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Abstract Modified gravity is one of the potential candi-
dates to explain the accelerated expansion of the universe.
Current study highlights the materialization of anisotropic
compact stars in the context of f (R,G) theory of gravity. In
particular, to gain insight in the physical behavior of three
stars namely, Her X1, SAX J 1808-3658 and 4U 1820-30,
energy density, and radial and tangential pressures are calcu-
lated. The f (R,G) gravity model is split into a Starobinsky
like f (R) model and a power law f (G) model. The main
feature of the work is a 3-dimensional graphical analysis in
which, anisotropic measurements, energy conditions and sta-
bility attributes of these stars are discussed. It is shown that
all three stars behave as usual for positive values of the f (G)

model parameter n.

1 Introduction

The spatial behavior of constituents of the universe is a com-
plex phenomenon. Visual observation of the remote universe
enlightens us about its continuous expansion, and it accen-
tuates the need to find alternative descriptions which may
be helpful to explain the phenomenon of expansion of the
universe [1]. So, these alternative models are known cur-
rently as modified theories of general relativity (GR), some of
which are f (R), f (G), f (R, T ), f (G, T ) and f (R,G) the-
ories of gravity, where R, G, and T denotes the Ricci scalar,
the Gauss–Bonnet invariant and the trace of the energy-
momentum tensor, respectively. The theory of GR explains
the cosmological phenomena in weak field regimes, while
some modifications are required to address the strong fields in
the scenario of continuous expansion of universe. The same
thought occurred Buchdahl in 1970 and one of the modi-
fied theories, f (R) gravity, was proposed [2]. Hydrostatic
equilibrium and the stellar structure in f (R) gravity have
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been investigated by considering the Lane–Emden equation
[3]. Some finite time future singularities in modified grav-
ity were described with their solution using the addition of
higher derivative gravitational invariants [4]. Harko [5] pre-
sented modified f (R, T ) theory in 2011 by invoking both
matter and curvature terms. Furthermore, the next modifica-
tion to the GR was Gauss–Bonnet gravity [6], also known as
Einstein–Gauss–Bonnet gravity, which includes the Gauss–
Bonnet term

G ≡ R2 − 4RμνR
μν + RμνθφR

μνθφ, (1)

where Rμν and Rμνθφ are the Ricci tensor and the Riemann
tensor, respectively. f (G) gravity [7] is the further general-
ization of Gauss–Bonnet gravity. It has been shown that this
kind of generalization may naturally approach an operative
cosmological constant, quintessence and phantom cosmic
acceleration [8]. Recently, another alternative theory with
the title of f (G, T ) gravity has been proposed by Sharif
and Ikram [9]. They studied the energy conditions for the
well-known Friedmann–Robertson–Walker space time. So
far some interesting work has been done in this modified
theory [10–13]. Similarly, f (T ) gravity is also a modified
theory, which has attracted the attention of theoretical physi-
cists gain insight in acceleration and regular thermal expan-
sion of the late-time universe by assuming an alternative for
the cosmological constant, where f (T ) is a function of the
torsion scalar [14]. An endeavor was made by combining R
and G in a bivariate function f (R,G) [15–22]. The function
f (R,G) provides a foundation for the double inflationary
scenario [23]. It has been shown that f (R,G) theory is con-
sistent with the observational data [24,25]. Besides its stabil-
ity, this theory is perfectly suitable to explain the accelerating
waves of the celestial bodies as well as the phantom divide
line crossing and the transition from acceleration to deceler-
ation phases. An important feature of f (R,G) gravity is that
it reduces the risk of ghost contributions and the gravitational
action is regularized because of the term G [26,27]. Thus,
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modified theories of gravity seem interesting in exploring the
universe in different cosmological contexts [28].

