
SOFTWARE MAINTENANCE: RESEARCH AND PRACTICE
J. Softw. Maint: Res. Pract.10, 279–303 (1998)

Research

Documentu: A Flexible Architecture for
Documentation Production Based on a
Reverse-engineering Strategy

CHRISTIANO de OLIVEIRA BRAGA*, ARNDT von STAA and JULIO CESAR SAMPAIO do PRADO
LEITE

Departamento de Informa´tica da Pontifı´cia Universidade Cato´lica do Rio de Janeiro, R. Marqueˆs de S.
Vicente 225, Rio de Janeiro, RJ 22453–900, Brazil

SUMMARY

Good documentation is essential to the production and evolution of quality software. Based on
a survey on program documentation, we propose a documentation architecture that aims to
fulfil several requirements of an ideal solution. The architecture integrates a powerful transform-
ation system (Draco-PUC) and a versatile CASE tool (Talisman) in order to produce documents
using reverse-engineering strategies. We have implemented such an approach in a prototype
tool called Documentu, which uses a database to store system-wide information and uses a
standard HTML hypertext browser to help the access and navigation of system documentation.
The prototype was used on a large scientific system that belongs to an oil company, with
positive results.  1998 John Wiley & Sons, Ltd.

KEY WORDS: documentation; transformation systems; CASE tools: software engineering; tool integration;
reverse engineering

1. INTRODUCTION
One of the goals of a software process is to provide the necessary information to

maintain evolving software systems. Usually, most of the system information is solely
embedded in the current source code. However, other sources of information should be
available in order to provide a better understanding of the software and its environment
(Biggerstaff, Mitbarden and Webster, 1994; Selfridge, Waters and Chikofsky, 1993; Leite
and Cerqueira, 1995). Good documentation, easily accessible and easy to read has been
sought for a long time (Horowitz, Kemper and Narasimham, 1985; Garg and Scacchi,
1990). It is essential to software production, which employs several software engineers,
working in a co-operative fashion.

CENPES is the research institute of Petrobra´s, the Brazilian Government Oil Company.

* Correspondence to: Christiano de Oliveira Braga, Departamento de Informa´tica da Pontifı´cia, Universidade
Católica do Rio de Janeiro, R. Marqueˆs de S. Vicente 225, Rio de Janeiro, RJ 22453–900, Brazil. Email:
cbragaKinf.puc-rio.br

CCC 1040-550X/98/040279–25$17.50 Received 17 December 1997
 1998 John Wiley & Sons, Ltd. Revised 11 May 1998

280 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

This centre uses several software systems developed both internally and by third parties.
One of its projects, DOC, was created in order to improve the quality of the software
products developed at CENPES, by making the maintenance process easier and increasing
the quality of the documentation assets. The project is a partnership between LES—
Software Engineering Laboratory at PUC-Rio and CENPES.

One of the deliverables of the DOC project was a set of guidelines for development
and documentation of software code (Staaet al., 1995, p. 5). However, practical experience
has shown us that the guidelines would only produce the expected feedback if they could
be assisted by a software tool.

We have surveyed some of the existing proposals for documentation tools at the code
level, and based on their strong and weak points, we propose our architecture for a tool
that implements automatic support to the guidelines. Our proposal uses HTML (hypertext
mark-up language) and relates the information in terms of the whole system, not only for
individual programs. The tool generates documentation for annotated and unmarked code
as well.

We have implemented our proposal in a tool calledDocumentu(Braga, Staa and Leite,
1997, pp. 9–13). The main objectives of the tool are:

• help software personnel in the maintenance task;
• aid the software users in realizing the features and facilities of the product if the

software being developed is in a library; and
• help a new developer to understand the software system with which he is going

to work.

Documentuideally uses code tag-marked as defined by Staa’s guidelines, like naming
variables or functions and inserting annotations in comments to document design decisions.
The guidelines also provide for object-oriented programming and testing. The guidelines
deal with higher abstraction levels as well, making suggestions on how to structure
software projects. However,Documentucan also produce documentation from bare source
code. This is possible because we generate software documentation based on both the
source-code grammar and the mark-up grammar. We have used the transformation system
of Draco-PUC (Leite, Sant’Anna and Freitas, 1994) to recover system information from
code and mark-ups. The Talisman CASE tool (Staa, 1993, p. 1.1) was used to store,
validate and format the information. Finally we use a standard HTML browser to access
the resulting documentation.

The transformation system plays the role of the extractor, analysing and retrieving code
information. This information is extracted using syntax analysis and, if needs be, mark-
ups. This information is passed to the CASE tool that stores it in a repository. This
repository has database management capabilities and is able to provide a series of
consistency checks that can be applied to the entire system. Using the information in the
repository, the CASE tool generates an HTML file by means of special procedures
called linearizers.

Before detailing our proposal we make a brief survey of existing documentation
proposals (Section 2). In Section 3, we describe the tool architecture. In Section 4, the
Documentutool is presented. Section 5 reports on the results of applyingDocumentuto

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

281DOCUMENTU

working scientific software. Section 6 presents what can be generated with the current
version of the tool. We conclude the paper in Section 7, referring to related work and
reporting on our plans for the evolution ofDocumentuand its use.

2. A BRIEF SURVEY ON DOCUMENTATION PREPARATION

2.1. Document standards
There is no doubt of the importance of presenting software artefacts as structured and

readable documents. Nowadays, this issue is confronted with a plethora of new possibilities
through the widespread diffusion of the World Wide Web and itslingua franca, HTML.

Our work was based on this perception and on key literature, which we classified under
the following categories: standards, literate programming, using mark-up languages and
databases, and recent documentation tools.

SGML (Goldfarb, 1990, pp. 217–494) is the ISO-8879 ISO standard for structured
documents. The standard describes a language for document description. This language
defines tags to be embedded in the text, in order to structure the document. The tags
have the form,cmd. to begin a structure and,\cmd. to end it. A simple example
would be:

,Paragraph .

