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Abstract
The use of an interferometer to perform an ultra-precise parameter estimation under
noisy conditions is a challenging task. Here we discuss nearly optimal measurement
schemes for a well known, sensitive input state, squeezed vacuum and coherent light.
We find that a single mode intensity measurement, while the simplest and able to
beat the shot-noise limit, is outperformed by other measurement schemes in the
low-power regime. However, at high powers, intensity measurement is only
outperformed by a small factor. Specifically, we confirm, that an optimal
measurement choice under lossless conditions is the parity measurement. In
addition, we also discuss the performance of several other common measurement
schemes when considering photon loss, detector efficiency, phase drift, and thermal
photon noise. We conclude that, with noise considerations, homodyne remains near
optimal in both the low and high power regimes. Surprisingly, some of the remaining
investigated measurement schemes, including the previous optimal parity
measurement, do not remain even near optimal when noise is introduced.

PACS Codes: 42.50.-p; 42.50.St; 42.87.Bg

Keywords: metrology; parameter estimation; noisy Mach-Zehnder interferometry;
quantum measurement

1 Introduction
Typical parameter estimation with the use of interferometric schemes aims to estimate
some unknown parameter which is probed with the input quantum states of light. In prin-
ciple, the sensitivity of these measurements depends on the chosen input states of light,
the interferometric scheme, the noise encountered and the detection scheme performed
at the output. For a real-world example, perhaps the most sensitive of these types of inter-
ferometers are the large scale interferometers used as gravitational wave sensors [–]. In
general, if classical states of light are used, then the most sensitive measurement is limited
to a classical bound, the shot-noise limit (SNL) [–]. Despite the remarkable precision
possible with classical states, improvements are still possible. Here we discuss nearly opti-
mal measurements achievable when one considers input states of coherent and squeezed
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vacuum [, ], under many common noisy conditions and in realistic power regimes
which are applicable to general interferometry.

It is of practical interest to consider the difficulty with implementing any particular mea-
surement scheme as every additional optical element introduces further loss into the in-
terferometer. It has been previously shown that the parity measurement is one example of
an optimal measurement for coherent and squeezed vacuum input states under lossless
conditions []. It was also previously shown that a more involved detection scheme is
optimal under photon loss []. However, here we will discuss various common detection
schemes, which are easier to implement in practice and perform nearly optimal. Discus-
sion of a lossy MZI for Fock state inputs is also discussed in previous works [, ].

While there are many technical challenges in using squeezed states of light, we show
here that some of the measurement techniques commonly used in a classical setup are no
longer near optimal. In addition, some measurements exhibit problems with effects such
as phase drift and thermal photon noise. With the goal of choosing a simple, yet well-
performing measurement, we investigate homodyne [], parity measurements [–]
and compare them to a standard intensity measurements. These measurements form a
set that are either simple to implement, or are known to be optimal in the lossless case.
Specifically, we confirm that, under lossless conditions, the parity measurement achieves
the smallest phase variance. However, under noisy conditions, surprisingly the parity mea-
surement suffers greatly, while the homodyne measurement continues to give a nearly op-
timal phase measurement. The parity measurement under losses was briefly discussed in
the context of entangled coherent states by Joo et al. []. For the lossless case, we divide
our results into two regimes, the low power regime (|α| < , e.g. small scale sensors), in
which different detection schemes can lead to significantly different phase variances, and
the high power regime (|α| > , e.g. large scale, devoted interferometry), where all de-
tection schemes are nearly optimal. While our scheme may hint at applications for setups
like LIGO, a much more focused analysis, outside the scope of our investigation, would
be required before drawing conclusions about LIGO’s performance.

2 Method
The interferometer considered here is a Mach-Zehnder interferometer (MZI) [] as
shown in Figure  and is mathematically equivalent to a Michelson interferometer. Here,
an input of a coherent state (|α〉) and squeezed vacuum (|χ〉) is used. With this input
state, it is known that the phase sensitivity can be below the SNL, typically defined as
ΔφSNL = /N , where N is the mean number of photons entering the MZI [].

