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Abstract. We investigate the quantum phase transition of itinerant ferromagnets. It is
shown that correlation effects in the underlying itinerant electron system lead to singularities
in the order parameter field theory that result in an effective long-range interaction between
the spin fluctuations. This interaction turns out to be generically antiferromagnetic for
clean systems. In disordered systems analogous correlation effects lead to even stronger
singularities. The resulting long-range interaction is, however, generically ferromagnetic.

We discuss two possibilities for the ferromagnetic quantum phase transition. In clean
systems, the transition is generically of first order, as is experimentally observed in MnSi.
However, under certain conditions the transition may be continuous with non-mean field
critical behavior. In disordered systems, one finds a very rich phase diagram showing first
order and continuous phase transitions and several multicritical points.
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1 Introduction

Quantum phase transitions are phase transitions that occur at zero temperature
as a function of some non-thermal control parameter. The fluctuations that drive
these transition are of quantum nature rather than thermal in origin. Among the
transitions that have been investigated are various metal-insulator transitions, the
superconductor-insulator transition in thin metal films, and a variety of magnetic
phase transitions. Quantum phase transitions have attracted considerable attention
in recent years, in particular since they are believed to be at the heart of some of
the most exciting discoveries in modern condensed matter physics, such as the local-
ization problem, various magnetic phenomena, the quantum Hall effects, and high-
temperature superconductivity [1].

One of the most obvious examples of a quantum phase transition is the transition
from a paramagnetic to a ferromagnetic metal that occurs as a function of the exchange
coupling between the electron spins. The experimentally best studied example of such
a transition is probably provided by the pressure-tuned transition in MnSi [2]. MnSi
belongs to the class of so-called nearly or weakly ferromagnetic materials. This group
of metals, consisting of transition metals and their compounds such as ZrZn2, TiBe2,
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Fig. 1 Phase diagram of MnSi. The insets show the behavior of the susceptibility close to
the transition. (after [2]).

Ni3Al, and YCo2 in addition to MnSi are characterized by strongly enhanced spin
fluctuations. Thus, their ground state is close to a ferromagnetic instability which
makes them good candidates for actually reaching the ferromagnetic quantum phase
transition experimentally by changing the chemical composition or applying pressure.

At ambient pressure MnSi is paramagnetic for temperatures larger than Tc = 30K.
Below Tc it orders magnetically. The order is, however, not exactly ferromagnetic but
a long-wavelength (190 Å) helical spin spiral along the (111) direction of the crystal.
The ordering wavelength depends only weakly on the temperature, but a homogeneous
magnetic field of about 0.6T suppresses the spiral and leads to ferromagnetic order.
One of the most remarkable findings about the magnetic phase transition in MnSi is
that it changes from continuous to first order with decreasing temperature as is shown
in Fig. 1. Specifically, in an experiment carried out at low pressure (corresponding to
a comparatively high transition temperature) the susceptibility shows a pronounced
maximum at the transition, reminiscent of the singularity expected from a continuous
phase transition. In contrast, in an experiment at a pressure very close to (but still
smaller than) the critical pressure the susceptibility does not show any sign of a di-
vergence at the phase transition. Instead, it displays a finite discontinuity suggestive
of a first-order phase transition.

A related set of experiments is devoted to a phenomenon called itinerant elec-

tron metamagnetism. Here a high magnetic field is applied to a nearly ferromagnetic
material such as Co(Se1−xSx)2 or Y(Co1−xAlx)2 [3]. At a certain field strength the
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magnetization of the sample shows a pronounced jump. This can easily be explained
if we assume that the free energy as a function of the magnetization has the triple-
well structure characteristic of the vicinity of a first-order phase transition. In zero
field the side minima must have a larger free energy than the center minimum (since
the material is paramagnetic in zero field). The magnetic field essentially just ”tilts”
the free energy function. If one of the side minima becomes lower than the center
(paramagnetic) one, the magnetization jumps.

In the literature the first-order transition in MnSi at low temperatures as well
as the itinerant electron metamagnetism have been attributed to sharp structures in
the electronic density of states close to the Fermi energy which stem from the band
structure of the particular material. These structures in the density of states can lead
to a negative quartic coefficient in a magnetic Landau theory and thus to the above
mentioned triple-well structure.

