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Abstract 

This article argues that the link between income inequality and violent property crime might be 

spurious, complementing a similar argument in prior analysis by the author on the determinants 

of homicide. In contrast, Fajnzylber, Lederman & Loayza (1998; 2002a, b) provide seemingly 

strong and robust evidence that inequality causes a higher rate of both homicide and 

robbery/violent theft even after controlling for country-specific fixed effects. Our results 

suggest that inequality is not a statistically significant determinant, unless either country-

specific effects are not controlled for or the sample is artificially restricted to a small number of 

countries. The reason why the link between inequality and violent property crime might be 

spurious is that income inequality is likely to be strongly correlated with country-specific fixed 

effects such as cultural differences. A high degree of inequality might be socially undesirable 

for any number of reasons, but that it causes violent crime is far from proven. 

 

Introduction 

In an analysis of the determinants of homicide rates in a cross-national panel, the present 

author has already argued that the apparent link between income inequality and homicide 

might be spurious (Neumayer, 2003). It is the objective of this short research note to 

complement this earlier argument in looking at robbery and violent theft. It demonstrates that 

income inequality is positively associated with robbery/violent theft only if either country-

specific fixed effects are not controlled for or the sample is artificially restricted to a small 

number of countries. 

Many economists have long since argued that income inequality is likely to be a cause of 

violent crime, particularly violent property crime. This is because greater inequality means a 

higher concentration of economic wealth in the hands of a few, which implies easier targets to 

potential criminals and raises the net gains of engaging in violent property crime (Fleisher, 
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1966; Ehrlich, 1973; Chiu & Madden, 1998; Kelly, 2000; Soares, 2002; for a dissenting view 

see Deutsch, Spiegel & Templeman 1992). From a different angle, deprivation theory, popular 

among many criminologists and sociologists, similarly regards economic inequality as a major 

source of violent crime (Hagan & Peterson, 1995). The relative deprivation of the poor is seen 

to cause frustration and anger that unloads itself in violent crime. 

And yet, ‘the evidence in favour of that hypothesis is weak’ (Bourguignon, Nuñez & 

Sanchez 2003: abstract). Evidence from time-series analysis of the aggregate crime rate in the 

US is rather inconclusive (Allen, 1996). Cross-sectional regressions across metropolitan areas 

or states within the US as well as sometimes across nations often show a positive effect of 

inequality on violent crime, but not always (see Neapolitan (1997) and the many references 

cited therein). A major setback of simple cross-sectional analysis is that it cannot control for 

fixed effects. Freeman (1996) refers to an unpublished study in which the link between 

inequality and crime disappeared once fixed effects were controlled for. This is not surprising 

if, as Bourguignon (2001: 26) argues, unobserved factors are likely to simultaneously affect 

income inequality and crime. Given enormous variation in the rate of crime across space 

together with the fact that measurable characteristics can account for little of this variation, as 

Glaeser, Sacerdote & Scheinkman (1996) argue, income inequality might merely pick up the 

effect of unobservable factors such as cultural and other differences if fixed effects are not 

controlled for. 

In the face of this weak evidence, Fajnzylber, Lederman & Loayza (FLL thereafter) 

(1998; 2002a, b) seemingly demonstrate an effect of income inequality on violent crime that is 

robust to controlling for country-specific fixed effects. The evidence provided by FLL thus 

seems much stronger and more robust than previous evidence. Di Tella, Galiani and 

Schargrodsky (2002, p. 4), for example, state with reference to FLL (2002a) that ‘the main 

conclusion of the paper is that income inequality, measured by the Gini index, has a robust, 



4 

significant and positive effect on the incidence of violent crimes’. Since publication, dozens of 

other authors have cited FLL’s finding of a strong link between inequality and violent crime – 

see, for example, Buvinić & Morrison (2000), Gartner (2000), World Health Organization 

(2002), Alvarez (2002), Prillaman (2003), Saridakis (2003) and Glaeser, Scheinkman & 

Shleifer (2003). The World Bank’s official World Development Report (2003: 155) refers to 

FLL (1998) when it claims that ‘factors such as high levels of inequality continue to fuel 

homicides’. Professor Jan van Dijk (2003), the Chief of the Crime Reduction and Analysis 

Branch of the United Nations Office on Drugs and Crime, refers to FLL (2002b) when he 

states that ‘World Bank studies on the comparative causes of violent crime show a strong 

correlation between incidents of violent crime and high levels of inequality’. With the 

exception of Bourguignon (2001) and Neumayer (2003) none of these authors seem to question 

FLL’s findings. This article complements the latter study by looking at violent property crime. 

