

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4,6-Dihydroxy-4,6-dimethyl-1,3diazinane-2-thione

Khatira N. Aliyeva,^a Abel M. Maharramov,^a Mirze A. Allahverdiyev,^a Atash V. Gurbanov^a and Iván Brito^b*

^aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and ^bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile Correspondence e-mail: ivanbritob@yahoo.com

Received 2 August 2011; accepted 3 August 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.080; data-to-parameter ratio = 17.3.

In the title compound, $C_6H_{12}N_2O_2S$, the heterocyclic ring has a sofa conformation. The molecular conformation is stabilized by an intramolecular $O-H \cdot \cdot \cdot O$ hydrogen-bond interaction with graph-set motif S(6). In the crystal, molecules are linked by $O-H \cdot \cdot \cdot S$, $N-H \cdot \cdot \cdot S$ and $N-H \cdot \cdot \cdot O$ hydrogen-bond interactions, forming an extended two-dimensional framework parallel to the *ac* plane.

Related literature

For the preparation of pyrimidines by reactions of 1,3-dicarbonyl compounds (*e.g.* ethyl acetoacetate, acetylacetone) with urea, thiourea, guanidine, see: Barton & Ollis (1979). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental

Crystal data	
$C_6H_{12}N_2O_2S$	a = 5.2425 (4) Å
$M_r = 176.24$	b = 8.7047 (6) Å
Triclinic, P1	c = 9.4370 (7) Å

organic compounds

Mo $K\alpha$ radiation $\mu = 0.35 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.20$ mm

T = 296 K

 $\alpha = 74.812 (1)^{\circ}$ $\beta = 88.670 (1)^{\circ}$ $\gamma = 79.708 (1)^{\circ}$ $V = 408.80 (5) \text{ Å}^{3}$ Z = 2

Data collection

4260 measured reflections	Bruker APEXII CCD
1760 independent reflection	diffractometer
n 1557 reflections with $I > 2\sigma$	Absorption correction: multi-scan
$R_{\rm int} = 0.012$	(SADABS; Sheldrick, 2003)
	$T_{\min} = 0.903, \ T_{\max} = 0.934$
$R_{\rm int} = 0.012$	(SADABS; Sheldrick, 2003) $T_{min} = 0.903, T_{max} = 0.934$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 102 parameters $wR(F^2) = 0.080$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.36$ e Å $^{-3}$ 1760 reflections $\Delta \rho_{min} = -0.17$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1 <i>O</i> ···O2	0.88	1.98	2.727 (2)	143
$O2-H2O\cdots S1^{i}$	0.88	2.37	3.249 (1)	173
$N1 - H1N \cdot \cdot \cdot S1^{ii}$	0.92	2.60	3.414 (1)	149
$N2 - H2N \cdot \cdot \cdot O1^{iii}$	0.92	2.18	3.074 (2)	164
Symmetry codes: (i)	-x, -y+2,	-z + 1; (ii)	-x+1, -y+2,	-z + 1; (iii)
-x, -y + 2, -z + 2.				

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Baku State University for supporting this study. IB thanks the Spanish Research Council (CSIC) for the provision of a free-of-charge licence to the Cambridge Structural Database.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5602).

References

Barton, D. & Ollis, W. D. (1979). Editors. Comprehensive Organic Chemistry. Oxford: Pergamon Press. Translated under the title Obshchayaorganicheskaya khimiya, 1961, Vol. 6. Khimiya: Moscow.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, o2293 [doi:10.1107/S160053681103145X]

4,6-Dihydroxy-4,6-dimethyl-1,3-diazinane-2-thione

Khatira N. Aliyeva, Abel M. Maharramov, Mirze A. Allahverdiyev, Atash V. Gurbanov and Iván Brito