In this paper it will be shown, however, that the two phenomena are generic since
they are rooted in the universal many-body physics underlying the transition. There-
fore, they are predicted to occur for all nearly or weakly ferromagnetic materials irre-
spective of special structures in the density of states. In this paper we will emphasize
the basic physics behind these findings, a technical derivation can be found elsewhere
[4, 5, 6, 7].

The paper is organized as follows: In Sec. 2 we sketch the derivation of an order
parameter field theory for the ferromagnetic quantum phase transition of itinerant
electrons, starting from a microscopic description of an interacting electron system and
analyze its properties. In Sec. 3 we compare the possible scenarios for the quantum
phase transition in detail, while Sec. 4 is devoted to the influence of quenched disorder.
We conclude in Sec. 5.

2 Order parameter field theory

In a pioneering paper that was the first application of the modern theory of critical
phenomena to a quantum phase transition, Hertz [8] derived an order parameter field
theory for the ferromagnetic quantum phase transition by considering a simple model
of itinerant electrons that interact only via the exchange interaction in the particle-
hole spin-triplet channel. Hertz analyzed this order parameter field theory by means of
renormalization group (RG) methods. He found a continuous phase transition whose
critical behavior in the physical dimensions d = 3 and d = 2 is mean field-like, since
the dynamical critical exponent z = 3 decreases the upper critical dimension from
d+c = 4 for the classical case to d+c = 1 in the quantum case. Despite the somewhat
artificial nature of this model, it was believed for a long time that the qualitative
features of Hertz’s analysis, in particular the fact that there is mean field-like critical
behavior for all d > 1, apply to real itinerant quantum ferromagnets as well.

Here we will show, however, that this belief is mistaken. The properties of the
ferromagnetic quantum phase transition are much more complicated since the magne-
tization couples to additional, non-critical soft modes in the electronic system. Math-
ematically, this renders the conventional Landau-Ginzburg-Wilson approach invalid
since an expansion of the free energy in powers of the order parameter does not ex-
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ist. Physically, the additional soft modes lead to an effective long-range interaction
between the order parameter fluctuations. This long-range interaction, in turn, can
change the character of the transition from a continuous transition with mean-field
exponents to either a continuous transition with non-trivial (non-mean field) critical
behavior or even to a first order transition like in MnSi.

The derivation of our theory [4] follows Hertz [8] in spirit, but the technical details
are considerably different. We consider a d-dimensional continuum model of interact-
ing electrons, and pay particular attention to the particle-hole spin-triplet contribution
[9] to the interaction term in the action, St

int, whose (repulsive) coupling constant we
denote by Γt. Writing only the latter explicitly, and denoting the spin density by ns,
the action reads,

S = S0 + St
int = S0 + (Γt/2)

∫

dx ns(x) · ns(x) , (1)

where S0 contains all contributions to the action other than St
int. In particular, it

contains the particle-hole spin-singlet and particle-particle interactions, which will be

important for what follows.a
∫

dx =
∫

dx
∫ 1/T

0
dτ , and we use a 4-vector notation x =

(x, τ), with x a vector in real space, and τ imaginary time. Following Hertz, we perform
a Hubbard-Stratonovich decoupling of St

int by introducing a classical vector field M(x)
with components M i that couples to ns(x) and whose average is proportional to the
magnetization, and we integrate out all fermionic degrees of freedom. We obtain the
partition function Z in the form

Z = e−F0/T

∫

D[M] exp
[

−Φ[M]
]

, (2)

where F0 is the non-critical part of the free energy. The Landau-Ginzburg-Wilson
(LGW) functional Φ reads

Φ[M] =
1

2

∫

dx dy
1

Γt
δ(x− y) M(x) ·M(y) (3)

+

∞
∑

n=2

an

∫

dx1 . . . dxn χ
(n)
i1...in

(x1, . . . , xn)M
i1(x1) . . . M

in(xn) ,

where an = (−1)n+1/n!. The coefficients χ(n) in (3) are connected n-point spin density
correlation functions of a reference system with action S0 [5, 8]. The particle-hole
spin-triplet interaction Γt is missing in the bare reference system, but a nonzero Γt

is generated perturbatively by the particle-particle interaction contained in S0. The
reference system then has all of the characteristics of the full action S, except that it
must not undergo a phase transition lest the separation of modes that is implicit in
our singling out St

int for the decoupling procedure breaks down.
χ(2) is the spin susceptibility of the reference system. Performing a Fourier trans-

form from x = (x, τ) to q = (q,Ω) with wave vector q and Matsubara frequency Ω,
we have for small q and Ω,

