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This paper presents the three-phase voltage and unbalance analysis for the distribution systemwith the loading of a light rail transit
(LRT) tram. To investigate the dynamic responses of the system voltage and current, this paper adopts the Alternative Transients
Program (ATP) software to model and simulate a multigrounded four-wire distribution system with an LRT loading. Two different
definitions about unbalance are used to evaluate the problem. In this paper, the traction supply substation (TSS) with a single-
phase transformer configuration is designed first for providing the electric power to the trams of LRT. However, it may result in the
significant neutral line current and unbalance phenomenon to deteriorate the power quality of the distribution system. A Le-Blanc
connection transformer in the TSS is therefore proposed to solve the problems.

1. Introduction

Many counties and cities in the world are keen on planning
light rail transit (LRT) system to meet the growing demand
of public transportation. The LRT takes the advantages of
low cost, low noise, low pollution, mature technology, short
construction period, and easy maintenance. In addition, it
may utilize electrical power from distribution systems of
power grid because of its lower power requirements than the
traditional railway andmass rapid transit systems. In general,
it is very suitable to use the LRT as the public transport
of the metropolitan areas and a variety of urban transport
connections [1–3]. The tram of LRT is a heavy and irregular
load, and it carries many power electronic equipment; the
power quality of the distribution system can inevitably be
affected [4, 5]. For the distribution system with the LRT,
it may cause voltage fluctuation, unbalance, and harmonic
and other power quality issues. To ensure the power quality,
utilities have published many limits on these issues.

The traction power substation (TSS) supplies the LRT
with either alternating current (AC) or direct current (DC)
electric power. Mostly, the AC power may cause three-phase
unbalance problem, while the DC power supply will generate

a harmonic problem. In this paper, the AC supply systems
are considered, and the three-phase unbalance problem
is the main investigation issue. This study case is based
on a typical Taiwan Power Company (Taipower) 11.4 kV
distribution feeder with four-wire andmultigrounded system
[6]. And the ATP [7] software is applied to establish the
selected distribution feeder and the different AC power
supply structures of the LRT. After that, it is used to execute
three different operating scenarios. The instantaneous three-
phase voltage and current and neutral line current are
therefore simulated to calculate unbalance. By the way, two
different definitions, the negative sequence unbalance ratio
and unbalance factors [8], are both adopted for evaluating the
three-phase unbalance of the distribution system.

2. LRT Impacts on the Unbalance of
the Distribution Systems

Three-phase voltages (𝑉
𝐴
, 𝑉
𝐵
, and 𝑉

𝐶
) can be decomposed

into three separate phase sequence (𝑉
1
), the negative phase

sequence (𝑉
2
), and the zero-phase sequence (𝑉

0
) compo-

nents, as shown in (1). It is well known that only the positive
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phase sequence exists in the balanced system. Consider
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where 𝑎 = 120∠0∘. Negative sequence unbalance in a
three-phase system is defined as the ratio of the magnitude
of the negative sequence component to the magnitude of
the positive sequence component, while the zero sequence
unbalance is defined as the magnitude of the zero sequence
component to the magnitude of the positive sequence com-
ponent, expressed as a percentage [8]. This definition can be
applied for either voltage or current as shown in the following:
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(2)

In addition, three-phase voltage unbalance factor (VUF)
and current unbalance factor (IUF) can also be defined
as the ratio of the maximum deviation of a voltage or
current from the average value to the average value, expressed
in percentage, using phase-to-phase voltage or current as
follows:
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where
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3
. (4)

The voltage and current unbalance ratio limitations are
set with different provisions according to different types of
load duration by different institutions. In general, the voltage
service of negative sequence unbalance (𝑑

2
) is less than 3%.

The current unbalance can be considerably higher, especially
when single-phase loads are present [8]. For the rail systems
in Taiwan, the value is limited to 1% and 1.2% for one day and
15 minute measurement period, respectively.

3. Le-Blanc Connection Transformer

A single-phase power supply for LRT will give rise to the
problem of three-phase unbalance. In general, this problem
can be improved by using the static var compensators (SVC)
or a special connection of transformers, such as the Le-
Blanc transformer connection. The purpose of the Le-Blanc
transformer connection is to convert a three-phase system
into two single-phase systems with symmetrical primary
current. Figure 1 shows the wiring diagram of the Le-Blanc
transformer [9]. The secondary outputs of two single-phase
voltages, 𝑉

𝑚
and 𝑉

𝑡
, have the characteristics of equal magni-

tude and 90 degrees phase shift. 𝑁
1
and 𝑁

2
are the number

of winding turns at primary and secondary, respectively.
Figure 2 gives the voltage vector diagram of the transformer.

