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A new method called mutable smart bee (MSB) algorithm proposed for cooperative optimizing of the maximum power output
(MPO) and minimum entropy generation (MEG) of an Atkinson cycle as a multiobjective, multi-modal mechanical problem.
This method utilizes mutable smart bee instead of classical bees. The results have been checked with some of the most common
optimizing algorithms like Karaboga’s original artificial bee colony, bees algorithm (BA), improved particle swarm optimization
(IPSO), Lukasik firefly algorithm (LFFA), and self-adaptive penalty function genetic algorithm (SAPF-GA). According to obtained
results, it can be concluded that Mutable Smart Bee (MSB) is capable to maintain its historical memory for the location and quality
of food sources and also a little chance of mutation is considered for this bee. These features were found as strong elements for
mining data in constraint areas and the results will prove this claim.

1. Introduction

The Atkinson cycle was designed by James Atkinson in 1882
[1]. This engine has two important advantages comparing
to other engines; it is one of the most heat efficient as well as
high expansion ratio cycles. Generally, four procedures called
Intake, Compression, Power, and Exhaust take place in cycle
per turn of crankshaft. In fact a classic Atkinson engine is a
four-stroke engine and, in a same condition, it can reach a
higher efficiency comparing to Otto cycle.

Recently, researchers focused on analyzing and optimiz-
ing Atkinson cycle using different optimization techniques
and intelligent controlling systems. Leff [2] determined the
thermal efficiency of a reversible Atkinson cycle at maximum
work output, Al-Sarkhi et al. [3] compared the performance
characteristic curves of the Atkinson cycle to Miller and
Brayton cycles using numerical examples and simulation
techniques. Wang and Hou [4] studied the performance of
Atkinson cycle in variable temperature heat reservoirs. Hou
[5] investigated the effects of heat leak due to percentage of
fuels energy, friction, and variable specific heats of working
fluid. Here we proposed a new metaheuristic algorithm to
analyze the performance of an air standard Atkinson cycle

with heat transfer losses, friction, and variable specific heats
of the working fluid.

Metaheuristic algorithms are population-based methods
working with a set of feasible solutions and trying to improve
them gradually. These algorithms can be divided into two
main parts: evolutionary algorithms (EAs) which attempt to
simulate the phenomenon of natural evolution and swarm
intelligence base algorithms [6-8]. There are many different
variants of evolutionary algorithms. The common ideas
behind all of these techniques are the same: defining a pop-
ulation of individuals, selection phase (survival of the fittest
according to the theory of evolution) which causes a rise in
the fitness of the population. In these methods we randomly
create a set of candidate solutions (elements of the function
domain) and evaluate the quality of the function through
fitness measuring (the higher is better). Based on this fitness,
some of the better candidates are chosen to seed the next
generation by applying recombination and/or mutation to
them. Recombination is an operator applied to two or more
selected candidates and result in one or more new candidate.
Mutation is applied to one candidate and results in one new
candidate. Executing recombination and mutation leads the
algorithm to a set of new candidates and this procedure



will continue until criteria have been met. Genetic algorithm
(GA) which introduced by Holland [9] is one of the most
popular algorithms among the EAs. Genetic algorithm (GA)
is a powerful numerical optimization algorithm that reaches
an approximate global maximum of a complex multivariable
function over a wide search space [10]. It always produces
high-quality solution because of its independency for select-
ing the initial configuration of population. But sometimes it
may perform inefficient in constraint optimizing problems.
In order to make a successful decision in constraint spaces,
Tessema and Yen [11] used self adapting penalty function
genetic algorithm (SAPF-GA) for optimizing constraint
problems which is able to tune some of its characteristics
during the optimization and made a powerful algorithm for
finding feasible solution in constraint spaces [12].

Other branches of population-based algorithms which
are called swarm intelligence focused on collective behavior
of some self-organized systems in order to develop some
metaheuristics procedures which can mimic such system’s
problem solution abilities. The interactive behavior between
individuals locally with one another and with their environ-
ment contributes to the collective intelligence of the social
colonies [13, 14] and often leads to convergence of global
behavior. There is a wide variety of swarm base algorithms
which mimics the natural behavior of insects and animals
such as ants, fishes, birds, bees, fireflies, penguins, frogs,
and many other organisms. Particle swarm optimization
algorithm (PSO) which first developed by Kennedy and
Eberhart [15] is one of the most applicable method for
optimizing engineering problems which inspired by social
behavior of birds flocking or fish schooling [16]. Till now
many researchers proposed modified PSO algorithms which
have advantages in handling with particular type of prob-
lems. Here one of this improved particle swarm algorithms
(IPSO) which is strong in optimizing constraint engineering
problems [17] is used and also its results compared with
proposed modified MSB algorithm.