χ(2)(q,Ω) = χ0(q)[1 − |Ω|/|q|] , (4)
aWe note, however, that even in Hertz’s original model, where S0 describes free electrons, interac-

tion terms get generated upon renormalization. The traditional mean-field results therefore are not

correct for this model either.
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where q and Ω are being measured in suitable units, and χ0(q) is the static spin
susceptibility of the reference system. If we take the susceptibility to be that of a
non-interacting Fermi gas, χ0(q → 0) = c0− c2q

2, we obtain Hertz’s theory. However,
in a real Fermi liquid, the static spin susceptibility at T = 0 is a non-analytic function
of q since the magnetization modes couple to additional soft modes, viz. particle-hole
excitations in the spin-triplet channel with a ballistic dispersion relation [6]. This non-
analyticity is crucial for the non-trivial physics of the itinerant ferromagnets discussed
in this paper. For small wave vectors the static susceptibility is of the form

χ0(q → 0) = c0 − cd−1|q|
d−1 − c2q

2 . (5)

Here c0, cd−1 and c2 are constants. This holds for 1 < d < 3; in d = 3 the non-
analyticity is of the form −c̃2q

2 ln |1/q|. Note that all these singularities only exist
at zero temperature and in zero magnetic field since both a finite temperature or a
magnetic field gives the particle-hole excitations a mass.

Using (4,5), and with
∫

q =
∑

q
T
∑

iΩ, the Gaussian part of Φ can be written,

Φ(2)[M] =

∫

q

M(q)
[

t0 + cd−1|q|
d−1 + c2q

2 + cΩ|Ω|/|q|
]

M(−q) . (6)

Here t0 = 1 − Γtχ
(2)(q → 0, ωn = 0) is the bare distance from the critical point, and

cΩ is another constant.
For the same physical reasons for which the non-analyticity occurs in (5), the

higher coefficients χ(n) (n > 2) in (3) are in general not finite at zero frequencies
and wave numbers. Generally, the coefficient of |M|n in Φ for |p| → 0 behaves like
χ(n) = v(n)|p|d+1−n. This implies that Φ contains a non-analyticity which in our
expansion takes the form of a power series in |M|2/|p|2. Consequently, the free energy
functional (3) is mathematically ill defined. However, we will nonetheless be able to
extract a considerable amount of information.

The sign of the non-analyticity in the Gaussian term merits some attention since
it will be responsible for the qualitative features of the ferromagnetic quantum phase
transition. Perturbation theory to second order in Γt yields cd−1 < 0 [4, 6]. This is the
generic case, and it is consistent with the well-known notion that correlation effects in
general decrease the effective Stoner coupling [10]. However, Ref. [6] has given some
possible mechanisms for cd−1 to be positive at least in some materials.

3 Phase transition scenarios

Depending on the sign of the non-analyticity in the Gaussian term (6) of the free
energy functional the properties of the ferromagnetic quantum phase transition will
be qualitatively different.

We first discuss the generic case of cd−1 < 0. Here the free energy reduces with
increasing q from zero which implies that a continuous transition to a ferromagnetic
state is impossible at zero temperature. Two possible scenarios for the phase transi-
tion arise for cd−1 < 0. The first scenario is based on the observation that a finite
thermodynamic magnetization m = 〈|M(x)|〉, which acts similarly to a magnetic field,
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cuts off the singularities in the coefficients of the order parameter field theory. There-
fore, the non-analyticity in χ(2) leads to an analogous non-analyticity in the magnetic
equation of state, which takes the form

tm− vdm
d + um3 = H (d < 3) , (7)

tm− v3m
3 ln(1/m) + um3 = H (d = 3) , (8)

where t tunes the transition and u, vd and v3 are positive constants. H denotes the
external magnetic field. This equation of state describes a first-order phase transition
since the next-to-leading term for small m has a negative sign. We have investigated
this scenario in some detail [7]. Since the non-analyticities in χ(2) and the equation of
state are cut off by a finite temperature, the transition will be of first order at very
low T but turn second order at higher temperatures. The two regimes are separated
by a tricritical point.

