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SUMMARY
Java is a very promising language for use in the simulation of physical models due to its object-
oriented nature, portability, robustness and support for multithreading. This paper presents
JWarp, a Java library for discrete-event parallel simulations. It is based on an optimistic model
for synchronization of the simulation entities: the Time Warp mechanism. We introduce the
main features of the library and discuss some of the implementation details. 1998 John Wiley
& Sons, Ltd.

1. INTRODUCTION

In several areas like engineering, computer science, economics and military applications,
simulation is used to study the behaviour of complex models. The execution of some of
these simulation models can be a very time-consuming task. For statistical reasons, it might
be necessary to simulate a model for quite a long time, or to perform the same simulation
several times with different parameter values.

A possible solution to reduce the execution times of long-running simulations is by using
multiple processors operating in parallel[1]. A typical simulation model involves several
components or entities. By exploiting this inherent model of parallelism, it would be pos-
sible to speed up the performance of the simulations by decomposing these components
through several processors. Every simulation model is a specification of the corresponding
physical model and is composed of a set of states and events. In a discrete event simula-
tion, the state of the system only changes at discrete points in simulated time. A natural
decomposition strategy can result in an object-oriented system design, where an object
corresponds to some component of the real system and is represented by a computational
task that is assigned to a processor for execution. In this way, every component of the model
is simulated by a logical process (LP). A discrete-event simulation requires the existence of
multiple LP entities, a time-ordered event list holding time stamped events to be processed
in the future, a global discrete clock that indicates the current simulation time and a set of
state variables that define the state of the simulation. The simplest way to manage the event
list would be based on a centralized strategy. The list of events would be managed by a
single process (master), and there would be a pool of slave processes running on the parallel
system that would execute those events in a concurrent way. However, the existence of a
centralized queue of events would represent a bottleneck to the simulation, thereby clearly
reducing the potential for parallelism.
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Figure 1. The problem of causality errors

The most effective way of conducting parallel simulations is to eliminate the globally
shared-event list and use a completely distributed list of events. Each LP will be assigned
to a processor that maintains its own local simulation clock (LVT – local virtual time), a
local event list and a set of state variables. Events are modelled as timestamped messages,
which are exchanged between the physical objects of the application (LP).

However, the schemes that follow a distributed strategy would require some synchro-
nization protocols to make sure the events are processed in a consistent order by all the
LP entities. These synchronization protocols may increase the costs of communication be-
tween processors. Nevertheless, they have deserved considerable attention from the parallel
simulation research community[2].

In order to understand the main issue behind the use of distributed event lists let us
look at Figure 1. It represents the temporal execution of two logical processes (LP1 and
LP2). The LP1 entity is processing event alpha, while LP2 is processing event beta. The
execution of event alpha generates a new event (gamma) that is sent to LP2. Event gamma
has a lower timestamp than event beta, and thus should have been consumed before. Due
to the asynchrony of the LP entities it was not possible to ensure a consistent order in the
processing of events, thereby resulting in a causality error[1].

The synchronization protocols have been broadly classified as Conservative or Opti-
mistic[3]. Both schemes are based on the sending of messages carrying some causality
information.

The Conservative approach[4] strictly avoids the possibility of any causality error ever
occurring. This is achieved by stopping each process until the system is sure that no other
event will be scheduled by any other LP with a timestamp smaller than the one in the
top of the local list of events. This method introduces some blocking on the execution of
processes and restricts the potential for parallelism. Besides, it is prone to the occurrence
of deadlock and thus requires a deadlock detection and recovery scheme.

The Optimistic approach tries to exploit all the potential parallelism available in the
simulations. The Time Warp mechanism is a well-known optimistic approach based upon
the Virtual Time paradigm[5]. It relies upon a scheme for causality error detection and a
recovery scheme based on a rollback technique. An optimistic LP advances simulation and
its local virtual time as far as possible.

An event scheduled in some LP with a timestamp in the local past relative to the local
virtual clock is said to be out of chronological order or to be the straggler message. It will
force the LP entity to roll back to the most recently saved state in the simulation history
consistent with the arrival of that event message. LP will then restart the simulation at that
point, thereby correcting the causality error.
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In order to allow this rollback operation every LP entity is forced to save its simulation
state from time to time. All the messages that were sent previously after that instant of time
should be undone. This is achieved by sending some sort of anti-messages to annihilate the
original messages. If these ones were already consumed by the destination processes they
will be forced to roll back as well to a previous saved state. It was proved that the protocol
will not roll back until the beginning of the simulation and always ensures some forward
progress for the computation[5].

