Journal of Experimental Psychology:
Learning, Memory, and Cognition
1999, Vol. 25, No. 5, 1161-1176

Copyright 19995 by the American Psychological Association, Inc.
0278-7393/99/$3.00

The Precise Time Course of Retention

David C. Rubin and Sean Hinton
Duke University

Amy Wenzel

University of Iowa

Fits of retention data were examined from 5 conditions: 3 types of cued recall, an old—-new
recognition task, and a remember—know recognition task. In each condition, 100 participants
had either 18 recall or 27 recognition trials at each of 10 delays between 0 and 99 intervening
items, providing the first data obtained in experimental psychology that were precise enough
to distinguish clearly among simple functions. None of the 105 2-parameter functions tested
produced adequate fits to the data. The function y = a;e™"%15 + aye™"T2 + aj fit each of the 5
retention conditions. The T, parameter in this equation equaled 28 for the 3 recall conditions
and the remember-know recognition condition and 13 for the old—new recognition condition.
Individuals’ recall data fit the same function with parameters varying with gender and
scholastic aptitude scores. Reaction times support the claim that the a;e~“"1° term describes
working memory, and the remaining 2 terms describe long-term memory.

The goal of mathematically describing retention is as old
as the experimental study of memory (Ebbinghaus, 1885/
1964), yet no data exist that are precise enough to allow
discrimination among the different mathematical functions
commonly proposed. Rubin and Wenzel (1996) reviewed the
substantial literature on existing retention functions. They
found over 200 data sets in the literature and fit them all to
105 two-parameter functions. The data sets included the best
available: All had 5 or more retention intervals and were
smooth enough to correlate with at least one function .9 or
greater. The following could be fit to four functions: recall,
recognition, and sensorimotor tasks in people with retention
intervals ranging from seconds to decades; delayed match-
ing to sample in birds, rodents, and primates; and all other
procedures and species, except autobiographical memory
tasks. These functions were the logarithmic, vy = b —
m - In(t) (favored by Woodworth, 1938, and other early
researchers); the power, y = b-t™™ (favored by J. R.
Anderson & Schooler, 1991; Rubin, 1982; Wixted &
Ebbesen, 1991); the exponential in the square root of time,
y = b-e ™ (favored by Wickelgren, 1972); and the
hyperbola in the square root of time, y = /(b +m- |t)
(previously unconsidered). The data, however, whether
considered as independent studies or a whole, could not
distinguish among these four functions. That is, the data
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were not sufficiently precise to be able to reject any of the
four functions.

Here we provide three continuous cued-recall and two
continuous recognition data sets that have the precision to
discriminate among alternative functions. A quantitative
description of retention is useful for both practical and
theoretical purposes. From a practical standpoint, the ques-
tion of how long material or skills learned under specific
conditions will be available is best answered quantitatively.
Knowing the level of performance at specific times after
learning is more useful than knowing that forgetting drops
rapidly at first and then levels off. From a theoretical
standpoint, the naive layperson might expect psychological
theories of memory to make detailed quantitative claims
about the course of forgetting. After all, a basic observation
that makes memory a topic of interest is that people
remember less with the passage of time. Psychologists once
tried to consider retention in their theories (e.g., Luh, 1922;
Wickelgren, 1972, 1974; Woodworth, 1938) and recently
have been criticized from a variety of perspectives for no
longer doing so (Brainerd, Reyna, Howe, & Kingma, 1990;
Ratcliff, 1990; Slamecka & McElree, 1983).

The discrepancy between what an outsider might expect
and what psychologists have done is a main reason that the
approach used here is not committed to a single strong
theoretical perspective on retention. Although sophisticated
mathematical models of memory exist, they do not make
strong predictions about the mathematical form of the
retention function. Even Anderson’s adaptive model, which
favors the power function, is only committed to the claim
that retention and recurrence of events in the environment
are similar (J. R. Anderson, 1990; J. R. Anderson &
Schooler, 1991). There is a circular problem that we hope to
solve here. Because no adequate description of the empirical
course of retention exists, models of memory cannot be
expected to include it, and because no current model predicts
a definite form for the retention function, there is no reason
for experimenters to gather retention data to test the models.
Here the description of the empirical course of retention is
made both for its own sake and as a challenge and impetus to
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its inclusion, along with other memory phenomenon, in
model building. We therefore include the values that most
modeling efforts would require: amount remembered in
terms of percentage correct and d’-type measures, errors in
terms of recall intrusions and recognition false alarms, and
reaction times. This reporting produces an atheoretical list,
but such reporting is needed if our data are to be used in
combination with -other findings in developing and testing
mathematical models. Where we can, we offer theoretical
accounts for our data, but this is not our only goal in
reporting our results.

