A Linked-Cell Domain Decomposition Method
for Molecular Dynamics Simulation on a

Scalable Multiprocessor

L. H. YANG, E. D. BROOKS III, AND J. BELAK

Massively Parallel Computing Initiative, Lawrence Livermore National Luboratory, Livermore, CA 94551

ABSTRACT

A molecular dynamics algorithm for performing large-scale simulations using the Paral-
lel C Preprocessor (PCP) programming paradigm on the BBN TC2000, a massively
parallel computer, is discussed. The algorithm uses a linked-cell data structure to obtain
the near neighbors of each atom as time evolves. Each processor is assigned to a
geometric domain containing many subcells and the storage for that domain is private
to the processor. Within this scheme, the interdomain (i.e., interprocessor) communica-
tion is minimized. © 1993 by John Wiley & Sons, Inc.

1 INTRODUCTION

The molecular dyvnamies (MD}; computer simula-
ton method [17 is a well-established and impor-
tant tool in the fields of physics. chemisry.
biologv. and engineering. Recent advances in
computer hardware and software techniques have
allowed the simulation of large svstems [2] using
realistic potential models [3. 4;. Given that the
requirement for large-scale and more realistic MD
simulations will remain. the demand for advanced
hardware and software architecture will continue
to grow into the future. In anticipation of this fu-
ture demand. we present an algorithm for per-

Received February. 1992

Revised October 1992

© 1993 by John Wiley & Sons. Inc.

Scientific Programming. Vol. 1. pp. 153=161 1942
CCC 1058-9244/93/020153-09

forming large-scale MD simulations of simple
metals with short-range embedded-atom inter-
atomic potentialz. on a scalable multiprocessor.
the BBN TC2000. The current conliguration of
the TC2000 at Lawrence Livermore Natdonal
Laboratory 'LLNL; consists of 128 Motorola
88100 reduced instruction set microprocessors
running at 20 Mz, Each processor is located on
a separate board. or node. along with a 16-kilo-
byvte cache and 16 megabytes of local memory.
The nodes are interconnected by a scalable
switch. At boot time. some of each processor’s lo-
cal memory is dedicated to an imerleaved shared
memory pool. Thus. allocated memory is either
private {accessible by only one processor making a
memory reference within its own node’ or shared
(accessible by all processors via a memory refer-
ence through the switch .

The method of MD simulation involves the
evaluation of the force acting on each atom due o
other atoms and the numerical integraton of the

153

https://core.ac.uk/display/207203051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

154 YANG, BROOKS, AND BELAK

newtonian equations of motion. The most time-
consuming portion of any MD simulation is the
evaluation of the force; it typically consumes up to
98% of the total simulation time. In general each
atom interacts with every other atom in the svs-
tem. However, for many physical systems such as
rare gases and simple metals, the interaction is
non-negligible for neighboring atoms within a few
atomic diameters only. and the computational de-
mands are drastically reduced. Given that the
neighbors of an atom do not change appreciably
during a short period of simulation time, two gen-
eral methods have been developed to keep track of
an atom’s neighbors. In the neighbor-list ap-
proach [51, all atoms within a sphere surrounding
a given atom are stored in a list. The radius of the
sphere is chosen to exceed the interaction range
by an amount sufficient to permit updating of the
neighbor list at intervals of several MD time-steps
ounly {typically, 10-20 steps). The neighbor lists
provide a natural mechanism for developing vec-
torized MD algorithms [6]. However. the large
memorv overhead associated with maintaining
these lists prohibits usage in large-seale simula-
tions (>10° atoms). In the lmLed cell methods,
the system is subdivided into many small cells and
linked-lists [7] of atoms belmmrm to each individ-
ual cell are constructed. B@(dl,lh(’f of the random
addressing of memory. linked-list algorithms do
not vectorize efficiently and extensive efforts have
gone into vectorizing large-scale MD algorithms
[SJ The number of atoms per linked cell depenck
on the interaction range and the software archi-
tecture (whether the interaction is limited to
neighboring subcells only or further subcells are
allowed to interact). Unlike the neighbor-list ap-
proach, the cell lists need to be renewed at each
MD time-step. The low memory overhead associ-
ated with the linked-list is ideal for large-scale MD
simulation and the cell-list algorithm introduces a
‘patural” domain de(‘umpmmnn parallelism into
the MD problem [9]. In this paper. we describe
our effort to adapt this domain decomposition
scheme to our linked-cell MD code [10] in order to
improve the parallel efficiency on the BBN
TC2000. This scheme also allows for easy porting
to machines supporting the message passing pro-
gramming model only.