The major drawback of the Time Warp approach is the need to save each process state
periodically[6]. To free up some of the used memory the simulation system calculates a
time limit, called Global Virtual Time (GVT)[7] beyond which no process is required to
roll back and thereby the system can perform some garbage collection scheme to free up
some of the unused data structures.

2. THE JAVA OPTION

Java has received tremendous hype in the past few years. In fact, it has several advantages
over other languages and it fits particularly well with this kind of programming.The features
of Java that facilitate our implementation were:

• communication-centric – Java has some built-in classes for network communication
and to solve the problem of portability: no little-endian vs. big-endian dilemmas.
All data types are well defined and consistent in both size and binary representation
across the JVM implementations
• object-oriented – it allows the exchange of objects (events) between processes and

ensures the modularity of code
• multithreaded – allows splitting the program into separate and cleaner modules

providing greater concurrency
• serialization mechanism – gives support to checkpoint and recovery schemes of the

Time Warp approach.

A comprehensive list of computing platforms has been enhanced with the support of
the Java Virtual Machine (JVM)[8]. Since Java programs are entirely portable across the
systems that have a JVM we will be able to execute parallel simulations in heterogeneous
systems, comprising networks of personal computers running a Microsoft Windows oper-
ating system or clusters of workstation machines running some flavor of Unix. All this will
be possible with a simulation tool like JWarp. Programmers are not required to change any
line of code of their simulations since Java provides the necessary support to deal with the
heterogeneity.

3. JWarp ARCHITECTURE

Figure 2 presents JWarp’s architecture. The left side highlights the message flows (lines),
threads (ovals) and buffers (rectangles). The right side shows what goes on inside the
buffers. It will be used to explain rollback and garbage collection operations. As can be
seen, threads have short names that represent the data storages they connect. Message flows
are represented with full lines and other information flows with dotted lines.

Events arrive at every LP by being first received in cs2ib, placed in IB, received in
ib2iq and placed in IQ. Outgoing events are placed in OQ by LP, received by oq2ob,
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Figure 2. On the left, the flow of internal messages, threads and buffers; on the right the buffer
behaviour with GV T = 3 and LV T = 5

placed in OB, received by ob2cs and sent into the network.
LP state variables (defined by the programmer) are saved from time to time in the State

Stack (SS).
Although all the buffers have been represented equally in Figure 2 they do not have the

same behaviour. In JWarp, when a buffer is asked to retrieve the next event it can do one
of two things: retrieve, return and delete the message; or just retrieve and return. Buffers
IB and OB delete retrieved messages, while IQ and OQ do not. Events are maintained in IQ

and OQ because whenever a rollback happens, already consumed events (those in IQ before
the LVT pointer) must be consumed again. Likewise, sent events (those in OQ before the
LVT pointer) must be kept because there could be a need to send anti-messages, which are
generated from the normal ones. Thus, fetching an event in IQ or OQ means only to retrieve
a copy of it and move forward the LVT pointer.

Note that although the pointers are called LVT and GVT they do not store LVT and GVT
time values. They are just a reference in the array buffers. Buffers IB and OB do not need
to keep any of its messages. All the information needed for a rollback is stored in IQ, OQ
and SS between each one’s GVT and LVT pointers.

The threads cs2ib, oq2ob and ob2cs are just running an infinite cycle fetching data
from one side and placing it in the other. The real brain of the operations is performed by
thread ib2iq: it will detect messages out-of-order and causality errors; it will command
state restoration and anti-message sending; it will process GVT calculation requests; and it
will acknowledge every received message.