The following six criteria are desirable to obtain data sets
that can distinguish among different mathematical functions
(Rubin & Wenzel, 1996):

1. There should be nine or more retention intervals,
which would allow nonlinear iterative fits of functions with
two or more parameters to be made and discriminated.

2. The study should have small standard errors for each
of these retention intervals, which should be publicly
reported (Loftus, 1993). That is, the values should be
precise. Functions that do not remain within confidence
intervals could be rejected.

3. As the four most successful functions from the Rubin
and Wenzel survey are based on logarithmic (or logarithmic-
like) scales, the new data set should have a large ratio of the
most to least amount remembered and a large ratio of the
longest to shortest retention intervals without obtaining
indeterminate amount-recalled values of 0% or 100%.

4. In order for the time between presentation and testing
to be unambiguous, each item should be presented only
once.

5. The activity that fills the retention intervals should be
constant throughout the experiment so that time is propor-
tional to the amount of intervening material.

6. Ideal data would allow retention functions (with larger
confidence intervals) to be plotted for individual participants
to guard against attributing to the aggregate data a retention
function that does not describe individuals.

There exist many retention data sets in the literature, and
each one is superior to the ones we report for some specific
purpose (see Rubin & Wenzel, 1996, for a brief review of
210 of them). Ours are not the best, the most general, or the
most useful, but they are the most precise in that they report
the smallest errors of measurement. Combined with the
other five criteria, this facilitates our goal of deciding among
competing functions, a goal which we could not meet with
existing data sets.

One method that meets these requirements is a generaliza-
tion of a continuous recognition procedure (Braun & Rubin,
1998; McBride & Dosher, 1997; Shepard & Teghtsoonian,
1961; Wickelgren, 1972, 1974) to also include cued recall.
This method produced relatively smooth curves for Wickel-
gren, even when he used only 6 participants. Over the course
of the experiment, each participant is tested at each retention
interval, so that it is possible to obtain retention functions for
each participant individually. For recognition, a word ap-
pears on a screen for several seconds and then is replaced by
another word. Each word appears twice. The first time it is a
new item; the second time it is an old item. The number of
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words between its two occurrences is the lag or retention
interval. The participant presses a key to indicate whether
the word is old or new. A similar procedure is used for cued
recall. A pair of words appear on the screen and at some later
time the first member of the pair appears alone as a cue.
When the single cue word appears, the participant’s task is to
type the second member of the pair.

We adopted these procedures for two recognition and
three recall conditions. One recognition condition was an
old-new choice and the other was a remember—know-new
choice so that we could study both the relation between these
two commonly used tasks and the relation between remem-
ber and know judgments (Gardiner & Java, 1991). The three
cued-recall conditions were designed to provide different
levels of amount recalled to yield a family of recall curves.
One condition involved the presentation of the original
learning pair and cue in the same color, one condition
involved the presentation of all stimuli in white, and one
condition involved the presentation of the learning pair and
cue in different colors. The condition in which the cue was in
the same color as the original learning pair was intended to
produce a higher level of recall than the condition in which
all words appeared in the same color, which in turn was
intended to produce a higher level of recall than the
condition in which the color of the cue and learning pair
varied randomly. Given the highly empirical nature of this
study, we do not speculate on the nature of the retention
function, but rather attempt to interpret our results in terms
of existing theory in the Discussion once the data have been
presented.

Method

Farticipants

All of the participants were undergraduates fulfilling a course
requirement. Those in the three recall conditions were from the
University of Iowa, and those in the two recognition conditions
were from Duke University. The experimental tasks were long,
difficult, and boring for most participants, and about 20% of the
participants appeared to give up part way into the task, pressing
either random response keys or not responding. To remove such
participants, we set inclusion criteria. We set these after examining
the distribution of responses of at least the first 100 participants in
each experimental condition to ensure that criteria would exclude
only people outside the normal distribution of those who attended
to the task. For the recall conditions, participants had to be correct
at least .60 of the time on Lags O and 1 combined (i.e., at retention
intervals in which there were 0 and 1 intervening items). The
average value for these lags for the remaining participants was .79
(SD = .09). For the old—new recognition, the participants had to
have 25 or fewer no-response trials, which eliminated participants
who stopped responding; a score of at least .50 on our [(hits — false
alarms)/(1 — false alarms)] recognition measure for Lags 0 and 1
combined; and a false-alarm rate not greater than .80, which
eliminated participants who adopted the strategy of always answer-
ing old. The means for the number of no responses, recognition
measure, and false-alarm rate for the participants remaining in the
old-new recognition condition were 2.98 (SD = 4.18), 0.84
(SD = 0.12), and 0.64 (SD = 0.07), respectively. For the remember—
know recognition condition with remember and know responses
combined and considered as old responses, these values were 4.99



