is the state vector, and

𝐷(𝑧) = [𝑑
𝑖𝑗
(𝑧)] ∈ 𝑅

𝑛×𝑛, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, is the coefficient
matrix.

Theorem 5. If the 𝐷(𝑧) = [𝑑
𝑖𝑗
(𝑧)] ∈ 𝑅

𝑛×𝑛, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,
satisfies the following conditions:

(i) 𝑑
𝑖𝑗
(𝑧) ≥ 0, 𝑖 ̸= 𝑗;

(ii) −𝑑
𝑖𝑖
(𝑧) > ∑

𝑗 ̸= 𝑖
𝑑
𝑗𝑖
(𝑧);

then system (6) is asymptotically stable.
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Proof. Construct a Lyapunov function

𝑉 (𝑧) = 𝑧
𝑇

𝑃
1
𝑧, (7)

where 𝑃
1
is a positive diagonal matrix. The time derivative of

𝑉(𝑧) along the trajectories of (6) is

�̇� (𝑧) = 𝑧
𝑇

𝑃
1
�̇� + �̇�
𝑇

𝑃
1
𝑧

= 𝑧
𝑇

(𝑃
1
𝐷 + 𝐷

𝑇

𝑃
1
) 𝑧.

(8)

If 𝑃
1
𝐷 +𝐷

𝑇

𝑃
1
is negative definite, it is clear that the equilib-

rium 𝑧 = 0 of system (6) is asymptotically stable from Lya-
punov stability theory. For a nonsingular𝑀-matrix −𝐷𝑇, the
existence of such a matrix 𝑃

1
is guaranteed by Lemma 2. The

proof of Theorem 5 is completed.

Theorem 6. If the 𝐷(𝑧) = [𝑑
𝑖𝑗
(𝑧)] ∈ 𝑅

𝑛×𝑛, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,
satisfies the following conditions:

(i) 𝑑
𝑖𝑗
(𝑧) ≥ 0, 𝑖 ̸= 𝑗;

(ii) there exists a vector Γ > 0, such that𝐷(𝑧)Γ ≤ 0,

and the invariant set of system (6) only includes the origin, then
system (6) is asymptotically stable.

Proof. Construct a Lyapunov function

𝑉 (𝑧) = 𝑧
𝑇

𝑃
2
𝑧, (9)

where 𝑃
2
is a symmetric positive definite matrix. Then the

time derivative of 𝑉(𝑧) is

�̇� (𝑧) = 𝑧
𝑇

𝑃
2
�̇� + �̇�
𝑇

𝑃
2
𝑧

= 𝑧
𝑇

(𝑃
2
𝐷 + 𝐷

𝑇

𝑃
2
) 𝑧.

(10)

If 𝑃
2
𝐷+𝐷

𝑇

𝑃
2
is negative semidefinite and the invariant set of

system (6) only includes the origin, the equilibrium 𝑧 = 0 of
system (6) is asymptotically stable. It follows from conditions
(i) and (ii) and Lemma 4 that −𝐷 is a singular𝑀-matrix with
“Property c.” Lemma 3 guarantees the existence of matrix 𝑃

2
.

Then the proof of Theorem 6 is completed.

Our main purpose is to design a control scheme 𝑢 in
(2) by the direct design method. The system (4) with this
control scheme can be transformed into the form of system
(6), that is, ̇𝑒 = 𝐷𝑒, which is asymptotically stable at the origin
according to the aforementioned conclusions. The result can
be presented as follows.

Theorem 7. If −𝐷𝜑(𝑥) is an 𝑀-matrix, system (1) achieves
generalized synchronization with system (2) under the nonlin-
ear control scheme

𝑢 = (𝐷𝜑 (𝑥) − 𝐴) 𝑒 − 𝑔 (𝑒 + 𝜑 (𝑥)) − 𝐴𝜑 (𝑥) + 𝐷𝜑 (𝑥) 𝑓 (𝑥) .

(11)

Proof. Substituting (11) into error system (4), the following
equation is obtained:

̇𝑒 = 𝐷𝜑 (𝑥) 𝑒. (12)

FromTheorem 5 orTheorem 6, we conclude that if−𝐷𝜑(𝑥) is
an𝑀-matrix, system (12) is asymptotically stable about zero.
The proof of Theorem 7 is completed.

Remark 8. The results obtained in the above discussion can
be applied to complete synchronization [3], antisynchroniza-
tion, and generalized projective synchronization [10] of cha-
otic systems, since complete synchronization and generalized
projective synchronization are special cases of generalized
synchronization.

Remark 9. It is worth noticing that the structure of matrix
𝐷𝜑(𝑥) in this paper is different from the existing results in
[3, 10]. So in this sense, compared with the work of [3, 10], the
results of this paper will give us more freedom in designing
the controller.