 

Research Design 

The dependent variable 

There are two main sources of cross-national data on robbery/violent theft: the United Nations 

(UN) and the International Criminal Police Organization (Interpol). Contrary to Interpol data, 

which are directly reported by police organisations, the United Nations Crime Surveys (UNCS) 

are answered by governments, even though they are most likely derived from statistics 

gathered by police organisations as well. FLL (2002 a, b) base their analysis on data from the 

UNCS. One of the problems with this is that the coverage of countries is rather limited and 

non-representative, encompassing at maximum 37 countries. Developed countries are over-

represented as are Central and South American as well as Asian countries among the non-

developed ones. In contrast, the Interpol data are available for more and a wider variety of 

countries. 



5 

The dependent variable in this study is the number of robberies and violent thefts per one 

million inhabitants. Data have been collected from Interpol (various years) instead of UNCS 

(various years) to create a larger and more representative sample (up to 59 versus up to 37), as 

argued above. Following Neapolitan’s suggestion (1997: 32ff.), each observation was checked 

for obvious mis-reporting. Where data for a single or a few years were substantially out of line 

with the values from prior or consecutive years, then an observation was taken out. For some 

countries with several temporal breaks in a time-series, the whole series was set to missing. 

Appendix 1 describes which observations failed to pass this test of inspection. Note, however, 

that the results reported below hardly change if these observations are not deleted from the 

sample (detailed results available upon request). The same is true if observations are deleted 

according to Belsley, Kuh & Welsch’s (1980) DFITS criterion. Appendix 2 lists the countries 

included in the regression with the largest sample size. Note that not all countries report crime 

rates in all years and also due to the deletion of dubious data not all countries have 

observations over the entire period of study. With the exception of Peru, which falls victim to 

our data inspection process, Hong Kong, Mauritius and Trinidad and Tobago are the only 

countries included in FLL (2002b), but not in our sample, and the reason for this is non-

availability of data for the explanatory variables for at least two periods of time. 

As in Neumayer (2003) we decided to use 1980 as a cut-off point. Neapolitan (1997) 

suggests that data from before the 1980s are far less reliable than later data. Any remaining 

reporting error will be captured by the error term of our estimating equation. Such error renders 

our estimations less precise and raises the standard errors of the estimated coefficients. It does 

not, however, bias the estimates as long as the error is not systematically related to some of our 

explanatory variables. In this respect, the variable that is most problematic is the income level 

since Soares (2002) suggests that poor countries tend to under-report crime more than rich 

countries. Under-reporting might also be a problem in autocratic regimes. The coefficient size 



6 

of the income and democracy variables can therefore be expected to be inflated by 

measurement error and the reported coefficients of all variables will be somewhat biased. In 

the absence of accurate information on the amount of bias, there is little scholars can do to 

avoid this problem, which equally affects FLL (2002a,b). 

 

The explanatory variables 

As our main variable of income inequality, we use the Gini coefficient measuring the 

concentration of incomes between the extremes of 0 (absolute equality) and 1 (maximum 

inequality). Data are taken from UN-WIDER (2000), which is more comprehensive in 

coverage than Deininger & Squire (1996). However, our results on income inequality do not 

depend on using the UN-WIDER source. Using only Deininger & Squire (1996) as the source 

of data instead makes no difference. Like FLL (2002a,b) we follow Deininger & Squire’s 

(1996: 582) suggestion and add 6.6 to Gini coefficients derived from expenditure instead of 

income surveys. Also similar to FLL (2002a,b) we take the Gini coefficients of the highest 

quality first and averages of lower quality observations only where high quality ones are not 

available. 