PRECISE TIME COURSE OF RETENTION

(SD = 5.63), 0.84 (SD = 0.11), and 0.65 (SD = 0.08), respec-
tively. The no-response criterion accounted for more than half of
the eliminated participants in the recognition conditions.

To obtain 100 participants who met the inclusion criteria for the
recall criterion, we had to test 114 participants in the matched-color-
recall condition, 115 participants in the white-recall condition, and
122 participants in the random-color-recall condition. To obtain
100 participants in each recognition condition who met the
inclusion criteria, we had to test 131 participants in the old—new—
recognition condition (19 had more than 25 no responses, 4 had less
than .50 corrected recognition on Lags O and 1, and 8 had
false-alarm rates greater than .8) and 120 participants in the
remember—know-recognition condition (10 had more than 25 no
responses, 6 had less than .50 corrected recognition on Lags 0 and
1, and 4 had false-alarm rates greater than .8).

Materials

Depending on the condition, items were presented in one of eight
colors on an otherwise dark computer screen: light gray, light blue,
light green, light cyan, light red, light magenta, yellow, and white.
In the three recall conditions, word pairs (i.e., paired associates)
were presented at learning. At recall, the first member of the pair
was used to cue the missing second member. The cue, or stimulus
member of the paired associate, was a six-letter word, and the
to-be-remembered item, or response member, was a four-letter
word. All words were chosen from Kugera and Francis (1967) to
have frequencies between 10 and 100 per million. Proper names,
plurals, words with apostrophes, and highly emotional words were
excluded, producing a population of 520 target words. There were
approximately twice as many possible six-letter cue words that met
these same criteria. These words were sorted according to their last
letter, and the first 520 words were included in the experimental
task. The 270 four- and six-letter words needed for each session
were selected randomly from among these words. For training
trials, both words appeared in a row in the middle of the computer
screen, with the cue word centered one third from the left edge, and
the to-be-remembered word centered one third from the right edge.
In test trials, the cue word appeared in the center of the screen. For
the matched-color, white, and random-color conditions, the learn-
ing and test trials were in the same randomly selected color, white,
and two colors randomly selected with replacement, respectively.

The recognition test used digit-letter—digit trigrams of the form
used in Canadian postal codes. These nonpronounceable nonsense
strings were used to reduce the high level of recognition we found
in pilot work. The numbers for a string were chosen from the digits
1 to 9. Zero was not included because it could have been read as the
letter ““0,” making the trigram easier to code. The letters were
selected from among the orthographically similar set of uppercase
letters K, V, W, Y, and Z. Single spaces were placed between the
numbers and letter. Nine positions on the computer screen were
defined by the 3 X 3 matrix of upper—middle-lower and left—center—
right. The middle center position was used only for feedback. To
increase the difficulty of the recognition conditions, we randomly
selected with replacement the color and position of the trigrams for
each of the two appearances of each trigram. Thus, color and
position at learning could not be used as cues to recognition.

A single pseudorandom order frame of 200 trials was con-
structed to provide 9 learning and 9 test trials at each of 10 lags
spread equally on a logarithmic scale. The lags were 0, 1, 2, 4, 7,
12, 21, 35, 59, and 99, where lag indicates the number of
intervening learning or test trials. In addition to these 180 trials (9
repetitions at each of 10 lags at both learning and test), there were
20 filler trials used to fill in spaces in the order; half of these filler
trials were unscored learning trials and half were unscored test
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trials. A place in this single pseudorandom order frame existed for
each to-be-remembered item to appear once as a leaming trial (as
the second member of a pair for recall or alone for recognition) and
once in a test trial (as an implied question following the first
member of a pair for recall or alone for recognition). This
pseudorandom order frame of 200 trials repeated twice in each
recall session and three times in each recognition session, resulting
in 400 recall and 600 recognition trials. This provided 18 scored
recall or 27 scored recognition tests at each of 10 lags. There were
also 30 filler trials at the beginning of each session that were not
scored to avoid some of the primacy effects observed in pilot
testing. Therefore, what we find here may hold only where
interference has reached a high level. In retrospect, it would have
been useful to make measurements throughout the session and
examine these early trials separately in some analyses. However, in
the overall analyses, the effects of these early trials, which occur
before much interference is developed, would have been swamped
by the large number of later trials and, by the nature of the task,
would have had to have been only for the short lags. The final
sequence contained 430 trials for recall conditions and 630 trials
for recognition conditions. Six-letter cue words, four-letter to-be-
remembered words, and recognition trigrams were assigned ran-
domly without replacement to their places in these total sequences.
Thus, each participant had a different random assignment of stimuli
to places in the sequence, and each recall participant had different
stimulus—response pairings.