There are also some algorithms that improved the
performance of swarm base algorithms by utilizing some
natural concepts. In 2009, Yang and Deb [18] proposed a
modern metaheuristic algorithm based on the obligate brood
parasitic behavior of some cuckoo species in combination
with the Lévy flight behavior of some birds and fruit flies
which is called Cuckoo Search (CS).

One of the other improved algorithms which is used in
this paper was produced in 2009 by Lukasik and Zak [19]
that focused on the characteristics of fireflies and introduced
an improved concept of the firefly algorithm (FA) which
was strong for constraint continuous optimization tasks.
Their improved method was inspired by imitating social
behavior of fireflies and the phenomenon of bioluminescent
communication [20].

In this paper entropy generation and power output of
air standard Atkinson cycle will be analyzed in different
situations as a multiobjective problem using MSB algorithm.
It will be proved that different types of constraints should be
considered to derive to an acceptable engineering solution.
Besides, the performance of proposed algorithm will be com-
pared to some other well-known optimization techniques
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such as Karaboga’s original ABC [21, 22], bees algorithm
(BA) [23, 24], improved particle swarm optimization (IPSO)
[17], Lukasik fire fly algorithm (LFFA), and self-adaptive
penalty function genetic algorithm (SAPF-GA) [11, 12].

2. Bee Colony Optimization Strategies

Recently, many researchers focused on the interactive behav-
ior of bees that occur through a waggle dance during the
foraging process. Successful foragers share the information
about the direction and the distance to patches of flower and
the amount of nectar with their hive mates. Foragers can
recruit other bees in their society to search in productive
locations for collecting nectars with higher quality. These
procedures suggest a successful data mining mechanism.

For the first time Seeley proposed a behavioral model for
a colony of honey bees [25]. According to his theory, foraging
bees visiting patch of flowers and then return to the hive
with their collected nectars. Responding to the quality of the
nectar that had been collected, waggle dance take place on the
floor where each individual forager can observe the dancing
process. The foragers are capable to randomly select a dance
to observe and follow the dancer to the flower patch and
continuing these processes will lead the colony to optimal
food (solution).

Thereafter, many researchers focused on the honey bee
organism and several metaheuristics were proposed based
on the peculiar intelligent behavior of honey bee swarms.
Yonezawa and kikuchi proposed ecological algorithm (EA)
which was focused on the description of the collective
intelligence based on bees’ behavior [26]. Sato and Hagiwara
proposed bee system (BS) which was a modified version of
genetic algorithm (GA) and reach some acceptable results in
optimizing engineering problems [27]. Teodorovic proposed
bee colony optimization (BCO) based on forward and
backward pass to generate feasible solutions during the
searching procedure [28]. In 2001 Abbas [29] inspired mat-
ing bee optimization (MBO) for propositional satisfiability
problems. Karaboga [30] released the first version of artificial
bee colony (ABC) which is one of the most applicable
algorithms in numerical optimizing field. Yang [8] concen-
trated on the virtual bee algorithm (VBA) due to function
optimizations with the application in engineering problems.
Chong et al. inspired honey bee colony (HBC) for training
artificial neural network and job shop scheduling problem
[31]. In 2011, Stanarevic et al. [32] introduced a modi-
fied artificial bee colony algorithm utilizing smart bees in
optimizing constraint problems and demonstrated that this
algorithm has better performance for optimizing constraint
problems than the Karaboga’s artificial bee colony (ABC).
There are many other methods in optimizing application that
utilized bee’s behavior in nature and each one have some
advantages for peculiar type of problems.

3. The Mutable Smart Bee Algorithm

Many real-world optimization problems involve inequality
and equality constraints. It is hard and also takes a long
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time to find a feasible solution in searching space which
optimizes a constraint problem with traditional strategies.
Since one of the crucial problems is to gain a feasible
answer in the searching spans, different concepts proposed
by researchers and a variety of methods implemented for
different optimization situations [33]. Hillier [34] proposed
a procedure to predict the chaotic constraints which called
linear constraints. Seppdld [35] proposed a set of uniform
constraints that replace a single chance constraint and he
has also conclude that his method is more accurate, but
less efficient than Hiller’s procedure. After that, Seppidld and
Orpana [36] examined the efficiency of the method which
proposed by Seppild. There are also many other methods
and concepts proposed by different researchers for constraint
optimization.

Recently, Stanarevic et al. [32] proposed a modified
artificial bee colony algorithm (SB-ABC) based on Deb’s rule
[37] which is really efficient for optimizing the engineering
problems that possessed different types of constraints. They
improved the performance of artificial bee colony (ABC)
algorithm by applying Deb’s rule and also defining a penalty
function in the structure of ABC algorithm. They also
used smart bees in the searching space which were able to
maintain their memory. Smart bees are able to compare
the new candidate solution to the old one and choose the
better one due to their greedy instinct. Results demonstrated
that this concept is really useful for optimizing engineering
problems with are often multimodal.