Some recent work argues, however, that the Gini coefficient might not be the most 

relevant measure of inequality with respect to crime. For example, empirical work by 

Bourguignon, Nuñez & Sanchez (2003) suggests that it is the relative income of the population 

with standards of living below 80 per cent of the mean that matters (see also Chiu & Madden, 

1998). Unfortunately, in a cross-national setting the availability of detailed data on income 

distributions within countries is severely restricted. The only alternative indicator of income 

inequality we can employ is the ratio of the top to the bottom quintile of the income 

distribution, a measure also used by FLL (2002b). Data are taken from Deininger & Squire 

(1996). Unfortunately, this measure has less availability than the Gini measure. 
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As control variables, we include the gross domestic product (GDP) per capita in 

purchasing power parity and constant prices of 1997, its growth rate, the unemployment rate, 

the urbanization rate, the female labour force participation rate and the share of males in the 

age group 15 to 64. Additionally, we use the Polity measure of democracy (Gurr & Jaggers, 

2000). Human rights violation is measured by the Purdue Political Terror Scales (Gibney, 

2002). All these variables are suggested as potentially important determinants by the 

theoretical literature on violent crime – see Neuman & Berger (1988), Neapolitan (1997) and 

Neumayer (2003) for details. Of these variables, the female labour force participation rate is 

perhaps the one that is least intuitively plausible. Opportunity theory suggests that a higher 

female labour force participation rate leads to reduced guardianship for potential offenders, 

thus raising the rate of violent property crime. Unless otherwise stated, data are taken from UN 

(1999) and World Bank (2001). In accordance with most empirical studies we take the natural 

log of income per capita to render its distribution less skewed. 

Table I provides summary descriptive variable information. Table II reports a correlation 

matrix of variables after fixed-effects transformation, which does not suggest that 

multicollinearity is likely to be a problem in our estimations. In addition, variance inflation 

factors were computed and pointed in the same direction. 

< Insert Tables I and II about here > 

 

The methodology 

We take three year averages of the dependent and all independent variables for the period 1980 

to 1997 to reduce the impact of atypically high or low rates in any one single year. Our model 

to be estimated is as follows: 
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ln(yit) = α + βx'it  + (ai + uit) 

 

Time is indicated by t, countries by i, ln(y) is the logged rate of robbery and violent theft 

per one million people, α is a constant, x' contains the explanatory variables, β is the 

corresponding vector of coefficients to be estimated. The log-transformation of the dependent 

variable was undertaken to mitigate problems with heteroscedasticity of the error term. The ai 

represent individual country effects capturing cultural and other (approximately) time-invariant 

factors. Their inclusion ensures that unobserved country heterogeneity is accounted for. The 

fixed-effects estimator is based on the time variation within each cross-sectional unit only. 

In further estimations, we use a random-effects estimator, which draws upon both the 

cross-sectional and temporal variation in the data. It is more efficient than the fixed-effects 

estimator, but leads to consistent estimations only if the assumption is correct that the country 

effects are not correlated with the explanatory variables. In addition, like FLL (2002a, b) we 

also include a lagged dependent variable in separate estimations and estimate the model with a 

so-called systems generalized method of moments (GMM) estimator based on Arellano & 

Bond (1991) and Arellano & Bover (1995). A hysteresis effect might exist if, for example, 

criminals base their current year’s behavior on past information (Sah, 1991). The GMM 

estimator also accounts for the possibility that the explanatory variables are partially 

endogenous. However, like FLL (2002a, b) we assume that all explanatory variables are at 

least weakly exogenous, that is the explanatory variables may be endogenous to past and 

current values of the dependent variables, but not to its future ones. The need to instrument the 

dependent variable with its lagged values in order to avoid correlation with the error term leads 

to the loss of one time period and often substantial losses in the efficiency of estimation 

(Wooldridge, 2002). FLL (2002a, b) use the two-step (rather than one-step) dynamic GMM 

estimator. The problem with this is that Arellano & Bond (1991: 291) themselves explicitly 



9 

warn against using the two-step estimator as it is known to underestimate standard errors. For 

this reason we use the one-step estimator. 