Figure 1 A general Mach-Zehnder
interferometer with coherent |α〉 and squeezed
vacuum |χ〉 states as input. Beam splitters (BS)
mix the two spatial modes, while mirrors (M) impart
a phase shift, which can be safely neglected since it
is common to both modes. A phase shift φ
represents the phase difference between the two
arms of the MZI, which can be due to a path length
difference. Our goal is to estimate the unknown
parameter φ , which corresponds to the interaction
of the quantum state with some process of interest.



Gard et al. EPJ Quantum Technology  (2017) 4:4 Page 3 of 13

For its close connection to the parity measurement, we shall describe our states in terms
of Wigner functions. One can construct any Gaussian states Wigner function directly from
the first and second moments by way of,

Wρ(X) =


πN
√

det(σ )
e–(X–d)ᵀσ–(X–d), ()

where the covariance matrix, σ = σij = 〈XiXj + XjXi〉– 〈Xi〉〈Xj〉, mean vector, dj = 〈Xj〉 and
Xi, Xj are orthogonal phase space variables.

We use this general form for our chosen input states of a coherent state (|α〉) and
squeezed vacuum (|χ = reiδ〉) to define our states by,

Wα(x, p) =

π

exp
(
|α|(√(p sin θ + x cos θ ) – |α|) – p

 – x

)
,

Wχ (x, p) =

π

exp
(
sinh(r)

(
px sin δ + cos δ

(
x

 – p

))

–
(
p

 + x

)

cosh(r)
)
.

Here α, θ are the coherent amplitude and phase, respectively while r, δ denote the squeez-
ing parameter and phase. As the input state we consider is a product state, it can be written
in terms of the product [],

W (X) = Wα(x, p) × Wχ (x, p)

=


π e–p
 –(x–

√
α) × e–erp

–e–rx
 . ()

For simplicity, both states have equal initial phases, as this gives rise to the optimal phase
sensitivity (discussed later) and are taken to be θ = δ = . This simply defines the coherent
state to be displaced in the x direction and the squeezed state to be squeezed along x

[]. The average photon number in the coherent state is Ncoh = |α| and in the squeezed
vacuum state Nsqz = sinh r, which sets the SNL to be ΔφSNL = /Ntot = /(|α| + sinh r).

The propagation of this Wigner function is accomplished by the transformation of the
phase space variables through the MZI, dictated by its optical elements. These transfor-
mations are described by

BS(/) =
√
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⎜
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   –
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where both beam splitters are fixed to be - and φ represents the unknown phase
difference between the two arms of our MZI. We have chosen to use a symmetric phase
model in order to simplify calculations as well as agree with previous results [, ]. Our
goal then will be minimizing our uncertainty in the estimation of the unknown parame-
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ter φ. Using these transforms, the total transform for the phase space variables is given
by,

⎛
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pf
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⎟
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, ()

where {xjf , pjf} represent the phase space variables, for each mode, after propagation
through the MZI.

We can also consider photon loss in the model by way of two mechanisms, photon loss
to the environment inside the interferometer and photon loss at the detectors, due to inef-
ficient detectors. Both of these can be modeled by placing a fictitious beam splitter in the
interferometer with vacuum and a interferometer arm as input and tracing over one of the
output modes, to mimic loss of photons to the environment []. This linear photon loss
mechanism can be modeled with the use of a relatively simple transform, since these states
are all of Gaussian form. Specifically this amounts to a transform of the covariance matrix
according to σL = ( – L)I · σ + LI,  ≤ L ≤  is the combined photon loss and I is the ×
identity matrix. Similarly the mean vector is transformed according to dL =

√
( – L)I · d

[, ].