This an example of a paragraph tag in SGML

, \Paragraph .

A style sheet can be applied over the document to produce a pretty-printed view of
the document, following a document DTD (Document Type Definition). A DTD defines
a structure for a class of documents. Figure 1 shows an example of DTDs.

A document created following the SGML DTD defined in Figure 1 would be composed
of MANINFO (managerial information), USEINFO (use information) and
IMPLEMENTINFO (implementation information). In the example of Figure 1 we have
detailed the managerial information that could be composed ofProject, FileType ,
IdNumber, Version, DataAp , and Author . Among those,IdNumber is optional
andAuthor may include it one or more times. All documents created using this structure
would necessarily have those sections.

Figure 1. Example of an SGML DTD

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

282 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

HTML (World Wide Web Consortium, 1995) is based upon a subset and application
of the SGML standard. The language is used to create portable hypertext documents. The
HTML mark-ups can represent hypertext news, electronic mail, documentation, hypermedia,
options menu, databases query results and structured documents with graphics. HTML has
been used in the World Wide Web since 1990. The most important difference between
HTML and SGML is that the former has the capacity to refer to other documents through
links defined with mark-ups. Another relevant difference between SGML and HTML is
that the programmer cannot develop different DTDs in HTML. All HTML documents
have to follow a fixed structure, defined by the HTML standard.

The Office Document Architecture (ODA) (Appelt and Tetteh-Lartey, 1993; Brown,
1989) is an object-oriented framework, created to be a standard for document exchange.
ODA, like SGML, distinguishes between the logical structure and the layout structure of
the document (see Figure 2).

While SGML and ODA have different approaches to solve the same problem—
documentation exchange—both of them emphasize a very important issue in docu-
mentation: the essential difference between the document structure and the layout structure.
Also, both of them fail in supporting the creation of hypertext documents.

Figure 2. Diagram of the ODA architecture

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

283DOCUMENTU

2.2. Literate programming
Knuth (1984) proposed the joining of a document format language to a programming

language in an approach called Literate Programming. In WEB—Knuth’s implementation
of the Literate Programming proposal—he uses the well-known languages TEX and Pascal.
To develop a system using Literate Programming, the programmer must, at first, write a
WEB file, which is the document that describes the system being developed. This file is
composed of the program description with chunks of code. The next step is to apply a
processor called WEAVE to produce a TEX file.

The use of the Tangle processor sets up the Pascal code files to be compiled. In this
way documents tend to be consistent, since they come from the same source. Figure 3
shows the WEB development process. Knuth’s proposal is indeed very interesting, since
the main idea is to develop readable code for other human beings and not just code to
be compiled. But the main problem is that Literate Programming was conceived to
describe algorithms and not to produce system-wide documentation. The consequence is
that the final documentation remains related to just a single module. The cross-references
are bounded to the document edge, and they have to be explicitly created by the developer.
Another problem is that TEX does not provide support to document structure definition,
like SGML DTDs, in such a way that format mark-ups are embedded in the document
together with the text.

2.3. Mark-up languages and databases
Cowan presents a more elaborated solution (Cowanet al., 1994, p. 2) than the one

proposed by Knuth. In Cowan’s approach, SGML mark-up language is used to embed
specification information in the code. A database is then filled with code information and,
through the use of database resources, this information can be viewed in hypertext format.
All documents resulting from the development process could be in SGML format linked
to each other inside a textual database (Cowanet al., 1994, p. 5). All the information
could be accessed through different views in a WYSIWYG (what you see is what you
get) environment, allowing database update through those views.

Cowan et al. (1994, pp. 8–10) brings to light some important issues concerning the
preparation of software systems documentation:

Figure 3. Generating WEB documents with TEX and Pascal

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

284 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

• the need for a document logical structure, defined by a standard in order to achieve
document portability;

• the need for databases, to store the system-wide code information, allowing validations
over the gathered data;

• the use of a hypertext browser to navigate across the information.

2.4. Documentation tools
There are several tools available to support the generation of software development

process documentation, but most of them only produce documentation automatically
without checking for consistency with the code.

Java (Gosling, Joy and Steele, 1996, p. 1) is a programming language developed at
Sun Microsystems to support the development of portable and reusable software compo-
nents. Figure 4 shows the browsing of a document generated by JavaDoc (Flanagan,
1996, pp. 220–221), a tool that generates HTML documents from tag-annotated Java
source code. The document in Figure 4 was generated from the annotated code presented
in Figure 5.

JavaDoc formats public and protected information from classes, interfaces, constructors,
methods and fields. Figure 5 shows an example of JavaDoc tags. HTML tags can also
be used to format comments. User-defined cross-reference tags, such asKsee (not shown

Figure 4. Example of JavaDoc document browsing

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

285DOCUMENTU

Figure 5. Example of annotated Java code

in the example), may be manually inserted. JavaDoc creates documentation (an index, a
class hierarchy and description files) for Java source files or for packages.

Microsoft provides an unsupported tool called AutoDuck. This tool works much like
JavaDoc. It uses mark-up tags in the source code to generate documentation. This
documentation is generated in RTF (Rich Text Format—a Microsoft standard available
for Windows, OS/2 and MacOS platforms). RTF is the format used by the Microsoft
Help Compiler to generate Windows Help files. The AutoDuck tagKclass (see example
in Figure 6) defines the name of a class andKcmember defines a class member. Since
the class in the example is a template,Ktargs defines the class templates arguments.
Figure 7 shows the browsing, using the Windows help system, for the example presented.

AutoDuck provides the capability of parsing user-defined tags. JavaDoc parses only its
predefined tags. Both of them are easily integrated into the building process through
makefile invocation, improving documentation consistency with the source code. If the
mark-ups were consistently updated and the documentation generated whenever the code
changed, then the documentation would always be consistent with its associated source
code.