In pre-testing, we searched for non-linear effects of any of the explanatory variables. 

However, we found evidence for such effects only for the income variable. All variables 

therefore enter the regressions only in linear form with the exception of the income variable, 

for which both a linear and a squared term are entered. 

 

Results 

Table III presents our estimation results with the Gini coefficient, table IV presents results with 

the ratio of the top to bottom income quintile as the measure of income inequality. Column 1 

reports results from fixed effects estimation, where the regression is constrained such that no 

countries and no control variables are included other than those also included in FLL (2002b).1 

The result on the Gini coefficient mirrors FLL’s (2002a, b) finding as it is positive and 

statistically significant. In column 2 we add the squared term of the log of per capita income as 

well as additional control variables that are suggested by theory as determinants of violent 

crime, keeping the sample of countries still the same. It can be seen that the Gini coefficient 

remains positive and significant despite the fact that its significance is somewhat reduced. In 

other words, drawing data for violent crime from a different source (Interpol versus UNCS) 

and introducing more control variables does not change FLL’s (2002a, b) main result that 

income inequality is associated with a higher violent crime rate. Per capita income has a non-

linear effect on violent property crime. An increase in income leads to an increase in violent 

property crime over a range of income, but at a decreasing rate. The positive link over a range 

of income levels could be either because higher income raises the value of things to be robbed, 

rendering violent property crime more attractive, or because reporting of such crimes is higher 

in richer countries as argued by Soares (2002).2 The female labour force participation rate, the 
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unemployment rate, our measure of democracy and the measure of human rights violation are 

all positively associated with robbery/violent theft. All of these are in line with expectations. 

The economic growth rate and the share of males between the age of 15 and 64 are statistically 

insignificant, however. What is very much contrary to expectation is the negative and 

significant coefficient of the urbanisation rate. In column 3, we no longer artificially constrain 

the sample of countries. As a consequence, the sample size increases to 50 countries and the 

Gini coefficient becomes insignificant. The control variables test as before, with the exception 

of the urbanisation rate. This suggests that its strange and counter-intuitive statistically 

significant negative sign might have been caused by constraining the sample to a small and 

non-representative number of countries. It also suggests that the positive and significant 

coefficient of the Gini measure is likely to be due to the same effect. If we exclude the 

insignificant variables from the model, then the results are generally as before (column 4). If, in 

addition, we exclude the unemployment rate, which is now insignificant and whose inclusion 

constrains sample size, then the sample now covers 59 countries in column 5 with little effect 

on the results. In particular, the Gini coefficient remains insignificant. Column 6 reports results 

from the systems GMM estimator. Beside the lagged dependent variable, only the economic 

growth and the unemployment rate are statistically significant and their coefficients are 

negative and positive, respectively, as theory would predict. Importantly, the Gini coefficient 

remains insignificant. If one were to exclude the other insignificant variables from the model, 

this hardly affects the results. The Gini coefficient becomes very marginally significant at the 

10 percent level now, but it has a negative sign, suggesting that if anything higher inequality is 

associated with a lower rate of violent robbery and theft (results not shown). 

< Insert Table III about here > 

Column 7 re-estimates the static model with a random effects estimator. Results are 

generally rather similar to the fixed effects model. Importantly, however, the Gini measure of 
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income inequality assumes statistical significance together with the expected positive sign. 

Keep in mind though that the random-effects estimation results are only consistent if the 

explanatory variables are not correlated with the country-specific fixed effects. The Hausman 

test result rejects the assumption of no correlation and thus rejects the random effects 

assumption. 