In general, a three-dimensional svstem of N at-
oms of mass m in a simulation cell of sides L. L,.
and L, is the basic building block of an MD sys-
tem. We employ an embedded -atom method
(EAM) [3] 10 express the interaction between the

atoms in a simple metal. The total potential en-
ergy is written as:

,,..\
ey
_—

. 1
Vet =5 2, ly) + 2 Flp).

ij#e
with

;= ENF{,)

J#i

T
18]

The first term is the usual rwo-body interaction
energy and the second term (F(p;)} is the energy
reqmred to embed the atoms into the local elec-
tronic charge density (p;). which is written as a
superposition of charge densities due to neighbor-
ing atoms (f{r;)}. The newtonian eguations n{ o~
tion for the EAM are

d2x; N :
m=—5 == > {¢'ty) + (Fipiry);
e 1#K (3

+ F'{p{r)i rA,\}
Thi

These equations are inherenmly nonlocal: they de-
pend on both the embedding densities at atom-
klpir) and at atom-jipir;}1. They must be solved
in a two-step manner. The embedding density at
all atomic sites 1; is evaluated first. then the forces
acting on each atom may be calculated.

T he equations are mfe(rramd by approximating
the time derivative with a central difference [57:

d*x x4+ Ad = 2x70 + xit = A
di? At? .

i

where the time-step (At) is 1725 of the vibration
period (7). For a simple metal 7 is about 0.3 X
10712 seconds.

Domain decomposition techniques have re-
ceived much attenton recently. as thev are suited
for the parallel unplememdtmn of pmblenh with
localized data. The local nature of the short-range
potental provides a good opportunity w apply the
domain decomposition scheme to our MD simula-
tion on a scalable multiprocessor machine. In
general the physical MD cell is divided into geo-
metrically separate subdomains. each containing
many subcells. Each processor is assigned to a
subdomain and is responsible for upddnm" all at-

LINKED-CELL BOMAIN DECOMPOSITION METHOD 155

oms contained therein. We employ the shared
memory on the TC2000 as a “*hub’’ for data com-
munication berween subdomains, although the
same communication/decomposition algorithm
mayv also be implemented using ithe message-
passing programming model on distributed mem-
ory machines {11-13].

The outline of this paper is as follows. In Sec-
tion 2 we describe the basie data structures in our
MD code and the programming model used on the
BBN TC2000. In Section 3 we discuss our imple-
mentation of the linked-cell list method and the
domain decomposition scheme on the BBN
TC2000. Performance benchmark resulis are
presented and discussed in Section 4.

2 THE MD PROGRAM AND THE PARALLEL
C PREPROCESSOR (PCP) PROGRAMMING
MODEL

Our MD program is designed to swady various
types of wribological svstems {e.g.. fricion and
wear). Details concerning the applications of MD
simulations to these problems can be found in the
papers by Belak and Stowers [14, 15, Figure 1
illustrates a schematic geometry of a typical sys-
tem. For the simulation of the orthogonal metal
cutting process. the MD simulation cell is a fixed
window in the reference frame of the 1o0l. The

Thermostat Tool

Boundary Atoms

FIGURE 1 The geometry of our steady-state variable-
particle molecular dynamics model of orthogonal metal
cutting. The calculation is performed within the refer-
ence frame of the tool. The thermostat atoms are main-
tained at room temperature and the boundary aroms
are used 1o impose the cutting speed—they propagate
to the right at the cutting speed.

boundary atoms are used to impose the cutting
speed; they move to the right at the cutting speed.
In order 10 produce a steady state flow, new atoms
are continuously inserted from the left, while at-
oms that leave the top or the right of the cell are
discarded: the system is open. Next to the bound-
arv. we place a thermostat region. A ume-depen-
dent viscous damping {{) is added 1o the equation
of motion for the atoms in this region {16, 17].

dgx;\- - dxk o
m-qT = force — {m T (5)
with
dg — _l F-{\rulrx = e
dt a 72 (T([v.\’iwrl 1> \6)

Where 7 is the relaxation ume for { and T, is the
kinetic temperature of the system. The purpose of
the thermostat is to remove heat from doing work
at the ol tip.