S1. Comment

The biological activity of pyrimidine derivatives attracts great interest to their synthesis. Their derivatives play important part in the functions of the human body. Pyrimidine structural fragment is included into quite a number of natural substances (nucleic acids, vitamin B1), into synthetic medicinals (barbiturates), into chemotherapeutic preparations (fluorouracil). In preparation of pyrimidines are widely used reactions of 1,3-dicarbonyl compounds (*e.g.* ethyl aceto-acetate, acetylacetone) with urea, thiourea, guanidine *etc* (Barton & Ollis, 1979). In the title compound (I), C₆H₁₂N₂O₂S, the heterocyclo ring has a sofa conformation, (Q₁= 0.459 (13) Å, θ = 127.52 (7)°, φ_2 = 59.54 (4)°, (Cremer & Pople, 1975). The molecular conformation is stabilized by one intramolecular O—H…O hydrogen-bond interaction with set graph motif S(6) (Bernstein, *et al.* 1995). In the crystal the molecules are linked by O—H…S, N—H…S, N—H…O hydrogen-bond interactions forming an extended two-dimensional framework parallel to *ab* plane, Table 1, Fig. 2.

S2. Experimental

On the anhydrous ethanol (40 ml) added 18 gram (0.783 mol) small pieces of metallic sodium and wasvigorously stirred until sodium fully reacted with ethanol. Then on theobtained solution was added 10 gram (0.1 mol) of acetylacetone and 7.4 gram (0.1 mol) ofthiourea. Reaction mixture was stirred two hour in room temperature. Then 120 ml distilled water added on reaction mixture and neutralized with 5 ml ofglacial acetic acid. Precipitated unreacted part of thiourea was filtered ofand the obtained filtrate stayed in -10 °C. After two days obtained single crystals of 4,6-dihydroxy-4,6-dimethyltetrahydropyrimidine-2(1*h*)-thione was collected. Yield 6 gram (42%), m.p. 254–255 °C.

¹H NMR(300 MHz, DMSO-d6) δ 1.32 (s, 6H, 2CH₃), 1.71–2.05 (m, 2H,CH₂), 3.52 (s, 2H, 2OH), 6.16 (s, 1H, NH), 8.67 (s, 1H, NH). ¹³CNMR (75 MHz, DMSO-d6) δ 28.40,43.63, 78.98, 79.07, 175.23, 175.31

S3. Refinement

All H-atoms were placed in calculated positions [C—H = 0.96 to 0.97 Å, $U_{iso}(H) = 1.2$ to 1.5 $U_{eq}(C)$, O—H = 0.88 Å, $U_{iso}(H) = 1.5 U_{eq}(O)$ and N—H = 0.92 Å, $U_{iso}(H) = 1.2 U_{eq}(N)$] and were included in the refinement in the riding model approximation.

Figure 1

The structure of (I) showing the atom numbering scheme. The hydrogen bond is showing as dotted line. Displacement ellipsoids are drawn at 30% probability level.

Figure 2

Part of the crystal structure showing O—H…S; N—H…S & N—H…O hydrogen-bond interactions parallel to *ab* plane. The methyl groups and the H atoms on C3 atom have been omitted for clarity.

4,6-Dihydroxy-4,6-dimethyl-1,3-diazinane-2-thione

Crystal data	
$C_{6}H_{12}N_{2}O_{2}S$	Z = 2
$M_r = 176.24$	F(000) = 188
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.432 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 5.2425 (4) Å	Cell parameters from 2799 reflections
b = 8.7047 (6) Å	$\theta = 2.2 - 28.4^{\circ}$
c = 9.4370(7) Å	$\mu = 0.35 \text{ mm}^{-1}$
$\alpha = 74.812 (1)^{\circ}$	T = 296 K
$\beta = 88.670 (1)^{\circ}$	Needle, colourless
$\gamma = 79.708 (1)^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
$V = 408.80 (5) \text{ Å}^3$	
Data collection	
Bruker APEXII CCD	Absorption correction: multi-scan
diffractometer	(SADABS; Sheldrick, 2003)
Radiation source: fine-focus sealed tube	$T_{\rm min} = 0.903, \ T_{\rm max} = 0.934$
Graphite monochromator	4260 measured reflections
φ and ω scans	1760 independent reflections
	1557 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.012$	$k = -11 \rightarrow 11$
$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.2^\circ$	$l = -12 \rightarrow 12$
$h = -6 \rightarrow 6$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.080$	H-atom parameters constrained
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0543P)^2 + 0.0583P]$
1760 reflections	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
102 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$
direct methods	•