AutoDuck does not support system-wide documentation. It is only concerned about
local modules and cross-references have to be created manually by the developer, generat-
ing possible sources of inconsistency. Neither AutoDuck nor JavaDoc perform consistency
checking in the retrieved information.

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

286 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

Figure 6. Example of AutoDuck tags

2.5. Some important issues about documentation preparation
The main concept to keep in mind is that software programs have to be written for

human beings, and not only to be processed by computers (Knuth, 1984). The existence
of a document logical structure, defined using a standard in order to achieve document
portability is a major issue (Goldfarb, 1990, pp. 402–433). To store system-wide code
information and thus allow checking among information fragments, requires the use of a
database (Cowanet al., 1994, p. 8). Another important issue is the use of a hypertext
browser to navigate through the information (Bigelow, 1988; Rajlichet al., 1990). The
use of hypertext provides an easy way to access on-line information, as well as allowing
information layering, such that information can be structured.

3. THE PROPOSED ARCHITECTURE

3.1. Draco-PUC
Our proposal is geared to marked code, but it also treats unmarked code. This makes

possible the generation of the documentation based solely on a system’s source code
(currently C, C++ and FORTRAN 77). It is important to emphasize that the tags only
complement the information already captured by the tool.Documentu is a tool that
instantiates our proposal. The marks treated by our proposal are based on coding guidelines.
Section 4 describes these coding standards. If there is no documentation available in the

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

287DOCUMENTU

Figure 7. Example of AutoDuck browsing

code, the information shown in the generated documentation is what can be inferred from
the source-code language syntax through parsing and transformation.

The information extractor (see Figure 8) parses the source code and produces information
that is used by the information formatter system. The formatter system then produces a
hypertext system in HTML. The first part of the process, the information extractor system,
uses the Draco-PUC (Leite, Sant’Anna and Freitas, 1994) transformation capabilities. The

Figure 8. Outline of the proposed architecture

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

288 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

second part of the architecture, the information formatter system, is based on a repository-
based CASE tool called Talisman (Staa, 1993, p. 1.7).

Draco-PUC (Leite, Sant’anna and Freitas, 1994) is a transformation system that
implements the Draco paradigm (Neighbors, 1984). This paradigm performs software
development by creating and reusing domains, at a high level of abstraction. An essential
part of a domain description in Draco-PUC is a grammar definition written in a BNF-
like style. Using this grammar as input, thepargen subsystem (parsergenerator), produces
the domain parser. The unparser or pretty-printer is also created when the grammar is
annotated with layout directives.

A special abstract syntax tree (DAST—Draco Abstract Syntax Tree) is created to store
the information retrieved by the parser. Once this structure is created, it is possible to
apply the unparser to view the information in the DAST as described in the layout
directives. It is also possible to apply transformations to map the information in the DAST
to a new structure over the same domain (intra-domain transformations) or to a new
domain using inter-domain transformations.

A Draco-PUC transformation has a left-hand side (LHS), which defines a searching
pattern and a right-hand side (RHS), which defines a replacement pattern. Control points
and transformation properties are also available. These kinds of features are responsible
for driving the transformation engine in a bottom–up search-and-replace way. The control
points of a transformation are:

• Pre-match—executed when the engine tries to execute the transformation.
• Match constraint—executed every time a pattern variable is bound against a program

fragment when the transformation matching is being attempted.
• Match failure —executed when the transformation matching fails.
• Post-match—executed right after the successful matching of the transformation.
• Pre-apply—executed before the replacement of the LHS by the RHS.
• Post-apply—executed after a pattern is substituted.

Transformation rules are grouped in transformation sets, which also have control
points (initialization and end) and properties. Sets of transformations are encapsulated on
transformers. Transformers have three control points: declaration (global object
declaration), initialization and end.

Draco-PUC transformations can be in-place transformations, when the substitution pattern
is replaced in the source, or they can work with workspaces. Transformations that use
workspaces are non-destructive and the replacement patterns are not instantiated in analysed
source, but rather in an external workspace. When using workspaces, it is also necessary
to define templates, which are Draco-PUC transformation language structures that allow
the developer to instantiate the RHS in target workspaces.

The use of workspaces can be viewed as an asynchronous replacement, where the RHS
is written in a temporary space for further use. As an example of such use, consider the
creation of a relation between one element that was already found by the analyser and
another that is to be found. A workspace should be used to create this late association.
An example will be presented in Section 4.1.

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

289DOCUMENTU

3.2. Talisman CASE tool

Talisman (Staa, 1993, p. 1.7) is a repository-based CASE tool. It provides an environ-
ment including predefined database schemas, calledTalisman Definition Languages(Staa,
1993, p. 1.11) that give the semantics to the existing information inside a software base.
Talisman supports languages for structured analysis, and diagrams like the data-flow
diagram for data modelling, and the entity-relationship diagram for information systems
modelling. Talisman also allows the definition of such languages, thus making customiz-
ation an easy task.

A software base (Staa, 1993, p. 1.7) is a database composed of textual fragments and
references to textual fragments inside the database. A definition language (Staa, 1993,
p. 14.1) is characterized by the relations among its elements (modules, classes and
functions, for example) and alsoform programs(validators and linearizers). Thoseform
programscould be loaded at run time to customize the environment. The validators check
for consistency of the data inside the software base, whereas the linearizers produce
reports with the information contained inside the software base. When a software system
is developed, editor forms are used to populate the software base with specification text
fragments. Each text fragment can have different roles depending on which definition
language is being used. For instance, a data repository in a data-flow diagram can be
represented as a table in an entity-relationship diagram.

Once the software base is populated, the validators have to be applied to perform
consistency checking with the information inside the base. With the information validated,
the linearizers are applied to produce documentation or code.