Here, we will analyze some features that make this algo-
rithm really strong for optimizing multi-modal problems.

In classical ABC proposed by Karaboga and Basturk [38],
the following equation was utilized to produce candidate
solution in searching spans (by an employed bee or onlooker
bee):

x,‘j+@,‘j * (x,‘j—ij), Rj<MR (1)
V,‘j =
Xijs otherwise,

where k € {1,2,...,SN} is a randomly chosen index, x;; is
the variable j of the food source, xx is a neighbor solution
around i, R; is a random number in the range (0,1), and MR
is a parameter, which control the modification of parameter
xij. In Karaboga’s algorithm, the variable in the candidate
solution which exceeds from its spans, takes value of the
upper bound or lower bound regarding to its exceeding
position. It is obvious that this policy may cause a local
convergence.

In SB-ABC algorithm a different style was used to modify

the solution:
Z*ij — Vij» ifV,'j <1bj,

2 % ubj — Vij, if Vij > Ubjy (2)

vij, otherwise,

where v;; is the variable j of the candidate solution i and ub;
is the upper bound of variable j.

One of the other advantages in this method is hiring
smart bees. These artificial insects can memorize the position

of the best food source and its quality which was found before
and replace it to new candidate solution if the new solution
is unfeasible or the new solution has a lower fitness than the
best-saved solution in the SB memory.

Another important advantage of this method is the
time duration for smart bee’s data processing procedure.
This feature will make the algorithm more durable when
high amount of these artificial organisms being hired for
searching the solution space. To overcome this problem, we
utilized a low amount of smart bees in constraint searching
space. Besides, we add a new mutation operator to SB-ABC
for overcoming subsequence fast convergence. In each of the
iterations, bees that exceed from a finite number of trials will
be sent to a container and participate in mutation process
based on their mutation probability. The results show that
the global solution can be obtained faster and by adapting
a dynamic mutation probability (P,), due to the type
of problem, the algorithm escape from local convergence
conveniently. In the next parts, the efficient performance of
proposed algorithm for optimizing a real life multimodal
engineering problem will be shown more closely.

The pseudocode of MSB-ABC is given in the following:
(1) initialize the population of solutions x;;;

(2) evaluate the population;

(3) cycle=1;

(4) repeat;

(5) produce new solutions (food source positions) 9;;
using (1) and evaluate them;

(6) if cycle # 1 use smart bee;
(7) apply selection process based on Deb’s method;

(8) calculate the probability values P;; for the solutions
xij using fitness of the solutions and the constraint
violations (CV) by:

[ fitness;
0.5+ () %05,
> fitness;

if solution is feasible

(1 - ng) %05,
25 CV

if solution is infeasible,

where CV is defined by:
1 m
CV = Zgj(x)+ Z hj(x), (1)
j=1 j=q+1

(9) for each onlooker bee, produce a new solution 9;
by (1) in the neighborhood of the solution selected
depending on P; and evaluate it;
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FiGure 1: P-V diagram of the theoretical air standard Atkinson
cycle.

(10) apply selection process between 9; and x; based on
Deb’s method;

(11) determine the abandoned solutions (source), if exists,
and perform mutation on each abandoned solution
by following formula:

vj+ A(t,ubj — Vj),
or d< P
i ran - @
Vi — A(t,Vj — 1bj>,
Vi, rand > P,

where t is current generation number, P,, is mutation
probability and A(t,y) is defined by: A(t,y) =
yr(l — (t/T))b; b > 1, T is maximum cycle;

(12) memorize the best food source position (solution)
achieved so far;

(13) cycle = cycle + 1;

(14) until cycle = maximum cycle number.

4. Atkinson Engine

Here the performance of an air standard Atkinson cycle
with heat-transfer loss, friction, and variable specific-heats
of the working fluid will be analyzed precisely. According
to (P-V) diagram in Figures 1 and 2, process (1-2) is an
adiabatic (isentropic) compression then heat is added in
process (2-3) at a constant volume. Process (3-4) is an
adiabatic (isentropic) expansion, and the last process (4-1)
is heat injection which takes place at constant pressure.

According to [39], assume that the specific heat ratio
of the working fluid is a function of temperature, so the
following linear equation can be considered:

y=9y —kT, (5)
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F1GURE 2: T-S diagram of theoretical air standard Atkinson cycle.

where y is the specific heat ratio and T is the absolute
temperature.

It is assumed that air is an ideal gas that consists of 78.1%
nitrogen, 20.95% oxygen, 0.92% argon, and 0.03% carbon
dioxide.