The second possible scenario for the quantum phase transition arising if cd−1 < 0
is that the ground state of the system will not be ferromagnetic but instead a spin-
density wave at finite q. This scenario has not been studied in much detail so far,
but work is in progress. It is tempting to interpret the spiral ordering in MnSi as a
signature of this finite-q instability. This is, however, not very likely since a finite-q
instability caused by our long-range interaction will be strongly temperature dependent
due to the temperature cutoff of the singularities. As mentioned above, experimentally
the ordering wave vector is essentially temperature independent. Further work will be
necessary to decide which of the two possible scenarios, viz. a first-order ferromagnetic
transition or a continuous transition to modulated magnetic order, is realized under
what conditions. Moreover, let us point out, that in d = 3 the non-analyticity is only
a logarithmic correction and would hence manifest itself only as a phase transition at
exponentially small temperatures, and exponentially large length scales. Thus, it may
well be unobservable experimentally for some materials.

We now turn to the second case, cd−1 > 0 which can happen, if one of the conditions
discussed in Ref. [6] is fulfilled. In this case the self-generated long-range interaction
is ferromagnetic. Consequently, the ferromagnetic quantum phase transition will be
a conventional second order phase transition, which can be analyzed by standard
renormalization group methods. A tree level analysis shows that the Gaussian theory
is sufficient for dimensions d > d+c = 1 since all higher order terms are irrelevant. We
are therefore able to obtain the critical behavior exactly, yet due to the long-range
interaction it is not mean field-like. The results of this analysis [4] can be summarized
as follows. The equation of state close to the critical point reads

tm+ vdm
d + um3 = H (d < 3) , (9)

tm+ v3m
3 ln(1/m) + um3 = H (d = 3) , (10)

Again, u and v are positive constants. Note the different sign of the non-analytic term
compared to (8). From (9,10) one obtains the critical exponents β and δ, defined by
m ∼ tβ and m ∼ H1/δ, respectively, at T = 0. For β and δ, and for the correlation
length exponent ν, the order parameter susceptibility exponent η, and the dynamical
exponent z, we find

β = ν = 1/(d− 1), η = 3− d, δ = z = d , (1 < d < 3) , (11)
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and β = ν = 1/2, η = 0, δ = z = 3 for d > 3. These exponents ‘lock into’ mean-field
values at d = 3, but have nontrivial values for d < 3. In d = 3, there are logarithmic
corrections to power-law scaling. Eqs. (9,10) apply to T = 0. At finite temperature,
we find homogeneity laws for m, and for the magnetic susceptibility, χm,

m(t, T,H) = b−β/νm(tb1/ν , T bφ/ν, Hbδβ/ν) , (12)

χm(t, T,H) = bγ/νχm(tb1/ν , T bφ/ν, Hbδβ/ν) , (13)

where b is an arbitrary scale factor. The exponent γ, defined by χm ∼ t−γ at T =
H = 0 and the crossover exponent φ that describes the crossover from the quantum
to the classical Heisenberg fixed point (FP) are given by

γ = β(δ − 1) = 1 , φ = ν , (14)

for all d > 1. Notice that the temperature dependence of the magnetization is not

given by the dynamical exponent. However, z controls the temperature dependence
of the specific heat coefficient, γV = cV /T , which has a scale dimension of zero for all
d, and logarithmic corrections to scaling for all d < 3 [11],

γV (t, T,H) = Θ(3− d) ln b+ γV (tb
1/ν , T bz, Hbδβ/ν) . (15)

Eqs. (9) – (15) represent the exact critical behavior of itinerant quantum Heisenberg
ferromagnets for all d > 1 with the exception of d = 3, where additional logarithmic
corrections to scaling appear [4].

4 Influence of disorder

In this section we briefly discuss the influence of quenched non-magnetic disorder on the
ferromagnetic quantum phase transition. An approach along the lines of the one for the
clean case sketched in Sec. 2 has been developed in Ref. [5], and the resulting effective
theory is very similar. Again, the magnetization couples to additional soft modes
(here with diffusive dynamics) which leads to an effective long-range interaction. The
singularities are even stronger than in the clean case, but they have the opposite sign
so that the long-range interaction is generically ferromagnetic. Thus in the presence
of disorder there will be a competition between the ballistic and diffusive singularities.
and the temperature which cuts off both. For weak disorder the first-order transition
will survive, while larger disorder leads to a continuous transition. As shown in Ref.
[7], the phase diagram becomes very rich, showing several multicritical points and even
regions with metamagnetic behavior (see Fig. 2). The properties of the continuous
quantum phase transition occurring for stronger disorder can again be analyzed by
standard renormalization group methods. It turns out that as in the clean case the
Gaussian theory is sufficient since all higher order terms are irrelevant. The resulting
critical exponents are