The study of compact stars has always been a strong topic
of research [29–40]. Different properties like mass, radius
and moment of inertia of neutron stars are studied and a
comparison has been developed with GR and alternative the-
ories of gravity [41]. Some investigations of the structure
of slowly rotating neutron stars in R2 gravity have been
done using two different hadronic parameters and a strange
matter equation of state (EOS) parameter [42]. The mass
ratio for compact objects in the presence of a cosmological
constant has been derived [43]. In this article, we are inter-
ested in the compact stars and in examining their physical
behavior using standard models of a spherically symmet-
ric space time by finding exact solution of the field equa-
tions. We study the stability of the anisotropic compact stars
using a generalized modified Gauss–Bonnet f (R,G) grav-
ity.

The arrangement of this paper is as follows: In the second
section, we find the expressions for energy density, radial
pressure and tangential pressure for an anisotropic matter
source using a spherically symmetric metric in f (R,G)

gravity. Section 3 comprises the analysis of the behavior of
EOS parameters, anisotropy measure, the matching condi-
tions, the energy bounds, the Tolman–Oppenheimer–Volkoff
(TOV) equation and a stability analysis of three compact
stars, namely Her X1, SAX J 1808-3658 and 4U 1820-30.
The last section is for the conclusion and a summary of the
paper.

2 Anisotropic matter configuration in f (R,G) gravity

We start with the action of modified Gauss–Bonnet gravity
[44],

S = 1

2K

∫
d4x

√−g f (R,G) + SM (gμν, ψ). (2)

Varying the action (2) with respect to the metric tensor yields
the following modified field equations [25]:

Rμν − 1

2
gμνR = κT (matt)

μν + ∇μ∇ν fR − gμν� fR

+2R∇μ∇ν fG − 2gμνR� fG

−4Rα
μ∇α∇ν fG − 4Rα

ν ∇α∇μ fG

+4Rμν� fG + 4gμνR
θφ∇θ∇φ fG

+4Rμθφν∇θ∇φ fG − 1

2
gμνV

+(1 − fR)Gμν, (3)

where fR and fG are partial derivatives with respect to R and
G, respectively,

V ≡ fR R + fGG − f (R,G), (4)

and T (matt)
μν describes the ordinary matter. The most general

spherically symmetric space time is [45]

ds2 = ea(r)dt2 − eb(r)dr2 − r2
(

dθ2 + sin2 θdφ2
)
. (5)

The energy-momentum tensor in the case of an anisotropic
fluid is given by

Tm
αβ = (ρ + pt)uαuβ − ptgαβ + (pr − pt)vαvβ, (6)

where uα = ea/2δ0
α , vα = eb/2δ1

α are four velocities. The
radial pressure and tangential pressure are pr and pt , respec-
tively, and the energy density is denoted by ρ. Using Eqs. (5)
and (6) in the field equation (3), and after some manipula-
tions, we obtain

ρ = −e−b f ′′
1R − 4e−2b

r2 (a′r − b′r − eb + 4) f ′′
2G

−e−b
(
b′

2
+ 2

r

)
f ′
1R + e−2b

(
a′′a′

+a′′b′ − a′′ − a′2 + a′b′ + a′3

2
− 4a′

r

−4b′eb

r2 + 8a′′

r
+ 6a′2

r
− 13b′

r2 − 2b′2

r

−17a′

r2 − 18eb

r3 + 18

r3

)
f ′
2G + e−b

r2

(
a′′r2

2

+a′2r2

2
− a′b′r2

4
+ a′r

)
f1R + e−2b

r2

×
{
(1 − eb)(a′2 + 2a′′ − a′b′) − 2a′b′)

}
f2G − f

2
,

(7)

pr = e−b
(
a′

2
+ b′ + 2

r

)
f ′
1R + e−2b

{(
2a′′b′

+a′2b′ − a′b′2 + 4a′b′

r
+ 8a′

r2 − 4b′2

r

−4a′eb

r2 − 4b′eb

r2 − 8eb

r3 + 2a′

r2 + 4b′

r2 + 8

r3

)