Heat added to the working fluid in isochoric process
2 — 3 can be derived by:

Ts
Qin:M CvdT
T,
=M ———dT
n yo—kiT—1 ©)
(b1
k1 yo—leg,—l ’

where M is the molar number of the working fluid, R is
molar gas constant, and C, is molar specific heat at constant
volume.

Heat rejected by the working fluid in isobaric process 4 —
1 is obtained by:

Ty
Qout =M T deT

T [ (yo — ki T)R
Yo 1
=M ——— |dT
JT1<)/0—k1T—1> (7)
_ _ i )/()—lel—l
—MR|:T4 T, + k1 ll’l(yo_le4_ 1>:|,

where C, is molar specific heat at constant pressure.

According to [40, 41] the relation between parameters of
a reversible adiabatic process with variable specific heat ratio
can be considered by following equation:

TV’ = (T+dT)(V+dV) . (8)
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Respecting to (5) and (8), the following equation can be
written:

A
Ti(YO_kITj_l) = Tj()’o—lei—l)(V]_) )]

rc and r* were defined as specific compression ratio and
compression ratio, respectively,
Vi
re=—
1%
Vi T
- - c
CVy, T”

(10)

and two other processes (1-2) and (3-4) can be indicated,
respectively, by the following equations:

Tl()fo—lez—l)(f’c)yo_l =Ty —-kT-1), (11)

T, \7!
Ts(yo—kiTy— 1) = T4(Y0—k1T3—1)(ﬁTc) . (12)
By combusting an amount of energy received by working
fluid that is calculated by following linear equation:

Qin = M[A - B(T> + T5)], (13)

where A and B are two constant parameters which they relate
to heat transfer and combustion that are function of engine
speed. One of the other important aspects of analyzing real
cycles is facing with heat leakage loss through the cylinder
walls which is proportional to average temperature of the
both working fluid and the cylinder wall which can be
calculated by following equation [40]:

Qieak = MB(T> + T3 — 2T). (14)

The power output of the Atkinson cycle engine can be
derived by the following equation:

. d
Wout = a(Qin - Qout)

_ MRln<()/o —kiT, = 1) (yo— ki T3 — 1)> (15)
(yo—kiTs = 1) (yo — k1 T = 1)

+MR(Ty — Th),

where W,y represents the power output of cycle during the
process.

Now the thermal efficiency of the Atkinson cycle engine
can be expressed as following:

_ Wout
fith Qin - Qleak '

The amounts of 7. and T are depending on engine initial
condition and can be supposed as given data. T, determined
by (11), after that substituting (6) into (13) concludes T5 and
T, calculated by (12). Now these parameters can be placed
into (15) and (16) for determining the output power and the
thermal efficiency of the Atkinson cycle engine.

(16)

FIGURE 3: T-S diagram of real air standard Atkinson cycle.

After obtaining appropriate equations and data for
calculating the power output of the Atkinson cycle, the
relations between obtain parameters and entropy generation
will be checked. Figure 2 does not represent the real indicated
diagram of an internal combustion engine. For example, the
actual cooling process between 4 and 1 cannot be compared
with that of the theoretical cycle, because real engines are
modeled as open systems where mass flows in and out of the
system, which leads to a T-S diagram quite different from the
theoretical one. Figure 3 indicates the different behavior of
an ideal reversible and real irreversible Atkinson cycle.

Process 1 —2S is an ideal reversible adiabatic com-
pression, while process 1—2 is an irreversible adiabatic
process with high approximation to real compression process
in cycle. Heat addition in 2— 3 is an isochoric process.
Process 3 — 4S is an ideal reversible adiabatic expansion while
process 3 — 4 is an irreversible adiabatic process with high
approximation to real expansion process in cycle. Heat reject
in 4 — 1 is an isobaric process.

As it is shown in Figure3 in real Atkinson cycles,
some amount of unexpected entropy generation must be
considered. Here we consider two heat transfer units of the
hot-and-cold side heat exchangers, (Ny= N = 2) due to
the product of heat-transfer coefficient («) and heat transfer
surface area (F) [42].

And the effectiveness of the hot-and-cold side heat
exchangers can be written as following:

Ey =1 - exp(—Np),
(17)
E; =1 —exp(—Np).

According to [42] the entropy generation rate for the
Atkinson cycle is equal to:

QU

T T Ty
_ [ CE(G-1) CEu(Ty — T2) }
1-(1-E)G Ty +C(Te/Tu)(Tu — To)* |’

(18)



where G can be written:

B G/C,
G- ((1 Eu)T, + ExTy ) . (19)

T,

5. Optimization Process

As it was mentioned before, we have to minimize the
unexpected entropy generation and maximize the power
output to obtain an efficient performance of the Atkinson
cycle. In order to achieve a suitable engineering solution
for optimizing the cycle under different situations, we have
to face different types of constraints, and under these
constraints in searching space it will be harder to find the
feasible solution. In this section the efficiency of the Atkinson
cycle will be checked using proposed mutable smart bee
(MSB-ABC) algorithm and compared to different methods
of optimizing and the results will be shown in tables at the
end.