3 Results and discussion
3.1 Quantum Cramér-Rao bound
We consider an optimal measurement scheme with the meaning of saturating the quan-
tum Cramér-Rao bound (QCRB) [, ], which gives the best phase sensitivity possi-
ble for a chosen interferometer setup and input states. This optimality is independent of
measurement scheme and it remains a separate task to show which measurement scheme
achieves this optimal bound []. In what we call the classical version of this setup, a co-
herent state and vacuum state are used as input. With these two input states, the best
sensitivity one can achieve is bounded by the SNL, which is achievable with many differ-
ent detection schemes. Many interferometer models mainly focus on analytical analysis
of Fisher information [, ] when there is loss and phase drift. While this analysis is
useful in that it demonstrates a ‘best case scenario’, it is unknown whether the optimal
detection scheme is hard to realize in an actual experimental setup. Thus, in our analysis,
we are more focused on Fisher information and how it compares with specific detection
schemes, under noisy conditions.

The benefit of using squeezed vacuum in place of vacuum is then that the phase mea-
surement can now reach below the SNL. In order to compare various choices of measure-
ment schemes, we not only need to calculate the various measurement outcomes, but also
need to show the best sensitivity attainable with these input states. The best phase mea-
surement one can do is given by the quantum Cramér-Rao bound [] and is related to
the quantum Fisher information (QFI, F ) [], simply by ΔφQCRB = F –. For the input
states of a coherent and squeezed vacuum, one can use the Schwinger representation to
calculate the QFI, since these are pure states [, ]. Another option, and the method we
use here, instead utilizes the Gaussian form of the states and can be calculated directly in
terms of covariance and mean [–]. This method applies to pure and mixed states, as
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long as it maintains Gaussian form. Using this formalism, the QCRB for a coherent state
and squeezed vacuum into an MZI can be found to be [, ],

ΔφQCRB =


|α|er + sinh(r)
. ()

While this gives us a bound on the best sensitivity obtainable with these given input states,
it does not directly consider loss or even tell us which detection scheme attains this bound.

3.2 Specific measurements under lossless conditions
Now that we have a bound on the best possible sensitivity, we now seek to show how var-
ious choices of measurement compare to this bound. We consider some standard mea-
surement choices including single-mode intensity, intensity difference, homodyne, and
parity. While each of these measurements would require a significant reconfiguration of
any interferometer, it is worthwhile to show how each choice impacts the resulting phase
sensitivity measurement. We utilize the bosonic creation and annihilation operators (â†,
â), which obey the commutation relation, [â, â†] = . We also utilize the quadrature oper-
ators (x̂, p̂) which are related to the creation and annihilation operators by the transform
âj = √

 (x̂j + ip̂j). These quadrature operators obey a similar commutator, [x̂, p̂] = i.
In terms of our output Wigner function, 〈Ôsym〉 =

∫ ∞
–∞ O × W (X) dX, where ‘sym’ in-

dicates that this integral calculates the symmetric ordered expectation value of the op-
erator Ô. Each measurement operator, 〈Ô〉, gives rise to a phase uncertainty by way of
Δφ = ΔÔ/|∂〈Ô〉/∂φ|.

Starting with the simplest measurement, an intensity measurement is given by, Ô =
〈â†â〉 = 〈x̂ + p̂〉/, which is implemented by simply collecting the outgoing light, directly
onto a detector. For homodyne detection, Ô = x̂ (we find the optimal homodyne measure-
ment is taken along the x quadrature). For a balanced homodyne detection scheme, one
would impinge one of the outgoing light outputs onto a - beam splitter, along with
a coherent state of the same frequency as the input coherent state (usually this is derived
from the same source) and perform intensity difference between the two outputs of this
beam splitter. While there exist other implementations of homodyne than we describe
here, we choose a standard balanced homodyne scheme, for simplicity. A standard in-
tensity difference is defined as Ô = â†â – b̂†b̂. This particular measurement choice is also
explored in Ref. []. Parity detection is defined to be Ô = (–)〈â†â〉 = πW (, ) ≡ 〈Π̂〉.
Parity detection has been implemented experimentally, though focusing on its ability for
super-resolution []. While all chosen measurements can surpass the SNL, in the loss-
less case, to various degrees, in order of improving phase sensitivity, single-mode intensity
performs the worst, followed by intensity difference, homodyne, and finally parity. The an-
alytical forms of each detection scheme, at their respective minima, are listed below and
we confirm that, under lossless conditions, the parity measurement matches the QCRB
[],