−r

(
2a′′b′ + a′2b′ − a′b′2 − 4b′2

r

)}
f ′
2G

−e−b

r2

(
a′′r2

2
+ a′2r2

4
− a′b′r2

4
− b′r

)
f1R

−e−2b

r2

{
(1 − eb)(a′2 + 2a′′ − a′b′) − 2a′b′} f2G

+ f

2
, (8)
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pt = e−b f ′′
1R + e−2b

(
2a′′ + a′2 − a′b′

+2a′

r
− 2b′

r

)
f ′′
2G + e−b

(
a′

2
+ b′

2
+ 1

r

)
f ′
1R

− 1

2r3

{
e−b

(
2b′2r2 + 4b′r − 4a′2r2 − 16a′r

−24 − 2a′a′′r3 + a′2b′r3 − a′3r3
)

+ 32 − 8eb
}

f ′
2G − e−b

r2

(
a′r
2

− b′r
2

− eb + 1

)
f1R

−e−2b

r2

{
(1 − eb)(a′2+2a′′ − a′b′)−2a′b′} f2G + f

2
.

(9)

The set of three equations (7)–(9) involve five unknown func-
tions ρ, pr, pt, a, b. Moreover, the equations are too com-
plicated and highly non-linear due to the involved bivari-
ate function f (R,G). So following Krori and Barua [45],
we choose a(r) = Br2 + C , b(r) = Ar2, A, B, and C
are constants. These constants will be determined by using
some physical assumptions. For the present analysis, we pro-
pose f (R,G) = f1(R) + f2(G). We further consider the
Starobinsky like model f1(R) = R + λR2, where λ is an
arbitrary constant, and we take f2(G) = Gn , n �= 0. Also
f1R = d f1

dR , f2G = d f2
dG and a prime denotes the derivatives

with respect to the radial coordinate. Using these assump-
tions, Eqs. (7)–(9) take the form

ρ = 1

2r4

[
− 8nr4

×
(

− Be−2Ar2
(−1 + 3Ar2 − Br2 + eAr

2
(1 − Ar2 + Br2))

r2

)n

+8nr4

×
(

− Be−2Ar2
(−1 + 3Ar2 − Br2 + eAr

2
(1 − Ar2 + Br2))

r2

)n

+ 8n(−1 + n)nr2

(−1 + 3Ar2 − Br2 + eAr2
(1 − Ar2 + Br2)

)2

×
(

−
Be−2Ar2

(
−1 + 3Ar2 − Br2 + eAr

2
(1 − Ar2 + Br2)

)

r2

)n

×(−1 + 6A2r4 − 2A(r2 + Br4) + eAr
2
(1 − A2r4

+A(r2 + Br4)))(−eAr
2
(9 + 4Ar2)

+r2(−4A2r2 + B(−9 − 5r + 14Br2

−2Br3 + 2B2r4) + A(−13 + 2Br2(1 + r))))

+ 21+3n(−1 + n)nr2(−4 + eAr
2 + 2Ar2 − 2Br2)

B(−1 + 3Ar2 − Br2 + eAr2
(1 − Ar2 + Br2))3

×
(

− Be−2Ar2
(−1 + 3Ar2 − Br2 + eAr

2
(1 − Ar2 + Br2))

r2

)n

×(−1 − 19Ar2 + 3Br2 + 28A2r4 − 12ABr4

+30A3r6 − 4A2Br6 − 72A4r8 + 48A3Br8

−8A2B2r8 + 2n(1 − 6A2r4 + 2A(r2 + Br4))2

+e2Ar2
(−1 + 3Br2 − 2A4r8 + A3r6

×(3 + 4Br2) − 2A2r4(−2 + Br2 + B2r4)

−Ar2(8 + 6Br2 + B2r4) + 2n(1 − A2r4

+A + (r2 + Br4))2 + eAr
2
(2 − 6Br2 + 18A4r8

+3Ar2(3 + Br2)2 − 3A3r6(5 + 8Br2)

+6A2r4(−7 + B2r4) − 4n(1 + 6A4r8

+3A(r2 + Br4) + A2r4(−5 + 4Br2 + 2B2r4)