Our MD computer simulation code is written in
the C programming language. Unlike Fortran, C
provides the advantages of allowing complex data
structures, pointer arithmetic. and dvnamic allo-
cation of memory. all of which are necessary for
performing variable atom simulations. We employ
the PCP [18] as our programming model on the
BBN TC2000. PCP provides an extension of the
single-program-muliple-data (SPMD) program-
ming model in the familiar C programming envi-
ronment. Each processor executes the same code
and the path through that code is determined by
the data that the processor encounters. PCP intro-
duces the concept of a “team™ of processors.
Each team has one master processor that is used
for performing serial work such as dawa accumula-
ton and inidalizaton. Flow svnchronization is
obtained through the barrier statement, Every
pracessor reaching a barrier waits untl all mem-
bers of its team (including the master) reach that
barrier. Additional flow control for eritical sections
is accomplished with locks. PCP provides the
lock {&lock variable) and unlock {&lock..
variable) functions to isclate critical sections.
The lock variable is stored in shared memory. The
first processor entering the critical section sets the
lock variable to locked und proceeds with the cal-
culaton. Meanwhile. the remaining processors
test the lack variable 10 see whether it is locked.
When the first processor finishes the caleulation.
it sets the lock variable 10 unlocked. The next pro-

156 YANG. BROOKS. AND BELAK

cessor to find it unlocked immediately locks it and
proceeds with the calculation.

Parallelism is exploited via domain decomposi-
tion. Each processor does the work for its domain
and the interprocessor communication is per-
formed through the shared memory. In effect.
each processor is performing a separate MD simu-
lation and obtaining boundary data from neigh-
boring processors. Localitv of data is exploited bv
explicitly declaring variables as private or shared
with the private and shared storage class modi-
fiers. Private and shared memory are dynamically
allocated using the prmalloc and shmalloc func-
tions.

The majority of our parallel MD code consists
of routines from a standard serial MD code based
on the linked-cell method. We use the linked-cell
method in our parallel domain decompositon.
Before going into our domain decomposition im-
plementation. we list the most important funetions
in our MD code as follows:

1. Initalization
{(a} Read input file
(b} Initialize positions and velocities. build
the linked-cell lists

2. Impose the domain decomposition scheme
to divide the work for each processor

3. Main simulation loop
(a) force—-calculate interatomic forces
(b) update—obtain new positions using the
central difference
(¢} kinetic—calculate kinetic energy and the
temperature of the svstem
(d} output—accumulate dara and output
(e} celler—apply boundary conditions and
update linked-cell lists

The initialization and output blocks represent a
small amount of serial work that is performed by
the master processor. The heart of the work
throughout the program consists of loops of the
following type:

1t

for (i 0; 1 < nx; i++) {

for (j 0; 3 < ny; j++) {

for (k = 0; k < nz; k++) {
a_ptr = cell[i][j] (k].start.ptr:
while(a_ptr !'= NULL)
{

it

private work
a ptr = a.ptr->cell_list_ptr;

H

where cellli]l[j]{k].start_ptr indicates
the pointer to the first atom for each subcell and
cell_list_ptr points to the next atom pointer
within that subcell. NULL is a parameter to indi-
cate the end of a linked-cell list. One aspect of this
task we want to emphasize is that all data are pri-
vate to each processor. thus the memory latency is
minimized.

One mav note that in the scheme we have de-
scribed above. we have done the domain {and
therefore the work) allocation to the processors
once at the start of the job. This is suitable for a
problem wherein the dyvnamics of the simulation
do not change the load balance while the problem
is executing. If our test problem did exhibit large
changes in processor loading as executing pro-
ceeded. we would periodically repeat step 2 in or-
der to maintain a good load balance for the pro-
Cessors,

3 PARALLEL IMPLEMENTATION

The most important aspects of a parallel imple-
mentation of the MD algorithn: are the assignment
of the processors to a subset of atoms and rthe
computation of the forces on those atoms. In the
following. we discuss the linked-cell list method
and the domain decompeosition scheme that we
used in our parallel implementation.

3.1 The Linked-Cell List Method

For finite range interactions the amount of compu-
tations is reduced from O{N?! 1o OINY where N ix
the total number of atoms within the simulation
cell. For example. within a simple metal. each
atom has 07100 neighbors that contribute to the
force. We use the linked-cell list method 1o keep
track of the distribution of atoms in each cell.
Each cell has a pointer to the first atom it con-
tains. Each atom has a pointer to the next atom in
the same linked-cell. The advantage of using the
linked-cell list approach in our MD code is that
storage requirements are minimized. The disad-
vantage is that the list must be renewed at each
time-step and memory is addressed in a random
manner. However. the time spent updating the
cell list is O{N} and is found to be small relative to
the force calculation.