ΔφΠ̂ =


|α|er + sinh(r)
, ()

homodyne attains,

Δφx̂ =


|α|er , ()
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and intensity difference attains,

Δφâ†â–b̂†b̂ =
e–r(|α| + (er – ))
(cosh(r) – |α| – ) ()

while a single mode intensity measurement attains a minimum of,

Δφâ†â =
|α|e–r +  cosh(r) + 

√
|α| sinh(r) – 

(cosh(r) – |α| – ) . ()

We can notice that for high coherent state powers (|α| � ), each detection scheme’s lead-
ing term in its respective phase variance is given by Δφall ≈ (|α|er)–, which is nearly
optimal since the sinh(r) term in the QCRB is negligible compared to large α. From these
forms then, we can say that in the low-photon-number regime (|α| < ), the differ-
ence in these detection schemes can be significant, but in the high photon number regime
(|α| > ), there is little difference between the various detection schemes.

3.3 Lossy inteferometer
We now consider the effects of loss and calculate the lossy QCRB. This is done follow-
ing the same loss procedure described previously. The lossy QCRB of this mixed state
becomes []

ΔφLoss
QCRB =

L(er – ) + 
( – L){|α|er + sinh(r)[L(er – ) + ]} . ()

Note that this QCRB with loss only considers linear photon loss caused by photon loss
inside the interferometer and photon loss due to inefficient detectors. In reality, there may
be more specific sources of noise one needs to consider, but our method’s purpose is to
show a preliminary case when simple loss models are considered. We note that a mea-
surement scheme proposed by Ono and Hofmann is exactly optimal (thus it is able to
achieve the bound given by Eq. ()) under loss [], but we wish to explore how simpler
measurement schemes perform when compared with this bound.

In the case of losses, the forms of each phase variance necessarily becomes much less
appealing. For this reason, we only list the analytical form of the homodyne measurement
under loss, as it is our prime candidate for a nearly optimal measurement. The phase vari-
ance of homodyne in a lossy interferometer is given by,

Δφx̂(L) =


|α|er +
L

|α|( – L)
, ()

where we have fixed to optimal phase φ = π to obtain the phase variance minimum. We
can note several interesting comparisons from this form, including the obvious Δφx̂(L) ≥
Δφx̂ and Δφx̂() = Δφx̂. However, if we investigate Eq. () for high powers (large |α|),
we find,

ΔφLoss
QCRB =


|α|er +

L
|α|( – L)

+ O
(


|α|

)
≈ Δφx̂(L).
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Figure 2 Log plot of phase variance for various detection schemes for a coherent state and squeezed
vacuum into an MZI, as a function of the unknown phase difference φ. Loss parameters have been set to
L = 20%. Input state parameters for each respective state are set to |α|2 = 500 and r = 1. SNL and QCRB are
also plotted with the same loss parameters. Note that a homodyne measurement nearly, but not exactly,
reaches the QCRB as shown by the inset.