−8A3(r6 + Br8)))) + 16e−2Ar2
(−3 + 3eAr

2

−B2r4 + 2A3r6(2 + Br2) − A2r4(4 + 11Br2 + 2B2r4)

+Ar2(−3 + 4Br2 + 5B2r4))λ

−16e−2Ar2
(2 + Ar2)(−1 + eAr

2

+B2r4(2 + Br2) − A(r2 + 4Br4 + B2r6))λ

+2e−2Ar2
(−1 + eAr

2 − 3Br2 − B2r4

+Ar2(2 + Br2))(eAr
2
(r2 − 2λ) + 2(1 + 3Br2 + B2r4

−Ar2(2 + Br2))λ) + 2Be−2Ar2
r2

×(3 − Ar2 + 2Br2)
(
eAr

2
(r2 − 4λ)

+4(1 + 3Br2 + B62r4 − Ar2(2 + Br2))λ
)]

, (10)
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pr = 1

2

[
8n

(
− Be−2Ar2

(−1 + 3Ar2 − Br2 + eAr
2
(1 − Ar2 + Br2))

r2

)n

−8nn

(
− Be−2Ar2

(−1 + 3Ar2 − Br2 + eAr
2
(1 − Ar2 + Br2))

r2

)n

−(21+3n(−1 + n)n

(
− Be−2Ar2

(−1 + 3Ar2 − Br2 + eAr
2
(1 − Ar2 + Br2))

r2

)n

×(−2 − 5Br2 − 2A2(−1 + r)r4(2 + Br2) + 2eAr
2
(1 + Ar2 + Br2)

+2Ar2(−1 + B(−3 + r)r2 + B2(−1 + r)r4))(−1 + 6A2r4 − 2A(r2 + Br4) + eAr
2

×(1 − A2r4 + A(r2 + Br4))))
1

(Br2(1 − 3Ar2 + Br2 + eAr2
(−1 + Ar2 − Br2))2

+16e−2Ar2

r4 × (2 + 2Ar2 + Br2)(−1 + eAr
2 + B2r4 + A2r4(2 + Br2)

−A(r2 + 4Br4 + B2r6))λ − 2

r4 e
−2Ar2

(−1 + eAr
2 − 3Br2 − B2r4 + Ar2(2 + Br2))

×(eAr
2
(r2 − 2λ) + 2(1 + 3Br2 + B2r4 − Ar2(2 + Br2))λ) + 2e−2Ar2

× (−B(1 + Br2) + A(2 + Br2))(eAr
2
(r2 − 4λ) + 4(1 + 3Br2 + B2r4 − Ar2(2 + Br2))λ

r2

]
, (11)

pt = 1

r6

[
2−1+3nr6

(
− Be−2Ar2

(−1 + 3Ar2 − Br2 + eAr
2
(1 − Ar2 + Br2))

r2

)n

−2−1+3nnr6
(

− Be−2Ar2
(−1 + 3Ar2 − Br2 + eAr

2
(1 − Ar2 + Br2))

r2

)n

+ 8neAr
2
(−1 + n)nr4

B(1 − 3Ar2 + Br2 + eAr2
(−1 + Ar2 − Br2))2

(
− Be−2Ar2

(−1 + 3Ar2 − Br2 + eAr
2
(1 − Ar2 + Br2))

r2

)n

−(3 − 4eAr
2 + e2Ar2 + 4Br2 − A2r4 + 3B2r4 + B3r6 − A(r2 + B2r6))(−1 + 6A2r4 − 2A(r2 + Br4)

+eAr
2
(1 − A2r4 + A(r2 + Br4))) + 8n(−1 + n)nr6(A + ABr2 − B(2 + Br2))