3.3. Integration of the tools

The information extractor system (Figure 8) is set up on Draco-PUC by means of two
domains: the C/C++ domain and the Talisman domain. The C/C++ domain was already
available as a Draco-PUC executable domain. This domain has been used by several
people in different projects, indicating its robustness. However, it was necessary to extend
the domain in order to make possible the analysis of special tags.

Talisman has an importing feature that allows the CASE environment to populate an
existing base with information provided by imported files. The rules that guide the creation
of this file can be written as a grammar. Using this grammar, the Talisman domain was
created at the Draco-PUC machine.

The process starts with the analysis of the source code. Once the code of a given
module is analysed and the Draco-PUC abstract syntax tree is created, a set of transform-
ations, created specially to implement this approach, are applied over that internal format
in order to create the Talisman import file for that module. This operation is repeated for
each module described in a Draco-PUC script file (DSF file). A Draco script file is
written for the whole system, capturing all the modules it comprises.

Figure 9 shows this process. In the first phase, tagged (or not tagged) code is analysed
by the transformation system, generating the import files to the Talisman CASE tool. The
second part of the process is restricted to Talisman. Each import file outputted by the
Draco-PUC machine is then imported to the Talisman environment. Once all the files are

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

290 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

Figure 9. Diagram of theDocumentuexecution process

imported, the validators are executed, checking the data consistency inside the base. They
look for text fragment completion and cross-reference validation. A log is created with
the inconsistencies that have been found. When the base is validated, the linearizers are
executed to create the HTML documents.

4. DOCUMENTU

4.1. Role of Draco-PUC in the architecture
We describeDocumentuby focusing on details of its architecture, its execution and

the results produced. The tool is based on three Draco-PUC domains, C++, FORTRAN
and the Talisman domain, and on the repository defined in Talisman. Below we give
details on how these parts are organized.

As cited before, the basis for a Draco-PUC domain description is its language grammar
description. A domain-language grammar description is written in an extended-BNF style.
An example of such grammar descriptions is shown in Figure 10, which presents the
CPP grammar format for a C++ language fragment responsible for the description of class
heads like:

class Cwindow {. . .}
/ /Or . . .
class CMyWindow : CWindow {. . .}
/ /Or . . .
class CAnotherWindow : CWindow, CBaseWindow {. . .}

Just like with C++, the Talisman import file grammar description was also encapsulated

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

291DOCUMENTU

Figure 10. Fragments of the CPP and Talis grammars

in Draco-PUC. An excerpt of this grammar (Talis), which describes textual import entry
for the repository is also shown in Figure 10. An example of a textual import entry
is the one Documentuuses when defining descriptive long names for classes in the
Talisman repository.

After the grammars were defined, transformations were created to retrieve the information
from the C/C++ code into the Talisman domain in such a way that it could be used in
the CASE tool. The retrieved information comes from the language (C/C++) analysis,
and also from the embedded tags following the specification information, defined in Staa
et al. 1995, pp. 11–32) as part of a set of C/C++ coding standards. The embedded tags

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

292 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

Figure 11. Examples of embedded tags

appear as comments, so they do not change the compilation process. Figure 11 presents
an example of such tags embedded in C++ code.

In Documentu, there are two types of transformations: tag matching and structure
matching (concerning language structures). The tag-matching transformations retrieve the
design information embedded in the code as comments (Staaet al., 1995, pp. 11–32).
The structure-matching transformations are intended to retrieve information about the
program structure using the code itself as the main source of information. The docu-
mentation structure is created using the information retrieved by these transformations.

An example of a tag-matching transformation is shown in Figure 12. The transformation
looks for a class name tag specification($CNAME) and then stores the proper information
in a workspace(WSClassLongName) . Following Staa’s commenting standard, each
class should have a long name in order to provide a better understanding of the abstraction.
Later in the transformation process, a transformation that looks for classes, as in Figure
13, will be executed and will use the name stored in that workspace to set the long name
attribute for the associated class. The class that will have the attribute set is the next
class following the comment describing theCNAMEattribute.

Figure 12. Example of a tag-matching transformation

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

293DOCUMENTU

Figure 13. Example of a structure-matching transformation

The Class transform is an example of a structure-matching transformation. This trans-
formation is responsible for generating the text that will create a class element in the
Talisman repository (this is like creating a record in a relation database). This transform-
ation also gathers other information from several workspaces concerning the class being
analysed, and generates the text for what is gathered. This text will be imported by
Talisman to populate the repository. An example of the generated text would be:

DA “Class” “VM FSegment” Name

DA “Class” “VM FSegment” Text ClassName

VMS – Segment

#K#

The first line creates a Talisman class element named VMFSegment. The second line
sets theClassLongname attribute of VMFSegment to VMS–Segment.

In the current version of the tool, the set of transformations cannot be expanded by a
regular user. Once the transformation is written and compiled, it is only necessary to add
it to the Draco–PUC script that applies the transformations. The problem is to write the
transformations. The user needs to understand the C++ grammar—written in a BNF-like
syntax—to learn Draco-PUC transformation language and know the structure of the
already implemented transformations in order to use the retrieved context information.
Also, the compiler used to generate Draco-PUC has to be the same for all transformations.

4.2. Role of Talisman in the proposed architecture
A new definition language has been implemented in Talisman to support theDocumentu

project. It is called Program Documentation language. Figure 14 shows a diagram of the
language schema. This new language is based on Modular Programming (Staa, 1993,

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

294 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

Figure 14. Model for Program Documentation definition language in Talisman

p. 22.1), but the information it manages is related to source-code documentation. When a
file is imported, the information inside the file populates the software base.