This expansion illustrates the fact that homodyne is nearly optimal and approaches the
QCRB in the large power limit. One can see in Figure , which shows when loss is consid-
ered, parity detection suffers greatly, while other detection schemes are still able to achieve
sub-SNL phase variances. In all but the intensity and parity measurement schemes, the op-
timal phase (the point at which each curve achieves its minimum) has a constant value and
therefore should not prove overly difficult to stabilize. In the case of intensity and parity
measurement however, this optimal phase depends on both the squeezing strength r and
the amplitude of the coherent state |α|. Therefore, fluctuations in the source will actually
affect the optimal phase setting and in general degrade the phase measurement in this
measurement scheme. Note that, in practice, typical experiments use an offset to remain
near these optimum values, but purposely remain slightly away from the minimum, due to
noise considerations. At this point we can note, that current technological limits enforce
|α| � sinh(r), as generally it is relatively easier to increase laser power, than to increase
squeezing power. Just as it was in the lossless case, under lossy conditions then, Figure 
shows that homodyne remains nearly optimal in the low power regime. In contrast, the
previously optimal measurement, parity, is now not able to even reach sub-SNL.

We can also plot the phase variance as a function of average photon number, shown in
Figure  for large powers, which can be related to the light’s optical frequency and power by
|α| = P/(�ω) []. The phase variances shown in Figure  are at their respective minima
in terms of optimal phase. In this form, it’s clear that a parity measurement suffers greatly,
under lossy conditions and at high powers. Parity may also be difficult to implement in
certain inteferometric setups as it either involves number counting (which is not feasible
at very large powers) or several homodyne measurements []. Alternatively, a single ho-
modyne measurement is nearly optimal in this lossy case, still only requires measurement
on a single mode, is simpler to implement than parity, and is not nearly as sensitive to loss.
We note that while homodyne appears to meet the QCRB in Figure , it actually doesn’t
exactly reach the QCRB (as indicated in the inset of Figure ). While intensity difference is
also close in phase variance to a homodyne measurement (when |α| > ) it requires uti-
lization of both output modes for phase measurement, which may not be feasible in some
setups. We note that while we have chosen typical parameters for |α| and r, the trend of
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Figure 3 Log plot of phase variance for various detection schemes for a coherent state and squeezed
vacuum into an MZI, as a function of the average coherent photon number, |α|2, shown in the very
large power regime. Total loss parameters have been set to L = 20%. We have assumed one can set the
control phase to its optimal value, to obtain the best phase variance in each measurement choice. Squeezing
strength in the squeezed state is set to r = 1. Note that Parity is now not able to achieve even sub-SNL, due to
loss, while homodyne and intensity difference quickly approach the QCRB (appear on top of one another).
SNL and QCRB are also plotted with the same lossy parameters.

homodyne achieving near optimal measurement generalizes to other parameter choices
as well.

3.4 Phase drift
Returning to Figure , it is clear at which value of phase the various measurements attain
their lowest value. It is this value of phase that one attempts to always take measurements
at with the use of a control phase inside the interferometer. The width of each of curve
then can be interpreted as the chosen measurement scheme’s resistance to phase drift.
The mechanism of phase drift comes about due to the limited ability to set control phases
in the interferometer with infinite precision. In general, the control phase value will vary
around the optimal phase setting. For this reason we aim to show this phase drift in a
more rigorous way. We therefore will use the analytical forms of the various measurement
phase variances, as a function of unknown phase φ. We simulate phase drift by computing
a running average of the phase variance, with a pseudo-randomly chosen phase, near the
optimal phase, for each measurement. This pseudo-random choice is made from a Gaus-
sian distribution, whose mean is fixed at each measurements respective optimal phase
choice and has a chosen variance of σ = .. As predicted in the previous discussion, this
gives a clearer picture of each measurement’s behavior under phase drift. For simplicity,
we focus on the lossless case for this treatment of phase drift.

Shown in Figure , we see the phase variance ratio to the QCRB for each measurement
scheme, as a function of the number of measurements. As the number of measurements
is increased, the phase variance asymptotes to the ideal measurement case, given by the
phase variance at the optimal phase. This is an illustration of the law of large numbers,
as the number of measurement increases, each scheme approaches its true average. How-
ever, as is clear from Figure , each scheme approaches its average at significantly different
rates. We can see that parity performs fairly poorly, as compared to the other measure-
ment schemes. In the case of intensity, homodyne, and intensity difference measurements,
it’s clear that homodyne and intensity difference attain a small phase variance, while also
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Figure 4 Log plots of phase variance ratio to the
lossless QCRB as a function of number of
measurements (M) under phase drift noise only.
For all plots shown, |α|2 = 100, r = 1 and the
standard deviation of the chosen Gaussian
distribution is fixed to σ = 0.15. Note that parity and
intensity measurement remain noisy even after 200
averaged measurements, where homodyne and
intensity difference approach their optimal phase
variance quickly in M.