B(−1 + 3Ar2 − Br2 + eAr2
(1 − Ar2 + Br2))3

×
(

− Be−2Ar2
(−1 + 3Ar2 − Br2 + eAr

2
(1 − Ar2 + Br2))

r2

)n

×(−1 − 19Ar2 + 3Br2 + 28A2r4 − 12ABr4 + 30A3r6 − 4A2Br6 − 2AB2r6 − 72A4r8

+48A3Br8 − 8A2B2r8 + 2n(1 − 6A2r4 + 2A(r2 + Br4))2 + e2Ar2
(−1 + 3Br2 − 2A4r8

+A3r6(3 + 4Br2) − 2A2r4(−2 + Br2 + B2r4) − Ar2(8 + 6Br2 + B2r4) + 2n(1 − A2r4 + A(r2 + Br4))2) + eAr
2

×(2 − 6Br2 + 18A4r8 + 3Ar2(3 + Br2)2 − 3A3r6(5 + 8Br2) + 6A2r4(−7 + B2r4)

−4n(1 + 6A4r8 + 3A(r2 + Br4) + A2r4(−5 + 4Br2 + 2B2r4) − 8A3(r6 + Br8))))

−8e−2Ar2
r2(−3 + 3eAr

2 − B2r4 + 2A3r6(2 + Br2) − A2r4(4 + 11Br2 + 2B2r4)

+Ar2(−3 + 4Br2 + 5B2r4))λ + 8e−2Ar2
r2 × (1 + Ar2 + Br2)(−1 + eAr

2 + B2r4

+A2r4(2 + Br2) − A(r2 + 4Br4 + B2r6))λ + e−2Ar2
r2(−1 + eAr

2 − 3Br2 − B2r4

+Ar2(2 + Br2))(−eAr
2
(r2 − 2λ) − 2(1 + 3Br2 + B2r4

−Ar2(2 + Br2))λ) + e−2Ar2
r2(−1 + eAr

2 + Ar2 − Br2)(eAr
2
(r2 − 4λ)

+4(1 + 3Br2 + B2r4 − Ar2(2 + Br2))λ)

]
. (12)
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3 Physical analysis and graphical representation

This section presents the physical properties of the solu-
tions regarding EOS, anisotropic behavior, energy condi-
tions, TOV and matching conditions along with a stability
analysis of three different compact stars, Her X1, SAX J
1808-3658 and 4U 1820-30. Many EOS parameters have
been considered in the literature in different cosmological
contexts. Staykov et al. [42] used two different hadronic
parameters and a strange matter EOS parameter to study the
structure of rotating neutron stars. Quadratic EOS parame-
ters have been used to study the properties of compact stars
[46,47]. For the sake of simplicity, in this work we assume a
linear EOS [48]:

pr = wrρ, pt = wtρ. (13)

It is important to note that the EOS parameters are depen-
dent on radius rather than a constant quantity as in an ordinary
matter distribution. The non-constant behavior is due to the
usual matter and exotic matter contributions. Figures 1 and 2
show the variation of the EOS parameters ωr and ωt , respec-
tively. It is obvious from the figures that the effective EOS
in our model is the same as in the normal matter distribution
[49], i.e.

0 < ωr < 1, 0 < ωt < 1. (14)

3.1 Anisotropy measure of the compact stars

The variation of energy density ρ, radial pressure pr and
tangential pressure pt can be observed in Figs. 3, 4 and 5.
The behavior of dρ

dr and dpr
dr in Figs. 6 and 7 reveals that

dρ
dr < 0 and dpr

dr < 0. It shows that with the increase in radius
of the compact star, both energy density and radial pressure
decrease. We analyze the variation of dρ

dr and dpr
dr at the center

of the compact star r = 0 and found that

dρ

dr
= 0,

dpr

dr
= 0,

d2ρ

dr2 < 0,
d2 pr

dr2 < 0. (15)

Equation (15) gives the maximum value of ρ and pr at center
r = 0. The anisotropy measurement � = 2

r (pt−pr) has been
shown graphically in Fig. 14. The anisotropy measurement
is directed outward when pt > pr, which results as � > 0,

and directed inward when pt < pr, which results as � < 0.
It is depicted in Fig. 14 that for the large values of r , � > 0
for all stars implying that the anisotropic force permits the
construction of great massive configurations. It is worthy to
mention that anisotropy measurement vanishes at the center
of the star.