Once the base is filled, the validators should be applied followed by the linearizers. In
Documentua linearizer is responsible for the creation of the hypertext system in HTML
and just like the validator, is aform program. A form program is written using the
language available in Talisman, to create programs, that manipulates the software base
text fragments. The validators check the information inside the software base in order to
verify its consistency. The linearizer navigates inside the software base looking for specific
text fragments and relations and generates a file with the text fragment information in
HTML format. An example of a Talisman form is shown in Figure 15.

Figure 15. Talisman form excerpt

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

295DOCUMENTU

Figure 15 is an excerpt of the class linearizer. The first two lines of the code, after
the forall statement, just call two other forms (like procedures, in this case). The first
form program creates annotations that will be used by the file splitter at the post-
processing phase. The second form program produces the mark-ups that all HTML files
should have (,HTML.). A line with the class name is created next, using the HTML
mark-up ,H1., since 1 was passed as a parameter to“Create Title” form. A
reference to the fileclasses.htm is also created using the form“Create Refer-
ence” with “System Classes” as the text reference. Theif clause checks whether
a class has a relation with some module or not. If it does, a reference to the related
module will be created writing the module name in the reference.

First the linearizer creates the documentation structure and the index and only then is
the documentation created for each element of an entity. Viewing the documentation as
a graph, first the raw nodes with the links are created, then the node attributes are filled.

One may be thinking why Talisman was used, since Draco-PUC could generate all
HTML files itself. Talisman was used for the same reasons a database is used in software
development. We wanted to be able to generate the documentation using a high-4GL-like
language construction. Talismanform languagepossesses these constructions, as shown
in Figure 15. The language provides constructions likeforall, exists and also
provides the capability to define new procedures. If Talisman were not used, we would
have to manipulate text in files generated by Draco-PUC. Also, Talisman is shareware—
a pre-requisite since we want to distribute theDocumentutool, well documented and with
the people who built it available to implement the features we wanted, like creating a
command line version of it.

Documentuuses Lua script files to drive all the execution processes. Lua is a portable
script language developed at the Department of Informatics of PUC-Rio (Ierusalimschy,
Figueiredo and Celes, 1996). The user only needs to call the main script file with the
module name he or she wants to document. Once the main script file is called, the first
thing it does is to call a pre-processing script file, responsible for calling the C++ pre-
processor that expands the source code with the information inside the included header
files. The pre-processed code is then analysed and further transformed into another file.

The file built by the transformation process is imported by Talisman, and is used to
populate a software base with the information contained in the file. The HTML generator
script file then calls Talisman to linearize the software base. The post-processing batch
file calls the file splitter and the character converter to generate the multiple HTML files
and to generate the HTML entities for the accentuated characters respectively. When all
this is done, the user may invoke his or her HTML 3.0 (since the produced documentation
is frame based) compliant browser to navigate through the documentation.

4.3. Hypertext
All the links are created using the extractor facilities of Draco-PUC (parser and

transformations). The detailed information about each element (class and methods, for
example) comes from the tags text embedded in the code. The information retrieved from
the code analysis is used to create the hyperdocument structure: the index and hyperlinks
cross-referencing system-entities, like modules, functions and classes. This structure is

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

296 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

what is created when no annotations are available in the code comments. The current
implementation ofDocumentugenerates a hypertext interface organized in two frames as
shown in Figure 16.

In Figure 16, the frame in the left side is an index to system elements. The index is
organized in tabs, like Windows selection tabs. The first one is the index to the system
modules. Each bullet inside that frame represents a link to a module in the system. When
a module is selected in the left frame, the big pane in the right changes, showing that
module’s information, like its associated classes, its functions, types and data. The same
thing can be done with the other three tabs in the left pane, which represent the indexes
to classes, functions and types of the system.

Using the links that appear inside the big frame, the user can navigate to the detailed
information for a given system element. For example, consider the Shell module in Figure
16. The user can browse through information such as: classes in a module, functions,
types and all the information defined in the model (such as illustrated in Figure 14) and

Figure 16. In this hypertext browsing, the generated text is written in Portuguese. ‘Mo´dulo Shell’ means ‘Shell
Module’ and ‘Descric¸ão’ means ‘Description’. There are two links below the big pane title: ‘Mo´dulos do
sistema’ meaning ‘System Modules’ and ‘Descric¸ão detalhada do mo´dulo’ meaning ‘Detailed module description’

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

297DOCUMENTU

also, the information in the mark-ups, as defined in Staaet al. (1995, p. 11–32). Figure
16 presents a snapshot of the documentation browsing of the module(Shell.h) that
has its classes annotated with mark-ups describing their functionality.

5. USING DOCUMENTU IN A REAL SYSTEM
The development of theDocumentu tool started as part of the DOC project. This

project, between LES (Software Engineering Laboratory at PUC-Rio) and CENPES
(Brazilian Petroleum Company Research Centre), has the objective of increasing the
quality of the software developed in that center.

In order to validate the tool, a large system being developed at CENPES was chosen
to be the test case. The chosen system is called Petrox, a simulator for chemical processes.
It is composed of an editor where the user may drop objects from a chemical process
and simulate the execution of a particular instance of a process. The editor calls functions
implemented in FORTRAN, which implement the algorithms needed to run the simulation.

Magoo GUI (Graphical User Interface Library) class library is a significant part of
Petrox, currently with 72 header files in 5 057 595 bytes, in almost 208 552 lines of
expanded code. We have been using Magoo as one of our test cases, since its code uses
advanced features of the C++ language. Classlib—another relevant part of the Petrox
project with 89 files and 369 kbytes—and Vix—a class library for visual object handling,
with 43 files and 189 kbytes—were also used to test the tool.

Documentutook 30 minutes transforming the source code on a Pentium 100 running
Windows NT 4.0 to produce the documentation, applying 17 609 transformations. The
documentation was spread along 1 803 files using 1 128 953 bytes of disk space. These
results sound pretty acceptable, considering the amount of information retrieved and that
the documentation process is a batch process and may run in off-duty hours. Table 1
summarizes the results of runningDocumentuwith Magoo as input.