being more tolerant of phase drift. This confirms a special case of Genoni et al. [],
who showed that homodyne measurement is resistant to phase diffusion in pure Gaus-
sian states. In principle, all of the different measurement schemes will each attain their
respective phase variance minimum, as the number of measurements increases to infin-
ity, but it is instructive to see how quickly a finite number of measurements approaches
the ideal phase variance minimum.

3.5 Thermal photon noise
In addition to photon loss, detector efficiency, and phase drift, we also model the inevitable
interaction with thermal photon noise from the environment. This is accomplished much
in the same way as a photon loss model, but here we consider a thermal photon state inci-
dent on a fictitious beam splitter, on both arms of the interferometer, and trace out one of
its output modes. This allows a tunable amount of thermal photon noise (by changing the
average photon number in the thermal state), into the interferometer. The effects of this
unwanted thermal photon noise, to the various measurement’s phase variance, is shown
in Figure . From this, we can see that even in the regime of a relatively low photon num-
ber of thermal photon noise, such noise significantly degrades the phase variance of each
scheme, but drastically affects the parity scheme, making it significantly above the SNL.
The SNL and QCRB under this noise model do not directly incorporate the additional
thermal photons. Also in this regime, a standard single-mode intensity measurement now
does not achieve sub-SNL phase variance, but homodyne and intensity difference continue
to reach sub-SNL. We also note that the advantage of homodyne over intensity difference
measurement is significantly decreased in the presence of thermal photon noise, but ho-
modyne still maintains its superiority. The introduction of larger average thermal photon
number continues to degrade all measurements so that they no longer beat the SNL, but
this example showcases their behavior under this noise model. It should be noted that
in the optical regime, the occupation of a thermal state, at room temperature is approx-
imately nth ≈ – and therefore, some interferometric schemes do not deal with sig-
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Figure 5 Log plot of phase variance of the various detection schemes, with introduction of thermal
photon noise into both interferometer arms, of total average photon number of nth = 1. Strength of
the two input sources are set to |α|2 = 500, r = 1. Note that homodyne loses most of its previous advantage
over intensity difference but remains the superior measurement choice.

nificant contribution from this model of thermal photon noise, but experiments in the
microwave frequencies can have nth ≈ , where this model is more applicable.

We recommend that a homodyne measurement is the simplest, nearly optimal measure-
ment choice for a setup as discussed here. Homodyne is a typical measurement choice in
interferometer experiments, as well as being a single mode measurement, likely resistant
to photon loss, detector efficiency, and phase drift. It shows its main benefits in the low
power regime, but performs nearly optimal in both the low and high power regimes.

4 Conclusion
In this paper, we have seen the performance of many common interferometric measure-
ment schemes. While all are able to achieve a sub-SNL phase variance measurement in
the lossless case, for the choice of a coherent and squeezed vacuum input state, all are
outperformed by a homodyne measurement when loss is introduced. While these mea-
surements each come with their own challenges in implementing, we have shown that
each measurement’s performance can vary significantly under different noise models. We
have also shown that in the high-photon regime, with loss, most measurement schemes
approach the QCRB except for parity which suffers significantly. Our results may imply
that simpler measurement schemes are overall appealing when using large powers. The
behavior of each measurement scheme under phase drift and thermal photon noise is
also discussed, and we find that homodyne and intensity difference measurement behave
best within these models. This should be expected as both homodyne and intensity differ-
ence measurements operate in a similar way, subtracting intensities between two modes,
removing common noise sources. Therefore, when considering ease of implementation as
well as near optimal detection, we conclude that homodyne is nearly optimal under loss,
phase drift, and thermal photon noise, for the specific choice of input states of coherent
and squeezed vacuum and in both power regimes.