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.13693 (17)	0.81379 (12)	0.96252 (10)	0.0356 (2)	
H1O	-0.2022	0.8234	0.8749	0.053*	
O2	-0.14367 (17)	0.74017 (12)	0.69909 (10)	0.0366 (2)	
H2O	-0.1954	0.7791	0.6065	0.055*	
N1	0.2210 (2)	0.86785 (12)	0.64127 (11)	0.0280 (2)	
H1N	0.2746	0.8901	0.5457	0.034*	
N2	0.2262 (2)	0.92771 (12)	0.86480 (11)	0.0279 (2)	
H2N	0.2349	1.0033	0.9160	0.033*	
S1	0.35950 (7)	1.14664 (4)	0.63906 (3)	0.03452 (13)	
C1	0.2615 (2)	0.96882 (14)	0.72002 (13)	0.0244 (2)	
C2	0.1320 (2)	0.71395 (14)	0.70201 (13)	0.0273 (3)	
C3	0.2177 (2)	0.65313 (14)	0.86236 (13)	0.0285 (3)	
H3A	0.4050	0.6213	0.8688	0.034*	
H3B	0.1433	0.5581	0.9075	0.034*	
C4	0.1366 (2)	0.78007 (15)	0.94675 (13)	0.0269 (3)	
C5	0.2428 (3)	0.59777 (17)	0.61166 (16)	0.0391 (3)	
H5A	0.1869	0.6437	0.5109	0.059*	
H5B	0.1827	0.4971	0.6486	0.059*	
H5C	0.4287	0.5790	0.6183	0.059*	
C6	0.2540 (3)	0.72820 (18)	1.10103 (14)	0.0365 (3)	
H6A	0.1999	0.8124	1.1494	0.055*	
H6B	0.4397	0.7081	1.0962	0.055*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H6C	0.1966		0.6312	1.1551	0.055*	
Atomi	c displacement p	arameters (Ų)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0260 (4)	0.0510 (6)	0.0316 (5)	-0.0065 (4)	0.0043 (4)	-0.0147 (4)
02	0.0294 (5)	0.0502 (6)	0.0331 (5)	-0.0117 (4)	-0.0005(4)	-0.0128 (4)
N1	0.0366 (5)	0.0270 (5)	0.0231 (5)	-0.0107 (4)	0.0039 (4)	-0.0081 (4)
N2	0.0347 (5)	0.0276 (5)	0.0236 (5)	-0.0084 (4)	0.0025 (4)	-0.0091 (4)
S1	0.0502 (2)	0.02887 (19)	0.02849 (18)	-0.01687 (14)	0.00523 (14)	-0.00838 (13)
C1	0.0229 (5)	0.0250 (6)	0.0256 (6)	-0.0036 (4)	0.0006 (4)	-0.0076 (4)
C2	0.0294 (6)	0.0256 (6)	0.0296 (6)	-0.0077 (5)	0.0026 (5)	-0.0104 (5)
C3	0.0303 (6)	0.0249 (6)	0.0293 (6)	-0.0059 (5)	0.0021 (5)	-0.0048 (5)
C4	0.0252 (6)	0.0309 (6)	0.0242 (6)	-0.0048(4)	0.0018 (4)	-0.0067 (5)
C5	0.0509 (8)	0.0324 (7)	0.0400 (7)	-0.0099 (6)	0.0072 (6)	-0.0188 (6)
C6	0.0388 (7)	0.0420 (7)	0.0256 (6)	-0.0044 (6)	-0.0037 (5)	-0.0050 (5)