γ = 1 , (16)

for all d > 2,

ν = 1/(d− 2) , η = 4− d , z = d , (17)
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Fig. 2 Phase diagrams of disordered itinerant ferromagnets in the T -t-plane showing first
order (solid) and second order (dashed) transitions. G is a dimensionless measure of the
disorder, and CP, CEP, TCP, and TCEP denote critical points, critical endpoints, tricritical
points and tricritical endpoints, respectively. See Ref. [7] for more details.

for 2 < d < 4, while ν = 1/2, η = 0, and z = 4 for d > 4. In addition to d = 4, d = 6
also plays the role of an upper critical dimension, and one has

β = 2/(d− 2) , δ = d/2 , (18)

for 2 < d < 6, while β = 1/2, δ = 3 for d > 6.
An important problem in disordered systems that has attracted a lot of attention

within the last years is the influence of rare disorder fluctuations on the properties of
the phase transition. In the conventional perturbative approach [5] the rare regions
are neglected. We have developed a theory which includes the rare regions into a
renormalization group approach. This theory is discussed in a separate paper in this
volume [13]. Here we quote only the final result for the itinerant ferromagnet: Due
to the effective long-range interaction which stabilizes the Gaussian theory, rare re-
gions do not change the properties of the ferromagnetic quantum phase transition (in
contrast to, e.g., itinerant antiferromagnets).

5 Conclusions

To summarize, we have discussed the ferromagnetic quantum phase transition in itin-
erant electron systems. It has been shown that the critical magnetization modes
couple to additional, non-critical soft modes in the electronic systems which results in
an effective long-range interaction between the magnetization fluctuations. We have
discussed several possible scenarios for the ferromagnetic quantum phase transition.
In clean systems the generic scenario is a first-order phase transition. This provides
us with a complete explanation for the nature of the transitions observed in MnSi,
which in Ref. [2] were attributed to a band structure feature characteristic of MnSi.
While this feature may well be sufficient to make the transition in MnSi of first order,
the present theory leads to the surprising prediction that the first order transition is
generic, and thus should be present in other weak clean itinerant ferromagnets as well.
Our theory further predicts in detail how the first order transition will be suppressed
by quenched disorder. Observations of such a suppression, or lack thereof, would be
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very interesting for corroborating or refuting the theory. Semi-quantitatively, the the-
ory predicts that the T region that shows a first order transition will be largest for
strongly correlated systems. Conversely, since the dependence of the tricritical tem-
perature on the system parameters is exponential, in some, or even many, systems the
first order transition may take place only at very low temperatures. This may explain
why in ZrZn2 no first order transition has been observed [2], although the experiment
does not seem to rule out a weakly first order transition [12].

Under certain conditions, the transition in clean itinerant ferromagnets can also be
of second order. These conditions have been formulated mathematically. Their precise
physical or experimental nature has not been investigated so far, but it is known that
strong correlations are a necessary condition. If these conditions are fulfilled, then
the critical behavior is known exactly, albeit it is not mean field-like. If the system
contains sufficiently strong quenched disorder, the transition is always of second order,
and the non-mean field-like critical behavior has been determined exactly.

Finally, it has been shown that the presence of rare regions or local moments in the
disordered case does not change these results, in contrast to, e.g., the case of itinerant
antiferromagnets. The reason lies in the effective long-range interaction between the
order parameter fluctuations in the ferromagnetic case, which is sufficient to suppress
all fluctuations at the critical point, including the static disorder fluctuations respon-
sible for rare regions. The same suppression of fluctuations is also the reason behind
our ability to determine the critical behavior for bulk systems, and indeed for any
dimension, exactly.

We thank G. Lonzarich and C. Pfleiderer for helpful discussions, and the Aspen Center for
Physics for hospitality during the completion of this paper. This work was supported by the
NSF under grant Nos. DMR–98–70597 and DMR–99–75259, and by the DFG (SFB 393/C2).
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