Appendix: Measurement
We have shown that different choices of measurements lead to varied ability to perform
parameter estimation. Here we show the details of each detections analytical calculation
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for the ideal, lossless case. For each detection choice, Ô, we need to calculate

Δφ = ΔÔ/
∣
∣∂〈Ô〉/∂φ

∣
∣

=
(〈

Ô〉 – 〈Ô〉)/
∣
∣∂〈Ô〉/∂φ

∣
∣ ()

that is, we need the variance of the chosen measurement and the derivative of its first
moment. Therefore, in general we need the first and second moments for each chosen
detection scheme. We also need the Wigner function at the output, this is obtained by
following the transformation of phase space variables described in the text and results in
a final output Wigner function of,

W (x, p, x, p)

=


π Exp

{
–




e–r[p
 + x

 + er(p
 + x


)

+ er(p
 + p

 + x
 + x

 + |α|

+ 
√

|α|(x cos (φ/) – p sin (φ/)
))

+ er sinh r
((

p
 – x

 + er cosφ(p – x)(p + x)
)

+  sinφ
(
px + erpx

))]
}

, ()

where subscripts label spatial modes, α is the amplitude in the coherent state and r the
squeezing strength in the squeezed state and we have chosen θcoh = δsqz =  for simplicity.
For an intensity measurement, in terms of phase space quadrature operators x̂, p̂, for the
second moment, we have,

〈(
â†â

)〉 =
〈(

â†â
)〉

sym –
〈
â†â

〉
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=
∫ ∞

–∞
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(
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(
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]
W (X) dX –
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where ‘sym’ denotes the symmetric operator form which is calculated from 〈(â†â)〉sym =
∫ ∞

–∞

 (x + p) × W (X) dX and W (X) is the output Wigner function, given by Eq. ().

For the variance calculation then,

Δ(â†â
)

=
〈(

â†â
)〉 –

〈
â†â

〉

=
∫ ∞

–∞

[



(
x + p) –



(
x + p)

]
W (X) dX – /

–
[∫ ∞

–∞


(
x + p)W (X) dX – /

]

. ()

For homodyne detection, since the optimal homodyne measurement is along x̂, we simply
have,

Δx̂ =
∫ ∞

–∞
xW (X) dX –

(∫ ∞

–∞
xW (X) dX

)

. ()
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For intensity difference we have,

Δ[(â†â
)

 –
(
â†â

)


]

=
∫ ∞

–∞



[(
x

 + p

)

–
(
x

 + p

)]W (X) dX

–
{∫ ∞

–∞


[(

x
 + p


)

–
(
x

 + p

)]

W (X) dX
}

()

and finally for parity measurement,

ΔΠ̂ =  –
[
πW (, )

] ()

utilizing 〈Π̂〉 =  and W (, ) is the value of the Wigner function at the origin in phase
space.
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41. Demkowicz-Dobrzański R, Banaszek K, Schnabel R. Phys Rev A. 2013;88:041802.
42. Plick WN, Anisimov PM, Dowling JP, Lee H, Agarwal GS. New J Phys. 2010;12:113025.
43. Genoni MG, Olivares S, Paris MGA. Phys Rev Lett. 2011;106:153603.

http://arxiv.org/abs/arXiv:1303.3682

	Nearly optimal measurement schemes in a noisy Mach-Zehnder interferometer with coherent and squeezed vacuum
	Abstract
	PACS Codes
	Keywords

	Introduction
	Method
	Results and discussion
	Quantum Cramér-Rao bound
	Speciﬁc measurements under lossless conditions
	Lossy inteferometer
	Phase drift
	Thermal photon noise

	Conclusion
	Appendix: Measurement
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	Publisher's Note
	References