The relations of the primary and secondary voltages of the
Le-Blanc transformer can be written as
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The primary currents of the transformer are given by
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Also, the primary and secondary currents are dependent and
can be expressed as
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(7)

Substituting (7) into (6) will result in
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(8)

Furthermore, the relation of voltages and currents at the
secondary side can be expressed as

𝐼
𝑚
= 𝑌
𝑚
𝑉
𝑚
, 𝐼

𝑡
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𝑡
𝑉
𝑡
, (9)
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Figure 1: The Le-Blanc transformer connection diagram.
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Figure 2: The Le-Blanc transformer voltage vector diagram.

where 𝑌
𝑚

and 𝑌
𝑡
are the admittances of the loading at

secondary side. The primary line currents are thus obtained
by substituting (9) into (8) as follows:
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(10)

It is found that the sum of the primary line currents must be
zero, which keeps three-phase balanced, regardless of the load
at the secondary side.

4. Distribution System and LRT Modeling

Figure 3 shows the equivalent model of a multigrounded
four-wire distribution system by the ATP software.The 69 kV
high voltage side of the distribution substation is simplified
as an ideal three-phase source with a short circuit capacity of
1000MVA. The test feeder is fed by a 69 kV/11.4 kV, 25MVA
power transformer sited in the distribution substation. The
primary feeders and laterals are all overhead construction
and their parameters are listed in Table 1. In addition, there
are 13 distribution transformers to serve the customers that
are distributed along the test feeder. The active power and
reactive power consumption of the customers in the feeder

Table 1: Line parameters.

Impedance
Conductor

Feeder Lateral
Phase Neutral Phase Neutral

Resistance (Ω/km) 0.131 0.209 0.945 0.945
Resistance (Ω/km) 0.364 0.382 0.355 0.355

are 4560 kW and 3420 kvar, respectively. Besides, a capacitor
bank with a rating capacity of 2100 kvar is installed at the end
terminal of the feeder. It is assumed that the test distribution
system is operated under balanced condition.The grounding
resistance of the neutral point of the substation power
transformer and the grounding points along the neutral wire
are assumed to be 1 ohm and 25 ohm, respectively.

The electrical power of the trammust be fed from theTSS.
The site of the TSS is 300m from the distribution substation
along the feeder. Figure 4 shows the TSS with a single-phase
transformer to supply the tram. In Figure 5, the transformer
is replaced with the proposed Le-Blanc transformer connec-
tion, which converts a three-phase power into two single-
phase powers to supply the tram. The AC power voltage is
further step down by the transformer installed at the tram
and is rectified into DC power then. Finally, it is converted
into controllable voltage and frequencyACpower to drive the
inductionmotors with a total capacity of 720 kW for the tram.

5. Voltages and Unbalance Analysis

This section is to explore the influence of unbalance, voltage
drop, and the neutral line current variation on the three-
phase four-wire multi-grounding distribution feeder system
with AC power supply to the tram.

5.1. Case 1: Original System. This case executes the relative
analysis without considering the tram loading. First, the ATP
software is applied to obtain the power system responses.
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Figure 4: A TSS with the single-phase transformer connection.

For the original test feeder, the neutral line current is very
close to zero as shown in Figure 6. It means that the original
system is a balance system because all the load and lines are
assumed to be three-phase balance. Figure 7 shows the three-
phase voltage magnitude at different sites of the feeder. The
secondary side of the substation has the highest phase voltage
of 6543V, which is about 0.994 pu. It is also observed that the
lowest voltage of 6463V occurred at the distance of 2700m
from the substation. It is acceptable for the utility because the
voltage magnitudes at any feeder sites are higher 0.982 pu.

5.2. Case 2: TSS Using Single-Phase Transformer. In this case,
the TSS supplies AC electric power to the tram through a
singlephase transformer which is connected to the phase
C of the utility grid as shown in Figure 4. First, the ATP
software is executed to obtain the power system responses
by assuming that one tram is running. Figure 8 shows the
three-phase voltage magnitude. The secondary side of the
substation has the highest phase voltages of 6536V, 6543V,
and 6519V for 𝐴, 𝐵, and 𝐶 phases, respectively. Relatively,
the lowest voltages appear at the distance of 2700m from
the substation, which are 6424V, 6434V, and 6433V. It is
acceptable for the utility because the voltage magnitudes at
any feeder sites are higher than 0.976 pu. Figures 9 and 10
show the instantaneous three-phase voltage and current at
the secondary side of the substation. It is observed that the
current on phase 𝐶 is larger than that on phases 𝐴 and 𝐵 due

to a contribution of 720 kW tram loading. Figure 11 shows the
neutral current flow through the substation transformer.

By applying the unbalance definition previously, the
voltage unbalances are calculated as VUF = 0.65%, 𝑑

2
=

0.47% and 𝑑
0
= 0.22%, while the current unbalances are

obtained as IUF = 27.3%, 𝑚
2
= 15.7%, and 𝑚

0
= 11.6%.