The objective functions are defined as following:

Wout = f(Tl) TZ) TS) T4) )/0))
(20)
0= h(Tl) TZ) T3) EL) EH)

And signalized objective function can be considered using
following approach:

n
Objective function = Zoc,- fi> (21)

i=1

where « is the weighted coefficient and show the value of
a function comparing to another objective functions and
Z?:l o = 1.

In this work, a«; = 0.6 for power output and a, = 0.4
for entropy generation are considered for finding a suitable
engineering solution.

Due to (21) the single-objective function will be derived:

q
Objective = Min<|oc10 + oczwL + Z/\jgj(x)}, (22)

out j=1

where o is the total entropy generation and Woy is the
power output of the Atkinson cycle, and according to (1)’,

?:1 gj(x) shows the sum of governing constraints which
represents the constraint violence (CV) and A; indicates
the impact of each constraint. These finite numbers of
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constraints have been set as following in order to lead the
algorithm to a make feasible decision in the searching space:

C:To>T) — g =T — T,
Co3: T, Ty <Ts — g =Ty — T35 g5 = Tos — T3,
Cus5: Ty, Ty > Ty — gy =T1 = Ty; g5 = T1 — Ty,
Co7: Ty Ty < T2y Tyy — go = Ty — To; g, = Tys — T,
Co: Ty — Ty > 200 — g5 = 200 — Ty + T,
Co: Ty — Ty <30 — go =30+ Ty — Ts,
Cio: [Ty = Th | = [T5 = Ty4l| <200
— g0 = IT, = Th| = | T3 — T4l — 200,
Cu: ‘TI(VO kT = 1) ()" - To(yo— ki Ty — 1) ‘
<¢& €=0.001
— g = ‘Tl()/o — kT = 1) ()"

—Tz(y() —k1T1 — 1)‘ — &,

- kT, -1
Cia: ‘ (MRln<yO]]zlz>) - M[A —B(T2+T3)]‘
yo—kiTs -1

< g&e=0.001
_ @ln yo—kiTh -1
§12= k] Yo — k1T3 -1

“M[A-B(T,+T5)] ' e

Ty \"!
Cist | Ts(yo —kiTs — 1) = Tu(yo — ki T5 — 1) (irc>
< &e=0.001
— g5 = |T3(yo—kiTa = 1) = Tu(ypo — ki T5 = 1)

— &,

Ty \*!
“(57)

Cig: Wour =0 — Eg:

if {3i| (Wou); € (—0,0) — execute the solution(i)},
Ci5:0=>0— Es:

if {3i | (0); € (—,0) — execute the solution(i)},

(23)

where 300 < T; < 380, 1000 < T, < 1450, 1500 < T3 <
2200, and 400 < T4 < 900. According to [29] the following
constants and ranges are set for the analyzing process:

Ty =360k, A =60000]-mol ™", 1.31 <y, < 1.41.

(24)

Once the constraints and the equations are obtained,
the essentials for the optimizing withthe mutable smart bee
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TasLE 1: Performance of tested algorithm in y, = 1.31 and k; = 0.00006.
Parameters Entropy generation Power output CPU time
T, T, Ts T, o W t (sec)
MSB-ABC 360 1023 2015 755.8 0.0008 0.3912 5.2
ABC 360 1030 2019 701.4 0.0015 0.2331 16.7
BA 360 1029 2081 737.0 0.0011 0.2054 18.4
IPSO 360 1036 2043 799.8 0.0012 0.2759 12.7
LFFA 360 1039 2016 789.3 0.0013 0.2690 12.3
SAPF-GA 360 1041 2090 699.2 0.0009 0.3759 22.2
Optimum performance reported in [40, 42] 0.0012 0.3112 —

algorithm are prepared. This method will find a suitable
answer that is enabling to satisfy all of the constraints. Like
any other evolutionary computation methods, the answer
which is found by mutable smart bee algorithm is not the
definite best answer; actually there are slight differences
between them. These differences are usually acceptable and
in engineering applications these small differences can be
disregarded, Moreover in practical works these answers
provide a better performance for the systems comparing to
answers which are concluding from experimental works.

The difference between the algorithm answer and the real
answer can be extended by finding the local optimization
instead of global optimization. For avoiding this matter
a suitable probability of mutation is necessary. Indeed
mutation it can developed the search space for finding the
answer and avoid local optimization. Although mutation
is necessary to find a global optimization and seek a wide
variety of answers but in latest generations can be reduce the
convergence rate. Thus, as the algorithm go ahead, the muta-
tion probability should be decreased for a better convergence
in answers. A suitable mutation probability is effective on the
speed of the algorithm. All the topics that were mentioned
in precede will be shown later. Note that all of algorithms
and programs are implemented in Matlab software with a
computer with 2.21 GHZ and with 1.00 GB RAM memory.