Remark 10. The control scheme (11) is designed from the sta-
ble system by the direct designmethod. It is worth noting that
the direct design approaches transform the original systems
into the system with stable tridiagonal structure by inputs.
Thedirect designmethod can design the controllerswith sim-
pler structure than backstepping for nonlinear systems with
low dimension.

4. Numerical Examples

In this section, to illustrate the effectiveness of the proposed
method, we discuss two numerical simulations for two cases:
(i) for identical systems, generalized projective synchroniza-
tion between two Chua’s circuits; (ii) for different dimen-
sional systems, generalized synchronization between Hyper-
Rössler system and Chen system.

4.1. Generalized Projective Synchronization of Chua’s Circuit.
Consider the following Chua’s circuit

�̇�
1
= 𝜎 (𝑥

2
− 𝑥
3

1
− 𝑟𝑥
1
) ,

�̇�
2
= 𝑥
1
− 𝑥
2
+ 𝑥
3
,

�̇�
3
= −ℎ𝑥

2

(13)

as the drive system and the controlled response system is
given in the following form:

̇𝑦
1
= 𝜎 (𝑦

2
− 𝑦
3

1
− 𝑟𝑦
1
) + 𝑢
1
,

̇𝑦
2
= 𝑦
1
− 𝑦
2
+ 𝑦
3
+ 𝑢
2
,

̇𝑦
3
= −ℎ𝑦

2
+ 𝑢
3
,

(14)

where 𝑥 = [𝑥
1
, 𝑥
2
, 𝑥
3
]
𝑇, 𝑦 = [𝑦

1
, 𝑦
2
, 𝑦
3
]
𝑇 are the state varia-

bles, 𝜎 = 10, ℎ = 16, and 𝑟 = −0.143.
Generalized projective synchronization of systems (13)

and (14) will be realized with 𝜑(𝑥) = 𝛼𝑥, where 𝛼 is a nonzero
constant and referred to as a scaling factor. Defining the error
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Figure 2: Antisynchronization errors and state trajectories of systems (13) and (14) under the controller (16).

vector 𝑒 = [𝑒
1
, 𝑒
2
, 𝑒
3
]
𝑇, where 𝑒

𝑖
= 𝑦
𝑖
−𝛼𝑥
𝑖
, 𝑖 = 1, 2, 3, the error

system can be written as

̇𝑒 =
[

[

1.43 − 30(𝛼𝑥
1
+ 0.5𝑒

1
)
2

− 7.5𝑒
2

1
10 0

1 −1 1

0 −16 0

]

]

𝑒

+
[

[

10𝑥
3

1
(1 − 𝛼

2

)

0

0

]

]

+
[

[

𝑢
1

𝑢
2

𝑢
3

]

]

.

(15)

Next, the two following controllers are designed from
Theorems 5 and 6, respectively.

At first, design the controller as

𝑢
1
= 1.43𝑒

1
− 2𝑒
1
− 10𝑥

3

1
(1 − 𝛼

2

) ,

𝑢
2
= −10𝑒

2
, 𝑢

3
= 16𝑒
2
− 2𝑒
3
.

(16)

Substitute the controller (16) into (15) and get

̇𝑒 = 𝐵
1
𝑒, (17)

where

𝐵
1
=
[

[

[

−30(𝛼𝑥
1
+ 0.5𝑒

2

1
)

2

− 7.5𝑒
2

1
− 2 10 0

1 −11 1

0 0 −2

]

]

]

. (18)
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Figure 3: Antisynchronization errors and state trajectories of systems (13) and (14) under the controller (19).
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Figure 6: Generalized synchronization errors and state trajectories of systems (22) and (23) under the controller (26).

It is easy to verify that all the conditions ofTheorem 5 are sat-
isfied for system (17). Therefore, system (17) is asymptotically
stable at the origin. Namely, system (13) achieves generalized
synchronization with system (14) under the controller (16).

Secondly, design the controller

𝑢
1
= 1.43𝑒

1
− 10𝑒
1
− 10𝑥

3

1
(1 − 𝛼

2

) ,

𝑢
2
= 0, 𝑢

3
= 16𝑒
2
− 𝑒
3
.

(19)

Then the error system (15) is changed into the following
system:

̇𝑒 = 𝐵
2
𝑒, (20)

where

𝐵
2
=
[

[

[

−30(𝛼𝑥
1
+ 0.5𝑒

2

1
)

2

− 7.5𝑒
2

1
− 10 10 0

1 −1 1

0 0 −1

]

]

]

. (21)

It is noted that condition (ii) ofTheorem 6 is satisfied for (20)
by choosing Γ = [9.2, 10, 0.5]𝑇. According toTheorem 6, sys-
tem (20) is asymptotically stable at the origin. Hence, system
(13) achieves generalized synchronization with system (14)
under the controller (19).

The initial states of drive and response systems (13) and
(14) are 𝑥(0) = [0.1, 0.1, 0.05]𝑇 and 𝑦(0) = [1, −0.4, 0.25]𝑇.
Numerical simulations for anti-synchronization of systems
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(13) and (14) (i.e., the scaling factor 𝛼 = −1) under controllers
(16) and (19) are shown in Figures 2 and 3, respectively.