Figures 12 and 13 show the voltage and current unbalances at
the secondary side of the substation as the sites of the TSS
change. When the TSS is located at 2250m point, the voltage
unbalances are calculated as VUF = 0.52%, 𝑑

2
= 0.27%,

and 𝑑
0
= 0.18%, and the current unbalances are obtained as

IUF = 23.7%, 𝑚
2
= 13.6%, and 𝑚

0
= 9.5%. Likewise, as

the TSS is located at 4200m point, the voltage unbalances are
calculated as VUF = 0.4%, 𝑑

2
= 0.19%, and 𝑑

0
= 0.13%,

and the current unbalances are obtained as IUF = 18.6%,
𝑚
2
= 10.1%, and 𝑚

0
= 7.2%. Figure 14 shows the neutral

current flow through the substation transformer as the TSS
is located at different points. The neutral currents are 132A,
51.7 A, and 26A as TSS is located at 300m, 2250m, and
4200m points, respectively. Obviously, all the voltage and
current unbalances and the neutral current vary as the TSS
is located at different points. The further the TSS is located
away from the secondary side of the substation, the smaller
the values become.

5.3. Case 3: TSS Using the Le-Blanc Transformer. To reduce
the unbalance problem resulting from the TSS with a single-
phase transformer connection, the Le-Blanc transformer
connection is adopted in the TSS as shown in Figure 5.
Figure 15 shows the three-phase voltages at different buses
along the feeder. At the secondary side of the substation, the
three-phase voltages of 𝑉

𝐴
, 𝑉
𝐵
, and 𝑉

𝐶
are 6522V, 6512V,

and 6521 V, respectively. These values decrease to 6435V,
6425V, and 6434V at the distance around 2700m from
the substation. Figures 16 and 17 show the instantaneous
three-phase voltages and currents at the secondary side of
the substation. The neutral line current flows through the
substation transformer, which is very small, as shown in
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Figure 5: A TSS with the Le-Blanc transformer connection.

Figure 6: Instantaneous neutral line current at substation terminal
for Case 1.

6420

6440

6460

6480

6500

6520

6540

6560

0 300 750 1350 1650 2250 2700 3300 3600 4200
Distance to substation (m)

Vo
lta

ge
 (V

)

VA

VB
VC

Figure 7: Three-phase voltage magnitudes at different feeder sites
for Case 1.
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Figure 9: Instantaneous three-phase voltages at substation terminal
for Case 2.
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Figure 10: Instantaneous three-phase currents at substation termi-
nal for Case 2.

Figure 11: Instantaneous neutral line current at substation terminal
for Case 2.
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Figure 12: Voltage unbalance at substation terminal with different
TSS sites for Case 2.
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Figure 14: Neutral current at substation terminal with different TSS
sites for Case 2.
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Figure 16: Instantaneous three-phase voltages at substation termi-
nal for Case 3.

Figure 17: Instantaneous three-phase currents at substation termi-
nal for Case 3.

Figure 18. In this case, the voltage unbalances are calculated
as VUF = 0.059%, 𝑑

2
= 0.0018%, and 𝑑

0
= 0.0016%,

and the current unbalances are obtained as IUF = 0.06%,
𝑚
2
= 0.0105%, and 𝑚

0
= 0.0127% at the secondary side of

the substation.
Figures 19 and 20 depict the voltage and current unbal-

ance as the TSS is in different locations away from the
secondary side of the substation. The voltage unbalances are
calculated as VUF = 0.035%, 𝑑

2
= 0.0013%, and 𝑑

0
=

0.001% when the TSS is located at a distance of 2250m
from the secondary side of the substation, and the current
unbalances are obtained as IUF = 0.0043%, 𝑚

2
= 0.0092%,

and 𝑚
0
= 0.01%. The voltage unbalances are calculated as

VUF = 0.019%, 𝑑
2
= 0.0008%, and 𝑑

0
= 0.007% as the TSS is

installed at the 4200m point away from the secondary side of
the substation, and the current unbalances are determined as
IUF = 0.0027%, 𝑚

2
= 0.0074%, and 𝑚

0
= 0.007%. Figure 21

illustrates the neutral line currents for different locations of
the TSS. The neutral line currents are 73.5mA, 26.4mA,

Figure 18: Instantaneous neutral line current at substation terminal
for Case 3.
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Figure 19: Voltage unbalance at substation terminal with different
TSS sites for Case 3.
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Figure 20: Current unbalance at substation terminal with different
TSS sites for Case 3.
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Figure 21: Neutral current at substation terminal with different TSS
sites for Case 3.

and 12.5mA when the TSS is located at 300m, 2250m, and
4200m points, respectively.

6. Conclusions

For the original test system, it is a three-phase balance
system. However, the neutral line current flowing through
the substation transformer is increased to 132A when the
TSS of the LRT adopts a single-phase transformer to supply
the tram. In addition, the negative voltage and current
sequence unbalances at the secondary side of the substation
are obtained as 0.47% and 15.7%, respectively. To improve the
poor power quality phenomenon, the TSS with the proposed
Le-Blanc connection transformer is then used. It is found
that the neutral line current flowing through the transformer
and the negative voltage sequence unbalance decreases to the
values of 0.074A and 0.002%, respectively. It is concluded
that the proposed TSS design has a significant effect on three-
phase unbalances reduction for the distribution system with
an LRT loading.
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