Table IV repeats the analysis of table III with the ratio of the top to bottom income 

quintile as the measure of inequality. Results are similar to those of table III. In particular, this 

alternative measure of income inequality is also highly significant in the regression with the 

constrained sample size and a constrained number of control variables (column 1). Adding 

further control variables reduces the statistical significance of the inequality measure, but does 

not render it insignificant (column 2). As with the Gini coefficient, the quintile ratio becomes 

insignificant if we no longer artificially restrict the sample size (column 3). Dropping the 

insignificant variables from the model does not change this result as the ratio of the top to 

bottom income quintile remains insignificant, whether we restrict the sample to be the same as 

in column 3 or not (columns 4 and 5). In systems GMM estimation the inequality measure 

remains insignificant (column 6). Compared to column 6 of table III, the share of males 

between the ages of 15 and 64 is also significant. As with the dynamic estimation in table III, 

these results do not change if the insignificant variables are dropped (results not shown). The 

coefficient of the inequality variable becomes significant in the more representative sample 

with a larger number of countries only in static random effects estimation (column 7). The 

Hausman test again rejects the hypothesis that the explanatory variables are not correlated with 

country-specific effects. 

< Insert Table IV about here > 
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Conclusion 

No matter whether income inequality is measured by the Gini coefficient or by the ratio of the 

top to the bottom income quintile, it is insignificant in fixed effects and dynamic estimation 

and significant only in random effects estimation, unless the sample of countries is constrained 

to contain no other countries than those included in FLL (2002b). Our results suggest that if we 

allow for a more representative sample and control for country-specific fixed effects, then 

income inequality no longer is a statistically significant determinant of violent crime. I 

conclude from the results reported above that the link between income inequality and violent 

crime is far less robust than FLL seem to suggest. The claim that income inequality is a major 

cause of violent crime is therefore questionable.  

Of course, it could be that there is too much noise and too little real over-time variation 

in the income inequality data such that the within-country variation in inequality is not 

sufficient to render the coefficient statistically significantly different from zero. However, there 

is not much more variation in other variables either and still they turn out significant in accord 

with theoretical expectations in fixed effects estimation (e.g., the per capita income level and 

female labour force participation). An alternative explanation could be that country specific 

fixed effects simultaneously affect both inequality and crime such that without controlling for 

these effects inequality spuriously picks up these effects (Freeman, 1996). Without good 

instruments for inequality, which are extremely hard to come by, it is impossible to tell which 

is the case. Quite possibly, there are limits to identifying the effects of inequality on violent 

crime at the cross-national level and more micro-oriented studies such as Bourguignon, Nuñez 

& Sanchez (2003) are more promising in this regard. 
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Table I. Descriptive Information on Variables 

 

Variable Obs Mean Std. Dev. Min Max 

ln (Robbery rate per 1,000,000 people) 206 5.58 1.45 0.21 7.91 

Gini coefficient 206 34.76 7.87 16.63 60.60 

Top to bottom income quintile ratio 132 6.82 3.44 2.76 23.88 

ln (GDP p.c. in US$1997) 206 9.01 0.99 6.67 10.30 

Growth in GDP p.c. 206 0.97 4.90 -17.81 14.49 

Unemployment rate 183 7.57 4.36 0.73 21.20 

% urban 206 63.94 21.20 11.20 100 

Female labour force participation rate  206 37.05 9.97 7.47 55.63 

% of population male aged 15-64 206 0.32 0.03 0.23 0.36 

Democracy 206 15.91 5.98 0 20 

Human rights violation 206 1.86 1.02 1 4.83 
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Table II. Correlation Matrix of Variables After Fixed Effects Transformation 

 

 Robbery 
rate 

Gini 
coefficient 

Top to bottom 
quintile ratio 

ln GDP 
p.c. 

ln GDP p.c. 
squared 

Economic 
Growth 

Unemploy-
ment rate 

Female 
labour force 

part. 

% 
urban 

% male 
15-64 

Demo-
cracy 

Gini coefficient 
 

0.262           

Top to bottom 
quintile ratio 

0.248 0.605          

ln GDP p.c. 
 

0.400 -0.042 -0.011         

ln GDP p.c. 
squared 

0.374 -0.051 -0.006 0.991        

Economic Growth 
 

0.093 -0.018 -0.152 0.335 0.346       

Unemployment 
rate 

0.187 0.137 0.242 -0.113 -0.120 0.281      

Female labour 
force part. 