Talisman linearizers have 32 functions and 2 012 lines of code.Documentuhas 64
transformations implemented, distributed as follows:

• 43 concerning C++ classes;
• 30 concerning modules;
• 40 concerning functions;
• 61 concerning methods;
• 23 concerning structures, unions and enumerations.

Several features have been implemented in the tool since the delivery of the first
prototype and many difficulties were encountered. The major problem found concerns the
C++ parser. One of the first project decisions was that the symbol table generated by the
currently available C++ parser—that ships with Draco-PUC—should be kept. The reason
was because we wanted to evolve the project towards a reverse-engineering tool. This
decision made a serious impact in the parsing phase, because the pre-processing of the
source code became an obligation, since every type identifier was supposed to be in the
symbol table.

Most of the parsing problems encountered were in system files included in the source

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

298 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

Table 1. Statistics obtained runningDocumentuusing the Magoo class library as input

Module Size in #Tag#Lang.#Tfs Module Size in #Tag#Lang.#Tfs
name kilobytes Tfs. Tfs. p/ name kilobytes Tfs. Tfs. p/

module module

ABSTBOX.H 82 057 82 89 171 OBJBIND.H 94 502 75 79 154
ABSTSLCT.H 126 587 160 167 327 OBJSTRM.H 65 726 0 1 067 1 067
APPLIC.H 65 025 0 0 0 OPTBIND.H 18 322 126 143 269
BINDER.H 14 126 57 56 113 OPTBUT.H 83 856 165 168 333
BINDMENU.H 103 286 56 65 121 OPTMENU.H 103 870 57 66 123
BSELECT.H 87 889 180 181 361 PTRBIND.H 71 040 110 125 235
BUTRADIO.H 82 431 93 99 192 RADIO.H 84 653 96 104 200
BUTTON.H 78 854 229 226 455 SAFEREF.H 23 185 46 51 97
CANVAS.H 78 801 372 354 726 SELECTOR.H 132 599 218 225 443
COLLBIND.H 50 192 92 99 191 SEQBIND.H 72 085 122 137 259
COMPOSER.H 46 441 461 538 999 SHELL.H 79 648 218 207 425
CONTROL.H 71 931 0 708 708 SLCTDLG.H 122 726 66 73 139
DATUM.H 12 322 91 94 185 SLCTMENU.H 103 913 57 67 124
DFLTBIND.H 130 874 114 117 231 SRCBIND.H 31 041 127 141 268
DIALOG.H 93 217 309 299 608 STATUSLN.H 101 138 65 72 137
DIMFLOAT.H 63 637 196 194 390 STREAMBL.H 5 249 43 53 96
DIMTEXT.H 251 038 221 230 451 STRNG.H 37 297 246 255 501
DIMTYPES.H 4 573 0 0 0 STRVLD.H 70 635 94 101 195
ENTRBIND.H 16 555 85 94 161 SUBMENU.H 99 907 60 67 127
ENUMERAT.H 3 328 73 88 161 SYSDEPEN.H 8 062 0 0 0
FILL.H 73 488 47 54 101 TABLE.H 156 298 0 560 28
FLAGITEM.H 75 797 69 75 144 TASK.H 3 049 14 14 28
FLTVLD.H 51 331 193 187 380 TEXT.H 107 168 161 166 327
FRAME.H 81 415 85 89 174 TOGGLE.H 79 375 208 204 412
GERAL.H 1 362 8 8 16 TOOLBOX.H 85 174 59 69 128
HBOX.H 83 906 59 68 127 UNIT.H 53 308 345 378 723
HEAPVIEW.H 101 035 62 70 132 UNITBIND.H 129 936 90 93 183
INDEXDLG.H 110 243 60 69 129 UNITID.H 10 520 4 0 4
INTVLD.H 50 298 152 146 298 VALIDAT.H 40 816 208 180 388
LABEL.H 99 784 184 183 367 VBOX.H 83 966 59 68 127
MENU.H 98 398 89 91 180 XGETCH.H 3 473 2 2 4
MENUITEM.H 73 950 88 93 181 ZBOX.H 86 102 151 155 306
MFLOAT.H 14 446 91 94 185
MINTEGER.H 14 216 91 94 185
MULTLINE.H 104 036 181 182 363
MULTSLCT.H 129 102 109 114 223
NUMTYPES.H 121 888 0 23 23

Number of modules 69
Size of modules 5 057 595
Number of 17 609
Applied
transformation

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

299DOCUMENTU

code by the pre-processor. The majority of our efforts were in making the parser as
reliable as possible to support parsing included system files.

It was indeed a very difficult task, which is not fully completed, since the C++ language
is not yet standardized. What should have been done—and will be in the near future—
is to remove the symbol table and thus handle every type identifier simply as identifiers
and not save context information. Any necessary context information will be handled by
the transformation system. With this strategy, it will not be necessary to handle compiler-
specific features of the language, sometimes implemented in system header files.

Another modification that could be done in the parser is to flatten some parts of the
grammar to sequences of identifiers, making the C++ grammar more flexible in relation
to its formal description. When using the whole grammar we have to be aware of language
constructions that will not be handled by the transformation system, but that must be
present in order to have the code parsed. This is another inheritance from the project
decision of implementing a parser for a reverse-engineering tool.

Concerning the generated documentation, our experience has shown that using the
language grammar to produce the structure of the documentation was pretty successful.
Generating documentation from code that did not have any mark-up induced the user to
annotate his or her code in order to produce a better documentation.

The system is presently installed in three different host systems at CENPES and it is
still undergoing tests. The actual version is almost stable but still needs some technical
support. We expect that it will reach desired stability in the next version provided the
modifications discussed above are included.