A linked-cell list is built according o the coor-
dinates of the atoms inside the MD simulation
box. For each atom. we compute a cell index ac-
cording to the current position and add the atom’s
pointer to the top of the list for that cell. Each cell

LINKED-CELL DOMAIN DECOMPOSITION METHOD 157

cell[i]{j]{k].start_ptr

NULL

b) cell[1][j][k].start_ptr

NULL

FIGURE 2 The assignment of the first two atoms 1o the cell-linked list. Each atom
caleulates its cell indices according to the atom position. “a: The first atom is assigned to
cell 117717 k1. which has a pointer cell i1/ A start_pir 1o indicate that this is the first
atom on the list. In additon. this atom is linked to NULL. which is the parameter to
indicate that this is the end of the cell list. 'b; The second atom is added to the list by
assigning it 1o the top of the list. By doing that. the pointer cell 77/ TA start_ptr has
been replaced by the second atom pointer and this atom is linked to the first atom.

has a pointer to the first atom it contains and has a
flag 10 indicate the last atom it contains Fig. 2).
Because the cell lists are built locally in each pro-
cessor. critical sections are eliminated. Critical
sections were eliminated {rom the previous version
of the code [10] by calculating both the force on
atom-i due 1o atom-/ and the force on atom-j due
to atom-{. thus doubling the work 1o assure scal-
ability. At the end of the time-step. any atom that
migrates from one cell to another cell is removed
from its cell list and is added 10 another cell list. In
Figure 3. we illustrate how an atom is removed
from the middle of a cell list and is then added 10
the beginning of another cell list.

a) cell[i][j][k].start_ptr

atom_ptr

3.2 Domain Decomposition

In the domain decomposition scheme. the phvsi-
cal domain is divided into geometrically separate
subdomains. each handled by a different proces-
sor. With the aim of minimizing the need for pro-
cessors 1o communicate with one another and in
order to obtain the necessary neighbor-cell infor-
mation for the force calculation. we have intro-
duced overlapping regions [Fig. 4. the so-called
exterior border subcells). As a result. each proces-
sor works independently at each MD time-step 1o
calculate forces acting on each atom. obtain new
atomic positons, and obtain new cell lists for inte-

b) cell[i'][j'][k'].start_ptr

NULL

1
> ol
0

FIGURE 3 Updating the linked-cell list. Atom-1 is removed from the list by replacing
the next atom pointer in atom-2's data structure with the next atom pointer from atom-
1. Storage for atom-1 is returned to a buffer. 'b) Arom-1' is added to another cell list by
connecting to the top of the list. Note that the atom always carries its own pointer no

matter \\'}]CI‘C it Zoes.

158 YANG. BROOKS, AND BELAK

Al \

Interior Border Cell

Exterior Border Cell

FIGURE 4 Molecular dynamics domain decomposi-
tion. At the beginning of an MD simulation. each pro-
cessor. _IPROC. is assigned to a set of linked-cells {a
domain}. Each domain consists of a list of interior sub-
cells (shaded squares) and exterior border subcells
(empty squares). The assignment of exterior border
subcells to each processor is for temporary storage used
within the force calculation.

rior subcells. At the end of each time-step. inter-
domain communication takes place in order o
update the data structure of the exterior border
subcells.

The message-passing programming model may
be used for performing the interdomain communi-
cation on distributed memory machines. like the
TC2000 [12, 13]. Each processor knows the
identity of its nearest neighbors. The data from
the inner border subeells of each processor are
sent to its neighboring processors. Each processor
then receives messages from its neighbors and
scatters the data appropriately 1o the outer border
subcells. To ensure that the corner data are
passed correctly. data are passed to neighboring
processors in one direction first. then in another
direction. The forces are calculated independently
within each processor.

In our approach. we use the scalable shared
memory facility of the BBN TC2000 to avoid the
complexity of data packing and communications
management that would have been required by a
strict message-passing implementation. To carry
out the interdomain communication. we use the
shared memory as a ““hub’" for temporary storage
of new atomic positions in the border subcells.
First, atomic positions of interior border subcells
from each processor are copied into share mem-
ory. Then, each processor updates its exterior

border subcells by copving those atomic positions
from shared memory to local memory (Fig. 5). Fi-
nally. the linked-cell lists for each subdomain are
renewed due to the migration of atoms from one
subeell to another.