3.2 The matching conditions with Schwarzchild exterior
metric

The interior metric of the boundary surface remains same
in the interior and exterior geometry of the compact star.
It justifies the continuity of the metric components for the
boundary surface of the star. Many choices for the match-
ing conditions are possible and one can consider the vacuum
outside a general spherically symmetric space time with suit-
able boundary conditions [50]. For the present analysis, we
consider Schwarzchild solution for describing the exterior
geometry. Many authors have considered the Schwarzchild
solution for this purpose giving some interesting results [51–
53]. Therefore, the exterior metric given by Schwarzchild is

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2(dθ2 + sin2 dϕ2). (16)

The intrinsic metric (5) for the smooth match at the boundary
surface r = R with Schwarzchild exterior metric produces

g−
t t = g+

t t , g−
rr = g+

rr ,
∂g−

t t

∂r
= ∂g+

t t

∂r
, (17)

where interior solutions and exterior solutions are repre-
sented by (−) and (+). By the matching of interior and exterior
metrics, we obtain

A = − 1

R2 ln

(
1 − 2M

R

)
, (18)

B = M

R3

(
1 − 2M

R

)−1

, (19)

C = ln

(
1 − 2M

R

)
− M

R

(
1 − 2M

R

)−1

. (20)

Using the approximate values of M and R for the compact
stars under observation, the constants A and B are given in
the following table [49].

Models M R (km) α = M
R A (km−2) B (km−2) Zs

Her XI 0.88M� 7.7 0.168 0.0069062764281 0.0042673646183 0.23
SAX J 1.435M� 7.07 0.299 0.018231569740 0.014880115692 0.57
4U 2.25M� 10.0 0.332 0.010906441192 0.0098809523811 0.073
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Fig. 1 Variation of EOS parameter ωr with radial coordinate r (km) and model parameter n

Fig. 2 Variation of EOS parameter ωt with radial coordinate r (km) and model parameter n

Fig. 3 Behavior of energy density ρ with radial coordinate r (km) and model parameter n

Fig. 4 Behavior of radial pressure pr with radial coordinate r (km) and model parameter n
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Fig. 5 Behavior of transverse pressure pt with radial coordinate r (km) and model parameter n

Fig. 6 Behavior of dρ
dr with radial coordinate r (km) and model parameter n

Fig. 7 Behavior of dpr
dr with radial coordinate r (km) and model parameter n

3.3 The energy bounds

The energy bounds have gained much importance in the
discussion of some important issues in cosmology. In fact,
one can investigate the validity of the second law of black
hole thermodynamics and Hawking–Penrose singularity the-
orems using energy conditions [54]. Many interesting results
have been reported in cosmology using the energy bounds
[55–60]. These energy conditions are defined as

NEC: ρ + pr ≥ 0, ρ + pt ≥ 0,

WEC: ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0,

SEC: ρ + pr ≥ 0, ρ + pt ≥ 0, ρ + pr + 2pt ≥ 0,

DEC: ρ >| pr |, ρ >| pt |,

where the null energy conditions, weak energy conditions,
strong energy conditions and dominant energy conditions
are denoted by NEC, WEC, SEC and DEC, respectively. In
Fig. 8, it is evident that all energy conditions are satisfied for
Her X1. The energy conditions are also satisfied for the other
two stars but the graphs are not shown here.

3.4 Implementation of Tolman–Oppenheimer–Volkoff
equation

The TOV equation is expressed in the following generalized
form:

dpr

dr
+ ν́(ρ + pr)

2
+ 2(pr − pt)

r
= 0. (21)

123
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Fig. 8 Energy conditions for compact star Her X1 with radial coordinate r (km) and model parameter n
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Fig. 9 Behavior of three different forces namely, gravitating, hydrostatic and pressure anisotropic forces in compact star candidate 4U

Fig. 10 Plot of TOV equation for compact star candidate 4U

It follows from Eq. (21) that

Fg + Fh + Fa = 0, (22)

where

Fg = −Br(ρ + pr), Fh = −dpr

dr
, Fa = 2(pt − pr)

r
.