6. RESULTS ACHIEVED
We realize that system documentation is a widely studied field with significant proposals

and commercial products providing very powerful and complex solutions. We believe that
our architecture contributes with the following:

• Flexible architecture.Documentuhas an architecture that can be easily maintained
and updated. Without changing the documentation generators, new programming
languages can be supported by adding a new parser and transformers to the process.
Also, the mark-up structure could be changed to follow different documentation
guidelines, with different tag structures in the same way a new language is added.
By loading new Talisman linearizers the documentation structure can be changed, so
that, for example, instead of an HTML file, a postscript file could be generated.

• Compiler independence. Most of the currently available IDEs (Integrated Development
Environments) provide features for code exploration. Our tool supports most of those
features (like attribute, method, class and cross-referencing browsing) and it is
compiler independent.

• System-wide documentation. The documented project can be as wide as the user
wants, with references to as many modules and syntactic elements as the existing
code has. Raw documentation, if no documentation tag is used at all, showing the
system basic structure, can be produced.

• Documentation portability. This comes as a consequence of the use of a standard lang-
uage.

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

300 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

It is also important to stress that by using the CASE tool Talisman (Staa, 1993, p. 14.1)
it was possible to write form programs that could validate the integrity of the data
relations (validators). After the analysis of the documentation, Talisman linearizers produce
a hypertext document in HTML. The produced information will be extremely valuable to
software personnel, mainly during maintenance. We understand that one of the strong
points of our proposal is the low coupling among its components.

Also, there are some points we realize that must be reviewed in the next versions of
the tool:

• Draco-PUC is still a prototype with some problems concerning usability and docu-
mentation. Creating the parser is not a very easy task. Talisman has an obsolete user
interface. Creating a command line version, which also fits a lot better with our
batch documentation process, has solved this. Also, the tool is only available in the
Windows platform. We are working on a Unix version.

• The generated documentation is static. The user cannot ‘ask questions’ different from
those defined in the form programs. We intend to add a feature in the next version
of the tool allowing the user to generate his own ‘questions’, generating HTML
documents that satisfy those questions.

7. CONCLUSIONS
We have proposed an architecture to produce high quality system-wide information

based on source code information. Such documentation will be more effective if code
standards are used properly. Our approach uses two different software artifacts to parse
and organize the documentation information:

• one is a transformation system, which deals with the information retrieval, and
• the other is a CASE tool that deals with the storage and manipulation of the

retrieved information.

Other authors (Wells, Brand and Markosian; 1995; Zoufalyet al., 1995; Newcomb and
Kotik, 1995) propose the use of transformation systems to help the documentation problem.
Our work innovates by using a transformation system together with a repository-based
system. For instance, we believe that our proposal, regarding the repository aspect, is
related to the work of Edwards and Munro (1993), and Jarzabek and Keam (1995).
Jarzabek provides a powerful parser to retrieve information creating a PKB (Program
Knowledge Base) and using a wizard generates a domain-knowledge base. Although we
did not explore domain-oriented knowledge, having the information in the Talisman
repository is a first step to link with other Talisman languages, thus making it possible
to handle higher-level representations.

An approach similar to ours was presented by Cross and Hendrix (1995). In their case
a source-code grammar was not used, the generation of the documentation was based
only on the mark-up grammar alone. Johnson and Erdem (1995) focused attention on the
interactive and enquiry aspect of program understanding in an architecture similar to ours.

Future work will not only exploreDocumentu’suse, but as mentioned above, explore

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

301DOCUMENTU

the full possible links with other representations dealing with higher levels of abstraction.
In particular we are planning to explore the integration with the strategy described by
Leite and Cerqueira (1995), which could also be based on the Talisman environment.

Acknowledgements
We would like to thank Marcelo Sant’Anna for everything he has done for the success of this
project, since its very beginning.

References
Appelt, W. and Tetteh-Lartey, N. (1993) ‘The formal specification of the ISO open document

architecture (ODA) standard’,The Computer Journal, 36(3), 269–279.
Bigelow, J. (1988) ‘Hypertext and CASE’,IEEE Software,5(2), 23–27.
Biggerstaff, T., Mitbarden B. and Webster, D. (1994) ‘Program understanding and the concept

assignment problem’,Communications of ACM, 37(5), 72–83.
Braga C. O., Staa, A. von and Leite, J. C. S. P. (1997) ‘A hybrid architecture for documentation

production’, Technical Report MCC15/97, Departamento de Informa´tica da Pontifı´cia Universidade
Católica do Rio de Janeiro, Rio de Janeiro, 17 pp.

Brown, H. (1989) ‘Standards for structured documents’,The Computer Journal, 32(6), 505–514.
Cowan, D. D., Germa´n, D. M., Lucena, C. J. P. and Staa, A. von (1994) ‘Enhancing code for

readability and comprehension using SGML’, inProceedings of the International Conference on
Software Maintenance, IEEE Computer Society Press, Los Alamitos CA, pp. 181–190.

Cross, J. and Hendrix, T. (1995) ‘Using generalized markup and SGML for reverse engineering
graphical representations of software’, inProceedings of the Working Conference on Reverse
Engineering, IEEE Computer Society Press, Los Alamitos CA, pp. 2–6.

Edwards, H. and Munro, M. (1993) ‘RECAST—reverse engineering from COBOL to SSADM’, in
Proceedings of the Working Conference on Reverse Engineering, IEEE Computer Society Press,
Los Alamitos CA, pp. 44–53.