To make our procedure more instructive. we list

four steps that are essential to this approach:

1. Update all interior linked-cell lists.

2. Copy data from interior border subcells into
shared memory.

3. Update data in exterior border subcells by
copving data from shared memory into pri-
vate memory.

4. Update linked-cell lists of interior and exte-
rior border subcells.

Note that the linked-cell lists of the interior border
subcells need to be renewed twice within this ap-
proach.

4 PERFORMANCE RESULTS

Our parallel MD algorithm has been implemented
on the BBN TC2000 using the PCP programming
paradigm and we have performed some of the
largest MD simulations for the longest periods of
time to date. Here we present timing comparisons
for three-dimensional EAM molecular dynamics
simulations containing 4.032. 32.256. and
258.048 atoms. All of our calculations are per-
formed with 64 bit floating-point precision. Table
1is a summary of the simulation parameters that
define our MD simulation. The benchmark caleu-
lations are performed for 20 MD time-steps.
though we have performed simuladons for as long
as several million time-steps. The timings from the
first 10 time-steps are discarded and the last 10
time-steps are averaged to obtain CPLU times for
one MD time-step.

On the BBN TC2000. the performance of the
startup of a job is severely degraded by the thrash-
ing of the virtual memory svstem as page tables
are constructed for each processor. This effect has
been observed on other parallel svstems imple-
menting demand paged virtual memory and
seems to be inherent in such svstems. Although
the startup cost does not affect long problems that
run for many thousands of time-steps. the chaotic
timing effects that arise from the virtual memory
svstem during startup are very inconvenient when
attempting to time portions of an application,

LINKED-CELL DOMAIN DECOMPOSITION METHOD 159

Processor 1

Shared Memory

Processor J

FIGURE 5 The duata communication through the shared memory. The data structure
within each processor is updated in a two-ztep manner. The data from the interior
border subcells are copied to the shared memorv. The updated data from the shared
memory belonging 1 the exterior border subcells ure then copied 10 cach processor,

Shown in Tables 2 and 3 are timings for the
code executing on the TC2000 using the linked-
cell domain decomposition scheme described in
this paper. The present code executing on single
processor uses memory local to the processor
only—there is no shared memory overhead. The
share memory is used for interprocessor commun-
ication only. There are about eight atoms per sub-
cell and each proecessor has a private copy of all
data that define the calculation. The celler and
10 routines are the only routines that operate di-
rectly on shared data. From Table 3. we observe

Table 1. Summary of Physical Variables in Our
MD Simulation Presented in this Paper*

Parameter Typical Value

Desired dimensionless temperature

) 0.5 (gi
Density of the system 0.9421 (o™
Relaxation time for £ 0.10
Time-step in reduced units (At) 0.01 (7}

* The EAM potential parameters were wken from Holian et
al. {197, The simulation state is a hot solid near the melting

point

that the timings scale beuer than linear with sys-
tem size. The ratio of the time spent doing com-
munication to the time spent doing computational
work is decreasing with increasing svstem =ize.
The main goal of this research was to adapt the
domain decomposition scheme into the linked-
cell MD code [107 which extensively utilized the
shared memory during the MD simulation. al-
though computationally intensive tasks were per-
formed on local data only. It is therefore interest-
ing to compare the 1imings for these two codes. In
Table 4. we show the timing comparisons of these

Table 2. CPU Times (Seconds) to Simulate One
MD Time-Step of a Three-Dimensional Material
Containing 32,256 Atoms on the BBN TC2000
{The Entire MD Simulation Box is Divided inteo
4.096 Subcells)

Processors 1 8 64

Total 287.04 33.58 3.76
force 280.22 31.84 315
kinetie 0.96 0.13 0.03
celler . 4.53 1.25 0.52
ion + others 1.33 0.36 0.06

160 YANG, BROOKS. AND BELAK

Table 3. Total CPU Times (Seconds) to Simulate
One MD Time-Step of a Three-Dimensional
Material Containing 4,032, 32,256, and 258.048
Atoms on the BBN TC2000

Processors 1 8 6+
4.032 25.56 3.29 0.56
32.256 287.04 33.58 376
258,048 2367.296 209.35 28.22

two codes running simulations of 4,032, 32.256.
and 258,048 atoms on 64 processors. We obtain
an average of threefold speed-up by using the do-
main decomposition scheme. Most of this perfor-
mance increase is attributable to the increase in
performance of the force routine. Foremost. we
have decreased the computational work by a fac-
tor of two. Furthermore. we have minimized the
interprocessor communication by confining the
computational task to local memory.