Geometric parameters (Å, °)

01—C4	1.4237 (14)	C2—C5	1.5185 (17)
01—H10	0.8800	C3—C4	1.5211 (17)
O2—C2	1.4223 (15)	С3—НЗА	0.9700
O2—H2O	0.8800	С3—Н3В	0.9700
N1—C1	1.3365 (15)	C4—C6	1.5166 (17)
N1—C2	1.4660 (15)	C5—H5A	0.9600
N1—H1N	0.9200	С5—Н5В	0.9600
N2—C1	1.3359 (15)	С5—Н5С	0.9600
N2—C4	1.4658 (15)	C6—H6A	0.9600
N2—H2N	0.9199	C6—H6B	0.9600
S1—C1	1.7001 (12)	С6—Н6С	0.9600
C2—C3	1.5161 (17)		
C4—O1—H1O	104.7	C4—C3—H3B	109.1
C2—O2—H2O	107.2	НЗА—СЗ—НЗВ	107.9
C1—N1—C2	124.46 (10)	O1—C4—N2	109.54 (10)
C1—N1—H1N	117.0	O1—C4—C6	106.20 (10)
C2—N1—H1N	118.0	N2—C4—C6	109.09 (10)
C1—N2—C4	125.07 (10)	O1—C4—C3	112.36 (10)
C1—N2—H2N	118.2	N2—C4—C3	107.21 (9)
C4—N2—H2N	116.1	C6—C4—C3	112.39 (10)
N2-C1-N1	119.07 (11)	C2—C5—H5A	109.5
N2-C1-S1	119.89 (9)	C2—C5—H5B	109.5
N1-C1-S1	121.04 (9)	H5A—C5—H5B	109.5
O2—C2—N1	109.74 (10)	C2—C5—H5C	109.5
O2—C2—C3	106.53 (10)	H5A—C5—H5C	109.5
N1—C2—C3	107.89 (9)	H5B—C5—H5C	109.5
O2—C2—C5	111.08 (10)	C4—C6—H6A	109.5
N1—C2—C5	108.47 (10)	C4—C6—H6B	109.5

C3—C2—C5 C2—C3—C4 C2—C3—H3A C4—C3—H3A C2—C3—H3B	113.05 (11) 112.40 (10) 109.1 109.1 109.1	H6A—C6—H6B C4—C6—H6C H6A—C6—H6C H6B—C6—H6C	109.5 109.5 109.5 109.5
C4—N2—C1—N1	-2.11 (17)	N1-C2-C3-C4	52.12 (13)
C4—N2—C1—S1	178.50 (8)	C5-C2-C3-C4	172.06 (10)
C2—N1—C1—N2	1.77 (18)	C1-N2-C4-O1	-94.88 (13)
C2—N1—C1—S1	-178.85 (9)	C1-N2-C4-C6	149.26 (11)
C1—N1—C2—O2	88.79 (13)	C1-N2-C4-C3	27.30 (15)
C1—N1—C2—C3	-26.90 (16)	C2-C3-C4-O1	68.34 (13)
C1—N1—C2—C5	-149.69 (12)	C2-C3-C4-N2	-52.07 (12)
O2—C2—C3—C4	-65.66 (12)	C2-C3-C4-N2	-171.94 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
01—H1 <i>0</i> ···O2	0.88	1.98	2.727 (2)	143
O2-H2O···S1 ⁱ	0.88	2.37	3.249 (1)	173
N1— $H1N$ ···S1 ⁱⁱ	0.92	2.60	3.414 (1)	149
N2—H2N···O1 ⁱⁱⁱ	0.92	2.18	3.074 (2)	164

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+2, -*z*+1; (iii) -*x*, -*y*+2, -*z*+2.