Flanagan, D. (1996)Java in a Nutshell, O’Reilly & Associates, Inc., Sebastopol CA, 438 pp.
Garg, P. and Scacchi, W. (1990 ‘A hypertext to manage software life-cycle documents’,IEEE

Software, 7(3), 90–98.
Goldfarb, C. (1990)SGML Handbook, Oxford University Press Inc., New York NY, 664 pp.
Gosling, J., Joy B. and Steele G. (1996)Java Language Specification, Addison-Wesley Publication

Co., Reading MA, 825 pp.
Horowitz, E., Kemper, A. and Narasimham, B. (1985) ‘A survey of application generators’,IEEE

Software, 2(1), 40–54.
Ierusalimschy, R., Figueiredo, L. and Celes, W. (1996) ‘Lua—an extensible extension language’,

Software: Practice and Experience, 26(6), 635–652.
Jarzabek, S. and Keam, T. (1995) ‘Design of a reverse engineering assistant tool’, inProceedings

of the Working Conference on Reverse Engineering, IEEE Computer Society Press, Los Alamitos
CA, pp. 61–70.

Johnson, W. L. and Erdem, A. (1995) ‘Interactive explanation of software systems’, inProceedings
of the 1995 IEEE Knowledge Based Software Engineering Conference, IEEE Computer Society
Press, Los Alamitos CA, pp. 155–164.

Knuth, D. E. (1984) ‘Literate programming’,The Computer Journal, 27(2), 97–111.
Leite, J. and Cerqueira, P. (1995) ‘Recovering business rules from structure analysis specifications’,

in Proceedings of the Working Conference in Reverse Engineering, IEEE Computer Society Press,
Los Alamitos CA, pp. 13–21.

Leite, J. C. S. P., Sant’Anna, M. and Freitas, F. (1994) ‘Draco-PUC: a technology assembly for
domain oriented software development’, inProceedings of the 3rd IEEE International Conference
on Software Reuse, IEEE Computer Society Press, Los Alamitos CA, pp. 94–101.

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

302 CHRISTIANO DE OLIVEIRA BRAGA ET AL.

Neighbors, J. (1984) ‘The Draco approach to constructing software from reusable components’,
IEEE Transactions on Software Engineering, SE-10(5), 564–574.

Newcomb, P. and Kotik, G. (1995) ‘Reengineering procedural into object-oriented systems’, in
Proceedings of the Working Conference on Reverse Engineering, IEEE Computer Society Press,
Los Alamitos CA, pp. 237–252.

Rajlich, V., Damaskinos, N., Khorshid, W. and Linos, P. (1990) ‘VIFOR: a tool for software
maintenance’,Software: Practice and Experience, 20(1), 67–77.

Selfridge, P., Waters, R. and Chikofsky, E. (1993) ‘Challenges to the field of reverse engineering’,
in Proceedings of the Working Conference in Reverse Engineering, IEEE Computer Society Press,
Los Alamitos CA, pp. 144–150.

Staa, A. von (1993)Ambiente de Engenharia de Software Talisman, Manual do Usua´rio, Staa
Informática, Rio de Janeiro, 296 pp.

Staa, A. von, Derraik, A., Braga, C., Costa, G., Kanamori, L., Jaccoud, M., Giovani, P., Hu¨bscher,
P., Baptista, R. and Correia, R. (1995) ‘Regras e recomendac¸ões para a inclusa˜o de especificac¸ões
no código de programas C ou C++’, Technical Report, Departamento de Informa´tica da Pontifı´cia
Universidade Cato´lica do Rio de Janeiro, Rio de Janeiro, 25 pp.

Wells, C., Brand, R. and Markosian, L. (1995) ‘Customized tools for software quality assurance
and reengineering’, inProceedings of the Second Working Conference on Reverse Engineering,
IEEE Computer Society Press, Los Alamitos CA, pp. 71–77.

World Wide Web Consortium (1995),Hypertext Markup Language Specification 3.0, Laboratory of
Computer Science, Massachusetts Institute of Technology, Cambridge MA, 170 pp., available
via http:/ /www.w3.org

Zoufaly, F., Araya, C., Sanabria, I. and Bendek, F. (1995) ‘RESCUE: legacy system translator’, in
Proceedings of the Second Working Conference on Reverse Engineering, IEEE Computer Society
Press, Los Alamitos CA, pp. 39–52.

Authors’ biographies:

Christiano de Oliveira Braga is a Ph.D. candidate at the Departamento de
Informática (Informatics Department) at PUC-Rio. He was the technical man-
ager, designer and main programmer on theDocumentuproject. His research
interests are transformation systems, software-engineering environments and
formal semantics of programming languages. Christiano received a B.Eng.
degree in Computer Engineering from the Pontifical Catholic University of Rio
de Janeiro in Brazil (PUC-Rio) in 1993, and an M.S. degree in Computer
Science from PUC-Rio in 1996. His email address is: cbragaKinf.puc-rio.br

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

303DOCUMENTU

Arndt von Staa is an Associate Professor at the Departamento de Informa´tica
(Informatics Department) at the Pontifical Catholic University of Rio de Janeiro
in Brazil (PUC-Rio). He designed and developed the software engineering
meta-environment Talisman. His research interests are software quality and
process-driven software engineering environments. Currently, he is working on
the design and development of a distributed process-driven meta-environment.
Arndt got his Ph.D. in Computer Science from the University of Waterloo in
Canada. His email address is: arndtKinf.puc-rio.br

Julio Cesar Sampaio do Prado Leite is an Associate Professor at the
Departamento de Informa´tica (Informatics Department) at the Pontifical Catholic
University of Rio de Janeiro in Brazil (PUC-Rio), and the Director of the
Draco-PUC project. His research interests are in the areas of reuse, reverse
engineering and requirements engineering, where he performed pioneering work
on viewpoint analysis. Julio is a member of the IFIP Working Group 2.9 on
software requirements engineering, and has served on various international
programming committees, including the IEEE International Conference on Soft-
ward Reuse and the IEEE International Symposium on Requirements Engineer-
ing. He holds a Ph.D. in Computer Science from the University of California,
Irvine. His email address is: julioKinf.puc-rio.br

 1998 John Wiley & Sons, Ltd. J. Softw. Maint: Res. Pract.10, 279–303 (1998)