4.2. Generalized Synchronization between HyperRössler Sys-
tem and Chen System. Consider the HyperRössler system

�̇�
1
= −𝑥
2
− 𝑥
4
,

�̇�
2
= 𝑥
1
+ 𝑎𝑥
2
+ 𝑥
3
,

�̇�
3
= 𝑏𝑥
3
− 2𝑎𝑥

4
,

�̇�
4
= 𝑐 + 𝑥

1
𝑥
4

(22)

as drive system and the controlled response system is the
following Chen system:

̇𝑦
1
= 𝛽 (𝑦

2
− 𝑦
1
) + 𝑢
1
,

̇𝑦
2
= (𝛾 − 𝛽) 𝑦

1
− 𝑦
1
𝑦
3
+ 𝛾𝑦
2
+ 𝑢
2
,

̇𝑦
3
= 𝑦
1
𝑦
2
− 𝜂𝑦
3
+ 𝑢
3
,

(23)

where 𝑥 = [𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
]
𝑇, 𝑦 = [𝑦

1
, 𝑦
2
, 𝑦
3
]
𝑇 are the state

variables, 𝑎 = 0.25, 𝑏 = 0.05, 𝑐 = 3, 𝛾 = 28, 𝛽 = 35, and 𝜂 = 3.
Set

𝜑 (𝑥) = [−1.5𝑥
1
+ 1, 𝑥
2
+ 2𝑥
4
, 2𝑥
2

3
]

𝑇

. (24)

Defining the error variable 𝑒 = 𝑦−𝜑(𝑥), it follows from (22)–
(24) that

̇𝑒 =
[

[

−35 35 0

−7 − 𝑒
3
− 2𝑥
3

28 1.5𝑥
1
− 1

𝑒
2
+ 𝑥
2
+ 2𝑥
4
1 − 1.5𝑥

1
−3

]

]

𝑒

+
[

[

52.5𝑥
1
+ 33.5𝑥

2
+ 68.5𝑥

4
− 35

9.5𝑥
1
+ 27.75𝑥

2
− 3𝑥
3
+ 56𝑥

4
− 13 + 𝑥

1
(3𝑥
3
− 2𝑥
4
)

(𝑥
2
+ 2𝑥
4
) (1 − 1.5𝑥

1
) − 𝑥
3
(0.1𝑥
3
− 𝑥
4
+ 6)

]

]

+
[

[

𝑢
1

𝑢
2

𝑢
3

]

]

.

(25)

Design the controller

𝑢
1
= −52.5𝑥

1
− 33.5𝑥

2
− 68.5𝑥

4
+ 35,

𝑢
2
= (7 + 𝑒

3
+ 2𝑥
3
) 𝑒
1
− 29𝑒
2
+ (1 − 1.5𝑥

1
) 𝑒
3

− 9.5𝑥
1
− 27.75𝑥

2
+ 3𝑥
3
− 56𝑥

4
+ 13

− 𝑥
1
(3𝑥
3
− 2𝑥
4
) ,

𝑢
3
= − (𝑒

2
+ 𝑥
2
+ 2𝑥
4
) 𝑒
1
+ 1.5𝑥

1
𝑒
2

− (𝑥
2
+ 2𝑥
4
) (1 − 1.5𝑥

1
) + 𝑥
3
(0.1𝑥
3
− 𝑥
4
+ 6) .

(26)

Then the error system (25) is rewritten as the following
system:

̇𝑒 = 𝐵
3
𝑒, (27)

where

𝐵
3
=
[

[

−35 35 0

0 −1 0

0 1 −3

]

]

. (28)

It is clear that all conditions ofTheorem 5 andTheorem 6 are
satisfied for system (25), where condition (ii) of Theorem 6
can be verified by choosing Γ = [1, 1, 1]𝑇. According to
Theorem 5 orTheorem 6, system (25) is asymptotically stable
at the origin. Hence, system (22) achieves generalized syn-
chronization with system (23) under the controller (26).

Chaotic attractors of HyperRössler system and Chen
system with initial states 𝑥(0) = [−10, 1, 2, 0]𝑇 and 𝑦(0) =
[3, 8, 10]

𝑇 are shown in Figures 4 and 5, respectively. Numer-
ical simulation for generalized synchronization of systems
(22) and (23) under controller (26) is shown in Figure 6.

5. Conclusions

This paper has studied generalized synchronization of dif-
ferent chaotic systems. By using Lyapunov stability theory
and matrix theory, the stability of a nonlinear system with
nonnegative off-diagonal structure is obtained. Then the
control scheme can be designed from transforming the error
system into this stable system by using the direct design
method. It is worth noticing that the structure of this stable
system is significantly different from existing results of the
direct design method. Numerical simulations are presented
for identical systems and nonidentical systems with different
dimension, respectively.
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