As an initial setting for running mutable smart bee
algorithm, the following values for the basic algorithm
parameters were selected: maximum cycle number = 2000,
number of colony size (NP) = 8, limit = 10, solution number
(SN) = NP/2, the modification rate (MR) = 0.8, and P,, =
0.02. As expressed before one of the important advantage
of this algorithm comparing to other heuristic algorithm is
hiring low amount of population (10 bees in our case) for
performing search in the area and also this feature leads the
algorithm to perform faster and consuming lower cost.

For bee algorithm (BA) following parameters being set:
number of scout bees in hive (n) = 30, number of elite
patches (e) = 3, number of best sites () = 10, number of
bees around elite sites (nep) = 11, number of bees around
best sites (nsp) = 7, and neighborhood of sites which scout
bees can search (ngh) which experiments show that BA have
better performance in searching the local spaces when ngh =
(ub —Ib)/11.

For Lukasik firefly algorithm the parameters set due to
[20] and also for improved particle swarm optimization

algorithms the parameters being set respecting to Bae et al.
[43] researches which proved that perform are acceptable in
mining data in constraint spaces.

Initial parameters for self-adaptive penalty function
genetic algorithm set as P. = .8, and tunable P,, = 0.04
decrease to 0.02, and the algorithm being implemented with
respect to Tessema’s method [11] in Matlab.

Arithmetic experiments were repeated 30 times, starting
from a random population with different seeds [38]. Also
behavior of the cycle has been analyzed in three different
states of constant k; and yp to find out the effect of these
terms on the power output and entropy generation by
bee algorithm (BA), improved particle swarm optimization
(IPSO), Lukasik firefly algorithm (LFFA), classical artificial
bee colony (ABC), and self-adaptive penalty function genetic
algorithm (SAPF-GA) for making a compromise.

At the first step the performance of the Atkinson cycle
analyzed in yo = 1.31 and k; = 0.00006 and the results are
shown in Table 1.

It is obvious that the proposed algorithm performs
better than others and in some cases we find self-adaptive
penalty function genetic algorithm (SAPF-GA) as well as
proposed MSB-ABC algorithm after 30 times running but
this algorithm use more time (22.2 seconds) for reaching to
optimum solution comparing to other algorithms because
this algorithm hire more than 60 chromosomes for perform-
ing efficient search in constraint spaces. As the table shows
the MSB-ABC algorithm reached to fitter maximum power
output and lower entropy generated during the performance
of the Atkinson cycle and also because of hiring just 8
bees for searching in the constraint area of our problem,
it takes acceptable CPU time (just 5.2 seconds) for finding
the optimal condition. IPSO and LFFA show similar results
and also the results show that they consume equal CPU
time. Karaboga’s classical artificial bee colony find acceptable
solution in this case but as it is shown it takes noticeable
time for reaching to fit solution and this matter refers to
hiring 30 bees in the searching space. Bee algorithm finds
an acceptable amount of entropy generation but it was weak
in finding optimum power output and it takes 18.4 seconds
for optimizing process. At the end of the first step the power
output of the Atkinson cycle and the performance of each
algorithms are shown in the following plots and after that
the convergence rate of each algorithm and the capability of
each of them will be discussed briefly due to obtained plots.
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TaBLE 2: performance of tested algorithm in y, = 1.41 and k; = 0.00006.

Parameters Entropy generation Power output CPU time
T, T, T3 T, o W t(sec)
MSB-ABC 360 954.9 2126.7 714.6 0.0013 0.3148 10.05
ABC 360 908.9 2067.0 721.6 0.0012 0.3009 15.30
BA 360 1007.6 2200.0 466.7 0.0019 0.2376 13.22
IPSO 360 974.3 2200.0 782.6 0.0017 0.2444 14.12
LFFA 360 991.9 2112.9 689.2 0.0012 0.3070 17.21
SAPF-GA 360 992.4 2008.1 699.1 0.0014 0.2912 44.09
Optimum performance reported in [40, 42] 0.0012 0.3327 —
TaBLE 3: performance of tested algorithm in y, = 1.36 and k; = 0.000009.
Parameters Entropy generation Power output CPU time
T, T, T; T, o W t(sec)

MSB-ABC 360 1100.1 2200.0 779.4 0.0009 0.3253 11.05
ABC 360 1050.1 2138.2 726.5 0.0008 0.3848 17.34
BA — — — — — — —
IPSO 360 1323.2 2090.1 703.1 0.0015 0.3155 15.01
LFFA 360 1125.7 1823.9 630.0 0.0012 0.2889 14.32
SAPF-GA 360 1253.7 1902.8 570.3 0.0010 0.2773 44.72
Optimum performance reported in [40, 42] 0.0012 0.3202 —