(23)

Here Fg, Fh and Fa are the gravitating force, hydrostatic force
and anisotropic pressure force for compact stars. Using the
values of ρ, pr and pt from Eqs. (10)–(12), for compact star
4U, Fig. 9 shows the behavior of these forces. Figure 10
depicts that the TOV equation is satisfied for the compact
star 4U. The TOV equation is satisfied for the other two stars
as well and graphical analysis is not presented here.

3.5 Stability analysis

Now we find the radial sound speed υsr and transverse sound
speed υst to determine the stability of our model where

υsr = dpr

dρ
, υst = dpt

dρ
. (24)

For a stable model the following conditions must hold:

0 ≤ υ2
sr ≤ 1, 0 ≤ υ2

st ≤ 1. (25)

The conditions (25) are exhibited graphically in Figs. 11 and
12 and it is shown that these conditions are true for the com-
pact stars considered. In 1992, Herrera presented the impor-
tant concept that for a potentially stable region υsr is greater
than υst [61]. Therefore, the behavior of υ2

sr − υ2
st is shown

in Fig. 13. It can be observed that | υ2
sr − υ2

st |< 1. So, the
proposed models of compact stars are stable (Fig. 13).

4 Final remarks

The current study deals with the physical attributes of the
compact stars in the scenario of f (R,G) gravity. In this
regard, interior solutions are figured out for three compact
stars namely, Her X1, SAX J 1808-3658 and 4U 1820-30,
with the assumption that they have anisotropic internal struc-
ture. The analytic solutions of the interior metric in f (R,G)

are smoothly matched with Schwarzchild exterior metric.
This matching has provided the values of the unknown con-
stants A, B, andC in the form of observed values of radii and
masses of the model compact stars. The nature of the stars
has been discussed using the values of these constants. The
analysis of the physical attributes leads one to conclude to
the following results as regards the anisotropic compact stars
in f (R,G) gravity:

• The EOS parameters for compact stars are true as in the
case of an ordinary matter distribution in f (R,G) grav-
ity which shows that the compact stars are composed of
ordinary matter. The matter density, and radial and tan-
gential pressures get the maximum values at the center of
the star and they are also decreasing functions. It confirms
the fact that the matter components of compact stars are
positive and remain finite in the interior of stars. Thus, all
three compact stars in this present study are singularity
free.
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Fig. 11 Behavior of υ2
sr with radial coordinate r (km) and model parameter n in different compact stars

Fig. 12 Behavior of υ2
st with radial coordinate r (km) and model parameter n in different compact stars

Fig. 13 Behavior of υ2
st − υ2

sr with radial coordinate r (km) and model parameter n in different compact stars

Fig. 14 Variation of � with radial coordinate r (km) and model parameter n in different compact stars
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• It is also noticed that anisotropic force is directed outward
for pt > pr, which means � > 0, while on the other
hand the anisotropic force is directed inward for pt < pr,
which shows that � < 0. The graphical description of
� > 0 for three different compact stars is revealed in
Fig. 14.

• The energy conditions and the TOV are analyzed for all
three compact stars under consideration. The behavior
of energy conditions and TOV are shown in Figs. 8 and
10 for the stars Her X1 and 4U, respectively. These are
verified for the remaining two stars as well. Furthermore,
the inequality | υ2

sr −υ2
st |< 1 is satisfied as shown in Fig.

13 for the considered compact stars. So these models of
the stars show them to be stable.

The important feature of the present study is the 3-
dimensional analysis and all the results show that the com-
pact stars behave as usual for the f (G) model parameter
0 < n < 200. Thus it is conjectured that the stars behave in
the same way for a polynomial form of f (G), n ≥ 200. Also
the behavior of the stars can be checked for negative values of
n as well and considering some other forms of f (R) gravity
model. It is worth mentioning that the findings of the current
study are in conformity with the results in [62] for n = 2 and
f1(R) = 0.
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