0.318 -0.004 -0.057 0.602 0.575 0.200 -0.068     

% urban 
 

0.493 0.086 0.141 0.645 0.671 0.274 0.135 0.483    

% male 15-64 
 

0.513 0.001 -0.014 0.726 0.706 0.382 0.157 0.715 0.708   

Democracy 
 

0.250 0.085 0.151 0.047 0.039 0.046 0.007 0.341 0.051 0.207  

Human rights 
violation 

0.216 0.012 0.031 0.076 0.040 -0.172 -0.021 0.096 0.091 0.112 -0.348 
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Table III. Estimation Results for Gini Coefficient (1980-97) 

 (1) 
FE 

(2) 
FE 

(3) 
FE 

(4) 
FE 

(5) 
FE 

(6) 
GMM 

(7) 
RE 

ln (robbery/theft rate)      0.930  
   (lagged)      (0.030)***  
Gini coefficient 0.032 0.023 0.012 0.013 0.013 -0.004 0.027 
 (0.015)** (0.012)* (0.010) (0.010) (0.009) (0.005) (0.009)*** 
ln GDP p.c. 1.240 7.894 6.128 5.621 5.546 -0.292 5.598 
 (0.394)*** (2.060)*** (1.804)*** (1.697)*** (1.603)*** (0.855) (1.564)*** 
ln GDP p.c. squared  -0.400 -0.327 -0.310 -0.321 0.016 -0.286 
  (0.121)*** (0.104)*** (0.100)*** (0.095)*** (0.046) (0.088)*** 
Economic Growth -0.013 -0.015 -0.006   -0.016 -0.010 
 (0.012) (0.010) (0.008)   (0.007)** (0.008) 
Unemployment rate  0.052 0.030 0.025  0.029 0.061 
  (0.019)*** (0.016)* (0.015)  (0.009)** (0.015)*** 
% urban -0.001 -0.116 -0.017   0.002 0.016 
 (0.031) (0.032)*** (0.018)   (0.003) (0.008)** 
Female labour force   0.084 0.095 0.089 0.108 -0.004 0.039 
   participation  (0.027)*** (0.024)*** (0.021)*** (0.019)*** (0.003) (0.012)*** 
% male 15-64  8.149 -2.529   2.759 -6.571 
  (8.998) (7.821)   (2.488) (6.130) 
Democracy  0.080 0.050 0.044 0.041 0.001 0.038 
  (0.017)*** (0.016)*** (0.014)*** (0.012)*** (0.008) (0.014)** 
Human rights   0.379 0.255 0.254 0.235 -0.000 0.158 
   violation  (0.144)** (0.118)** (0.114)** (0.099)** (0.045) (0.097)* 
Observations 135 134 182 182 206 112 182 
Number of countries 33 33 50 50 59 46 50 
R2  0.21 0.54 0.44 0.43 0.41  0.50 
Sargan test over-ident.      103.03  
   restrictions (p-value)      (0.224)  
Test 2nd order auto-      -0.75  
   correlation (p-value)      (0.456)  
Hausman test chi2        47.49 
   (p-value)       (0.0000) 

 

Note: Dependent variable is ln (robbery and violent theft rate) in three year averages. Fixed effects 

(FE), systems Generalized Method of Moments (GMM) and random effects (RE) estimation. Standard 

errors in parentheses. Coefficients of constant not reported. * significant at p < .1; ** at p < .05; *** at 

p < .01. 
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Table IV. Estimation Results for Top to Bottom Income Quintile Ratio (1980-97) 