If there were no straggler messages the JWarp internal behaviour would be the following:

1998 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., 10, 999–1005 (1998)
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1. Message arrives at cs2ib.
2. Message is placed in IB in arriving order.
3. It is fetched by ib2iq.
4. A corresponding acknowledge message is put in OB by ib2iq.
5. Acknowledge message is sent by ob2cs.
6. ib2iq puts the received message in IQ ordered by simulation time.
7. Depending on the checkpoint frequency, the LP’s state is saved in SS.
8. Just after the state saving the message finally arrives to LP. LVT is updated to a new

value: the incoming message processing (or simulation) time.
9. LP processes the message and responds by sending 0, 1 or more messages, to one or

more recipients, that are placed in the Output Queue in arriving order.
10. Messages are then fetched from OQ and placed in OB by oq2ob.
11. They are finally sent over the network if they are remote events (to be processed in

another LP) or placed in IQ if they are local events.

On the acknowledge message receiving side, the incoming acknowledge message is
cross-checked with the messages in OB to find its counterpart. When it finds it, it changes
its status from unacknowledged to acknowledged. Messages need to be acknowledged
due to the GVT calculation, as shown in [9].

Causality errors are detected when the ib2iq thread places a new event in buffer
IQ. Causality errors may be caused by just two things: an arrival of a positive message
timestamped in the past, or an arrival of a negative message timestamped in the past when
its positive counterpart had been consumed already. Every time a causality error occurs
the LP must rollback. Rollback consists in restoring the state (fetched from SS), send
anti-messages, if necessary, and adjusting the pointers LVT in the buffers (this will lead to
re-simulating some events is IQ). Restoring the state is achieved by inverting the checkpoint
operation. The messages that need to be undone i.e. to send their corresponding negative
version, are the ones sent after the new restored state.

In a rollback operation, the system adjusts OQ’s LVT pointer to the proper place and
switches signs of all the messages between the new LVT pointer position and the old
LVT pointer position (this corresponds to the messages that were sent before and must be
undone). Messages that were kept after the old LVT pointer were never sent and are simply
deleted (see Figure 3). Unlike normal messages, the anti-messages are deleted from OQ

after being sent because they will never be undone.
Checkpointing is obtained by converting all declared data-structures, together with the

LVT value, into a byte stream, and storing this byte stream into a Java hashtable.∗ Restoring
the state corresponds to the opposite operation, i.e. transforming the byte stream into
variables and LVT. Both operations use the object serialization facility of Java.

The GVT algorithm that was used in JWarp was the one described in [9]. It finds a lower
bound to the GVT value. A real GVT value is impossible to obtain due to communications
delays and in-transit messages. In-transit messages are the ones sent by one process but not
received by the other. GVT calculation is vital to the good behaviour of the simulation. It is
the only way to prevent memory starvation, since the garbage collection scheme is attached
to the calculation of GVT. One LP is defined as the GVT master. From time to time, it
will broadcast a GVT start message that must be replied with a GVT report message

∗The Java VM does not allow one to obtain the execution state of the threads and therefore one must force
rollbacks and restores to occur always in the same execution place inside the cycle.
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Figure 3.

stating each LP’s choice to the next GVT value (calculated through its own LVT and the
acknowledged and unacknowledged messages). The GVT master calculates the minimum
of all GVT proposals and announces that value in a GVT broadcast message. The GVT

broadcast message will start the garbage collection operation in each LP. That involves
removing data from IQ, OQ and SS and to adjust their internal GVT pointers.

4. RELATED WORK

The Time Warp concept was proposed by Jefferson[5], and it was implemented into the
TWOS (Time Warp Operating System)[6]. Several parallel simulation languages have also
appeared in the last decade: OLPS[10], Maisie[11], ModSim[12], SCE[13], Sim++[14]
and YADDES[15]. Another approach has been followed by other researchers, who decided
to implement the parallel simulation system as a runtime library written in C++: exam-
ples include WARPED[16], SPEEDES[17] and HASE++[18]. The first simulation libraries
in Java, SimJava[19] and SimKit[20], only supported sequential simulations. Shortly af-
ter, PDES Java libraries appeared: JTED[21], following the conservative approach, and
Formax[22] following a Web-based optimistic approach.

5. CONCLUSIONS

Time Warp is a relatively complex simulation protocol but it has been proved a very
effective technique for running complex asynchronous simulations[23,24]. We foresee that
with an implementation in Java the use of Time Warp could become more widespread
within the research community and it can be used for educational purposes.

Java is a very suitable language for building programming libraries. Its most distinguish-
ing features are object serialization, platform independence, object-orientation, support for
network communications, modularity and easy debugging.
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