In the first step the performance of each algorithm for 0.45
finding the maximum power output will be analyzed and
the maximum power out will be shown in Figure 4. As it 0.4
is shown in Table 1 and Figure 4 MSB-ABC and SAPF-GA
find more optimum results and IPSO and LFFA act similar; 0.35
also artificial bee colony (ABC) and bee algorithm (BA) show
acceptable results. 039/

In Figure 5, the performance of each algorithm is shown 5
during the iterations. According to results MSB-ABC show £02549/
better performance in this case and also it escapes from § g
restricted area faster than other algorithms. The capability of g 02 * ‘
each algorithm for escaping from unfeasible regions is shown =
in Figure 6. 0-151

The results indicate that MSB-ABC and SAPF-GA o1
are more capable to escape from constraints and also '
BA and ABC have lower performance to escape from 0.05 -
restricted area and spend more time for this process. L- |
FFA and I-PSO are very similar in beating the tricks both 0
in quality and duration. According to initial setting of 60

the parameters it seems that MSB-ABC must try harder
than other algorithms to escape from local convergence

Compression ratio

. . 4@ SAPF-GA -u-
because of its low amount of initial searcher agents, but ‘EE MSB-ABC -. ﬁ]:SFCA
when we set a fit mutation probability and limit, MSB- A BA = PSO

ABC performs really efficient for escaping from unfeasible
region. F1GURE 4: Performance of tested algorithm in yo = 1.31 and k; =

Also the performance of the Atkinson cycle will be shown 0-00006.

in different compression ratios in Figures 7 and 8 and it will

be indicated that in three states of yy and k; the algorithms
found fitter power output comparing to experimental data
in [39]. As it is shown in yp = 1.31 and k; = 0.00009, the
Atkinson cycle produces maximum power output. According
to Tables 2 and 3, it is obvious that the power output

will rise when the constant y, reduced and the constant k;
increased.

In the next step, the performance of the Atkinson cycle
will be analyzed under yy = 1.36 and k; = 0.00006 and the
results are shown in Table 4.
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TaBLE 4: Performance of tested algorithm in y, = 1.36 and k; = 0.00006.
Parameters Entropy generation Power output CPU time
Tl T2 T3 T4 o W t(SCC)
MSB-ABC 360 953.4 2137.6 751.8 0.0012 0.3740 12.88
ABC 360 881.9 2052.1 766.4 0.0015 0.3490 19.1
BA 360 1615.7 2200.0 481.7 0.0007 0.2052 15.2
IPSO 360 920.9 2052.5 741.1 0.0014 0.3464 22.3
LFFA 360 903.8 2095.8 757.7 0.0012 0.3368 21.9
SAPF-GA 360 892.5 2142.8 792.5 0.0016 0.3584 34.2
Optimum performance reported in [40, 42] 0.0012 0.3165 —
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FIGURE 9: Performance of tested algorithm in yy = 1.36 and k; =
0.00009.
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F1GURE 10: Comparison of performance of SPFA-GA, L-FFA, I-PSO,
ABC, and MSB-ABC in efficiency analyzing of the Atkinson cycle.

Again the MSB-ABC shows promising results. The time
duration for finding optimal solution is acceptable and also
it finds better power output. This time bees algorithm (BA)
finds the minimum entropy generation rate, but it was not
successful in finding maximum power output. SAPF-GA
finds near optimal solution but it performs weaker than other
algorithms. In fact it reaches to a local optimum solution.
Figure 11 shows the performance of the Atkinson cycle and
Figure 12 shows the performance of these algorithms in a
semilogical plot.
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F1GURE 11: Performance of tested algorithm in y, = 1.36 and k;, =
0.00006.
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FiGgure 12: Comparison of performance of SPFA-GA, L-FFA, I-PSO,
BA, ABC, and MSB-ABC in efficiency analyzing of the Atkinson
cycle.

According to Figures 9 and 10, proposed modified
algorithm performs more efficiently than other algorithms
in most cases. Besides, smart bees are capable to escape from
various constraints in a short time, where other algorithms
use more time for escaping from all constraints. One of
the other important advantages of proposed algorithm is
its ability to work with a low population size. This feature
makes this algorithm really faster than other algorithms. In
addition, mutation phase helps smart bees to escape from
local optimums.
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F1Gure 13: Convergence rate of MSB-ABC in the first step.

For the last case, the performance of the Atkinson cycle
will be checked in K = 0.00003 and A = 1.36 and the results
will be shown in Table 5.

As it is shown, the Bee Algorithm find lower entropy
generation, however, it does not find an acceptable power
output. LFFA and MSB-ABC perform promising both in
maximizing power output and minimizing the unexpected
amount of entropy generation. MSB-ABC consumes lower
CPU time to find the optimal solution and this feature leads
the MSB-ABC algorithm to perform as s superior algorithm
in this case.