 (1) 
FE 

(2) 
FE 

(3) 
FE 

(4) 
FE 

(5) 
FE 

(6) 
GMM 

(7) 
RE 

ln (robbery/theft rate)      0.800  
   (lagged)      (0.056)***  
Top to bottom income 0.240 0.115 0.065 0.085 0.080 0.014 0.106 
    ratio (0.070)*** (0.066)* (0.059) (0.054) (0.049) (0.174) (0.038)*** 
ln GDP p.c. 1.613 8.879 5.820 6.302 6.199 -0.605 6.914 
 (0.561)*** (3.184)*** (3.132)* (2.835)** (2.721)** (1.020) (2.237)*** 
ln GDP p.c. squared  -0.427 -0.308 -0.348 -0.343 0.029 -0.360 
  (0.185)** (0.182)* (0.169)** (0.163)** (0.056) (0.129)*** 
Economic Growth -0.009 -0.016 -0.005   -0.030 -0.006 
 (0.012) (0.011) (0.011)   (0.007)*** (0.010) 
Unemployment rate  0.034 0.019   0.036 0.067 
  (0.028) (0.026)   (0.014)*** (0.021)*** 
% urban -0.003 -0.218 -0.056   0.002 0.015 
 (0.043) (0.052)*** (0.035)   (0.003) (0.010) 
Female labour force   0.043 0.077 0.096 0.097 0.002 0.053 
   participation  (0.038) (0.036)** (0.030)*** (0.028)*** (0.004) (0.014)** 
% male 15-64  39.058 17.832   5.462 -9.598 
  (16.497)** (15.078)   (3.228)* (8.043) 
Democracy  0.091 0.061 0.050 0.052 0.007 0.030 
  (0.023)*** (0.023)** (0.020)** (0.019)*** (0.011) (0.018)* 
Human rights   0.396 0.366 0.334 0.347 -0.037 0.103 
   violation  (0.181)** (0.190)* (0.184)* (0.170)** (0.058) (0.146) 
Observations 88 88 112 112 119 61 112 
Number of countries 30 30 40 40 43 34 40 
R2  0.33 0.62 0.47 0.43 0.44  0.66 
Sargan test over-ident.      56.61  
   restrictions (p-value)      (0.184)  
Test 2nd order auto-      -0.12  
   correlation (p-value)      (0.905)  
Hausman test chi2        28.99 
   (p-value)       (0.0012) 

 

Note: Dependent variable is ln (robbery and violent theft rate) in three year averages. Fixed effects 

(FE), systems Generalized Method of Moments (GMM) and random effects (RE) estimation. Standard 

errors in parentheses. Coefficients of constant not reported. * significant at p < .1; ** at p < .05; *** at 

p < .01. 
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Appendix 1 

Data excluded from sample: 

Argentina (all years), Côte d'Ivoire (1997), Dominica (all years), Indonesia (1986), Lesotho (all 

years), Peru (all years), Philippines (1997), Tanzania (all years), Zimbabwe (all years). 

 

Appendix 2 

Countries included in sample (column 5 of table III): 

Armenia, Australia, Austria, Bangladesh, Belgium, Bulgaria, Canada, Chile, China, Colombia, 

Costa Rica, Côte d'Ivoire, Denmark, Ecuador, Estonia, Finland, France, Georgia, Germany, 

Ghana, Greece, Guinea, Honduras, Hungary, India, Indonesia, Ireland, Israel, Italy, Jamaica, 

Japan, Jordan, Latvia, Luxembourg, Malaysia, Netherlands, New Zealand, Norway, Pakistan, 

Philippines, Poland, Portugal, Romania, Russian Federation, Senegal, Singapore, Slovak 

Republic, South Korea, Spain, Sri Lanka, Sweden, Switzerland, Thailand, Uganda, Ukraine, 

United Kingdom, United States, Venezuela, Zambia. 
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ENDNOTES 

                                                 
∗ Email address: e.neumayer@lse.ac.uk. Helpful comments from three anonymous referees and the associate editor, 

Han Dorussen, are gratefully acknowledged. The data used in this article as well as the routines used to generate the 

results with Stata 8 can be found at http://www.prio.no/jpr/datasets.htm. 

1 FLL (2002b) also include an educational attainment variable based on the average years of schooling of the 

population over 15 from a dataset constructed by Robert Barro and Jon-Wha Lee. This variable is not included here 

as it would further reduce sample size and is not consistently significant in FLL (2002b) either. It is unclear to this 

author why the inclusion of this variable does not further constrain the sample size reported by FLL (2002b). 

2 In this regression, the estimated turning point is at around US$19,000, after which further income increases are 

associated with a lower rate of violent crime. The estimated turning point differs somewhat from regression to 

regression, but is always above the mean income level with the exception of regression 5 of table III. 
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