Figure 6 is a plot of the parallel efliciency of
various routines in our code simulating the motion
of 32.256 atoms. The parallel efficiency (%} is de-
fined to be the time to execute on one processor
(t;) divided by the time 1o execute on n processors
(t,) divided by the total number of processors.

That is:

7=)

[,.X1

The most inefficient routine in our code is the
celler routine where border subcell information
is copied to/from shared memory. The second-
most inelficient section of the code 1s the io rou-
tine, which we performed once at every time-step
in the timings presented here. In a production run.

Table 4. Total CPU Times (Seconds) and
Speed-Ups to Simulate One MD Time-Step of a
Three~Dimensional EAM Material Containing
4,032, 32,256, and 258,048 Atoms on the BBN
TC2000 of 64 Processors: The Timing Results Are
Based on the Same Initial Conditions and
Physical Parameters for Both MD Codes and
Obtain Identical Physical Results

Number of

Atoms 4.032 32.256 258.048
Old 1.62 11.89 93.56
New 0.56 3.74 28.22
Speed-up 2.89 3.18 3.32

1.4

Total

1.2 b et

1.0

0.8

0.6

0.4

Parallel Efficiency (n)

T - .-

0.0 Adoadndendeendiom bk PUIE LN UV SUT ST BT NS WY T T 0T ST 1
1 17 33 49 65
Number of Processors

FIGURE 6 The parallel efficiency {(n) of the various
routines in our MD code simulating 32.236 atoms in
three~dimensional EAM. The parallel efficiency - is
detined o be the time 10 execute on one processor di-
vided by the time to execute on n processors divided by
the total number of processors.

io is executed every ~100 time-steps and the ef-
fect on the overall performance is small.

The overall performance is somewhat surpris-
ing. providing an efficiency that is greater than 1
and reaching a plateau of 1.2 ar around 64 pro-
cessors. Parallel efficiencies of greater than 1T are
unusual. but have been documented bhefore on
multiprocessors emploving cache equipped mi-
croprocessors as their basic computational ele-
ments. There are essentially two places where this
effect can arise, the first is in the cache used to
store virtual to physical address translations and
the second is in the cache used to store previously
referenced data. The BBN TC2000 is composed
of processors possessing individual 16 Kbyte data
caches. and memory management units capable
of mapping 564K byte pages without TLB misses.
As the number of processors is scaled. the total
available cache memory scales as well, Fora 32K
atom problem size. the heavily used portion of the
data set begins to fit in the available cache mem-
ory as the processor count reaches 64 and no fur-
ther speed increase results from the cache effect.
This effect is important for all currently available
microprocessors, but these microprocessors lack
hardware monitors that would allow us to pin
down the source of the efficiency improvement in
a more quantitative manner. We expect that fu-
ture microprocessors will possess hardware moni-
tors that are capable of counting cache misses and
these will be very useful when tracking down
anomolous performance results,

LINKED-CELL DOMAIN DECOMPOSITION METHOD

5 SUMMARY

In this paper we have described a parallel imple-
mentation of our MD code using the linked-cell list
method in conjunction with the domain decompo-
sition approach on the BBN TC2000. Instead of
using a message-passing programming model for
the mterprocessor communication. we have em-
ploved the availuble shared memory on the
TC2000 as a hub for temporary data storage in
the border subcells. We minimize interprocessor
communication by confining the computational
task 10 local memorv. Most of our performance
increase is atributed w the increase in perfor-
mance of the force routine. Our performance
results have demonstrated that high parallel effi-
cieney mav be obtained on the BBN TC2000 with
the PCP programming model. We have obtained
roughly three times the performance of the origi-
nal parallel version of the code on the BBN
TC2000 that did not use the domain decomposi-
ton technique. Using the domain decomposition
technique on 64 processors of the BBN TC2000.
we have exceeded 6 times the performance of a
partially vectorized version of the algorithm on a
single Cray XMP processor. The partially vector-
ized version generates neighbor-lists from the
linked-lists. similar 1o the algorithm of Grest et al.
(8. It is clear that. for large-scale molecular dy-
namics algorithms with short-range forces. the
massively parallel systems compete very favorably
with conventional vector supercomputing technol-

();_"_\'.