6. Analyzing Convergence Rate

One of the other important aspects that prove the advantage
of MSB-ABC algorithm is the capability of this algorithm
to escape from local optimal values. This claim will be
demonstrated in the following plots which indicate the rate
of convergence for algorithms during the optimizing process.

For analyzing the convergence ratio of these algorithms
this parameter should be defined as:

popsize

Mean cost = ==L ——27 cost(?)
popsize
Best cost = Min{cost}, (25)
best cost
Convergence rate = ———————.
Mean cost

In the first step the convergence rate of the proposed
algorithm will be analyzed under P,, = 0.08 and limit = 7
during the optimizing process.

Figure 13 reveals that the algorithm’s convergence rate
changes very fast and it does not have enough time to
perform an acceptable neighbor search during the process.

For that we tune the mutation probability as following:

r

Pm:P;n_KPmT)

(26)
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FIGURE 14: Convergence rate of MSB-ABC in the second step.
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FIGURE 15: Analytic comparison of convergence ratio of BA, LFFA,
and IPSO.

where P;, = 0.05, Kp,, is a constant number that control P,,,
t is current iteration, and T is maximum iteration.

According to Figure 14, the results are acceptable in this
case. As it is shown, in the initial iterations, algorithm
searches a wide space for finding better regions (food
patches) and then it concentrates on neighbor search to reach
to the bottom of the valley (global minimum).

At the end the convergence rate of BA, L-FFA, and I-PSO
are shown (Figure 15) for make a contrast.

According to the results it is obvious that when we use
adaptive parameters, MSB-ABC shows better reaction for
escaping from local optimum regions comparing to other
algorithms. It seems that bee algorithm (BA) suffers from fast
local optimum convergence during optimizing process and
again L-FFA and I-PSO have similar behavior. The obtained
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TaBLE 5: Performance of tested algorithm in y, = 1.36 and k; = 0.00003.
Parameters Entropy generation Power output CPU time

T, T, Ts T, o W t(sec)
MSB-ABC 360 992.3 1889.3 831.1 0.0012 0.3572 10.05
ABC 360 1987.6 1984.8 612.3 0.0009 0.2368 16.23
BA 360 1002.2 1760.5 566.0 0.0008 0.2067 8.05
IPSO 360 959.9 1730.9 698.9 0.0013 0.3069 12.41
LFFA 360 864.8 2200.0 764.8 0.0014 0.3489 12.79
SAPF-GA 360 1199.5 2112.1 618.3 0.0012 0.3262 35.23
Optimum performance reported in [40, 42] 0.0012 0.3148 —
results demonstrate that MSB-ABC algorithm is one of  Greek Symbols
the most applicable algorithms for optimizing multimodal
problems since it is capable to balance the intensive local y:  Specific heat ratio
search strategy and an efficient exploration of the whole a:  Heat transfer coefficient (kW/Km?)
search space simultaneously. fin: Thermal efficiency

o: Entropy generation of the cycle.

7. Conclusions Acknowledgments

In this paper, a new method called MSB algorithm pro-
posed for optimizing a well-known multimodal engineering
problem, based on the reaction of mutable smart bees
during the procedure. Thereafter, proposed algorithm has
been compared with some famous optimization methods
such as self-adapting penalty function genetic algorithms
and improved particle swarm optimization. The results
illustrate that MSB algorithm is superior or equal to these
existing algorithms for optimizing multimodal problems
in most cases. This issue refers to the fine tuning of the
parameters that may results efficient searching in feasible
space. Furthermore, our simulations indicate that because of
adaptive mutation that occurs in smart bee, the algorithm
has a suitable convergence rate that leads the algorithm
to escape from local optimum solution. Subsequently, it
seems that MSB algorithm is more generic and robust for
many constraint optimization problems, comparing to other
metaheuristic algorithms.

Nomenclature

Cp:  Isobaric molar specific heat (kJ/kg K)
C,:  Isochoric specific heat(k]/kg K)

En:  Effectiveness of hot heat exchanger
Er:  Effectiveness of cold heat exchanger
F: Heat transfer surface area (m?)

M:  Molar mass of working fluid (kg/mol)
Qin: Heat added to working fluid (kW)
Qleak: Heat leakage (kW)

Qour: Heat rejected from working fluid (kW)
R:  Molar gas constant

rc:  Specific compression ratio

ré: Compression ratio

Vi: Volume in state one (m?)

V,: Volume in state two (m?)

V3:  Volume in state three (m?)

V4 Volume in state four (m?)

W:  Output power (kW).

The authors would like to thank S. Noudeh and P. Samadian
for their precious collaboration.
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