ACKNOWLEDGMENTS

This work was performed under the auspices of the ULs,
Departnent of Energy by the Lawrence Livermore Na-
tional Laboratory under contract No. W-7405-ENG-
+8.

REFERENCES

17 D. W. Heermann. Computer Simudation Methods
in Theoretical Phyvsics ed.). Berin:
Springer-Verlag. 1990,

(2] W. G. Hoover. AL J. DeGroot. C. G. Hoover. 1 F.
stowers. T. Kawai. B. L. Holian. T. Boku. S.
lhara. and J. Belak. ~Large-scale elastie-plastic
indentation simulations via non-equilibrium mo-

Phys. Rer. A, vol. 42, p.

I
L

(2nd

lecular dynamies.”
2844, 1991,

3] M. S. Daw and M. I. Baskes. ~Embedded-atom
method: derivarion and application to impurities.
surfaces. and other defeets in metals. ™ Phyvs. Ree.
B.vol. 29, p. 6443, 1984.

(41]. Tersoff. ~“Modeling solid-state chemistry: inter-

6]

"10]

"1

14

161

atomic potentials for multicomponent systems.”
Phys. Ree. BB vol. 39, p. 5566, 1989 fand refer-
ences therein.

L. Verlet. ~Computer “experiments” on classical
fluids. I. Thermodynamic properties of Lennard-
Jones molecules.” Plas. Ree., vol. 1590 p. 98.
1967.

D. Fincham and B. I. Ralston. “Maolecular dy-
namics simulation using the Cray-1 vector pro-
cessing computer.” Compuat. Phyvs. Commaun.,
vol. 23, p. 127, 1981.

D.E. Knuth. The Art of Computer Programming:
Polume [—Fuandamental Algorithms. Reading.
MA: Addison-Weslev. 1968,

G. 5. Grest. B. Dunweg. and K. Kremer, “"Vector-
ized link cell FORTRAN code for molecular dy-
namics simulations for a large number of parti-
cles.” Comput. Phys. Commurn.. vol. 35, p. 269,
1989,

b. €. Rapaport
namics simulation using vector and parallel com-
puters.”” Comput. Phys. Rep.. vol. 9. p. 1. 1988,
J. Belak. The 1991 MPCI Yearly Report: The At-
tack of the Kiler Micros. Livermore. CA:
Lawrence Livermore National Laboratory UCRL-
ID-107022. 1991. p. 219.

AL DeGroot. W G Hoover. and C. G. Hoover.
The 1991 MPCIL Yearly: Report: The ttack of the
KNiller Micros. Livermore, CA: Lawrence Liver-

Laboratory UCRI-ID-107022.

“Large-scale molecular dy-

more National
1991, p. 211.
W. Smith. “Molecular dynamies on hypercube
parallel computers.”™ Comput. Phyvs. Commun..
vol. 62. p- 2291991,

D. €. Rapaport. "Multi-million particle molecular
dvnamics 1. design considerations for distributed
processing.”” Comput. Phyvs. Commun.. vol. 62,
p- 217, 1991,

J. Belak and 1. F. Stowers. Macroscopic and Mi-
croscopic Processes. NATO ASI Series. Sceries E.
Applied Science. Boston. MA: Kluwer Academic.
1992, p. 511.

J. Belak and 1. 1. Stowers. Proceedings of the In-
ternational Conference on Metallurgy: Coatings
and Thin Films. 1992 in press.

S. Nosé. A unified formulation of the constant
temperature molecular dvnamics methods.™ J.
Chem. Phys.. vol. 81. p. 511, 1984.

W. G. Hoover. "Canonical dvnamics: equilibrium
phase space distribution.” Plyss. Ree. AL vol. 31.
p. 1695. 1985.

E. D. Brooks. B. Gorda. and K. Warren. “The
parallel C preprocessor.” Scientific Program-
ming. vol. 1. p. 79. 1992,

B. L. Holian. A. F. Voter. N. J. Wagner. R. J.
Ravelo. S. P. Chen. W. G. Hoover. C. G. Hoover.
J. E. Hammerberg. and T. D. Dontje. ~Effects of
pairwise versus many-body forces on high-stress
plastic deformnation.”” Phys. Rer. 4. vol. 43. p.
2655, 1991,

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