Procedure

For both the learning and test trials in the recall conditions, the
stimulus appeared on the computer screen for 5 s, followed by a 1-s
blank screen. Test trials required participants to type in the words
that had been paired previously with the cue. This sequence
repeated 430 times for a total time of 43 min. The instructions were
read to the participants simultaneously as the participants read
them from the computer screen.

For the recognition conditions, each trial had the following
sequence: 2-s trigram presentation, 1-s blank screen, 0.5-s feed-
back, 1-s intertrial interval for a total of 4.5-s per trial for 630 trials
(or 47 min 15 s total session time). The feedback consisted of the
word RIGHT in green or the word WRONG in red placed in the
middle—center position. Thus, the feedback appeared in a color and
location not otherwise used. Participants were instructed to press a
particular key if they had seen a stimulus previously and to press a
different key if they had not seen the stimulus previously. Tape
labels were placed over these response keys, and a large label was
placed at the top of the keyboard. The remember—know recognition
condition differed from the old-new recognition condition in that
participants were instructed to respond in one of three ways:
consciously remembering seeing the stimulus (remember), recog-
nizing a stimulus but having no conscious memory of experiencing
it (know), and not recognizing a stimulus (new).

Scoring

All responses made while a stimulus was showing or in the 1-s
blank following the stimulus were scored. Reaction time was
calculated as the latency until the first response key was pressed.
For the recall conditions, verbatim recall was accepted as well as
any responses that were obvious typing or spelling mistakes. These
included responses in which a single letter was missing, responses
in which the letter that was wrong was adjacent to the correct letter
on the keyboard, reversed order of adjacent letters in the correct spelling,
common misspellings, and changes from singular to plural or in
tense. For the recognition conditions, the first response was taken.
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Results
Recall Experiments

Our main empirical goal was to obtain a more precise
description of laboratory retention than exists so that we
could disambiguate and limit possible mathematical descrip-
tions of retention and investigate differences among experi-
mental tasks. In deing this, we assembled a rich data set, one
that will support more alternative interpretations than can be
considered in one journal article by one set of investigators.
‘We therefore present our results in as clear and theoretically
neutral fashion as possible in tables and figures as well as
providing our best theoretical understanding of the data. In
all fits, the data were not transformed to produce linear
regressions. Rather, 1 — (3(y; — 3 )¥2(y; — ¥)?) was maxi-
mized and reported as variance accounted for, abbreviated in
the tables as r2, where the y;s are the observed values, the ¥;s
are the values estimated by the function, and y is the mean of
the observed values.

Figure 1 presents the retention functions for the three
recall conditions combined. As is common in such plots, we
provide standard errors as error bars unless otherwise noted.
The values that went into this and most other figures are
provided in the Appendix so that readers can entertain their
own alternatives. In addition, the ebbs measure (Bahrick,
1965), which is the same as d’ without the subtraction of the
false-alarm term, is included. In Figure 1 and many of the
figures that follow, few if any of the standard-error bars can
be seen becanse most of them fall within the symbol used to
mark the mean. Also note that our pilot work allowed us to
produce a full range of probabilities of recall from near 0.0
to near 1.0. For Figure 1 only, we label the horizontal axis in
terms of time, instead of lags, to provide the reader an idea of
the time scales involved.

Figure 2 presents the retention functions for our three
recall conditions considered separately. On the basis of the
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Figure 1. Probability of correctly recalling a word as a function

of time since it was presented for all 300 recall condition
participants. Error bars for standard error are included but are not
visible because they are approximately .01 and thus are hidden by
the plot points.
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Figure 2. Probability of correctly recalling a word as a function
of the number of items intervening since its presentation for
conditions in which the color of the cue and to-be-remembered
item were matched, randomly mixed, or all white. Error bars for
standard error are included but are not always visible because they
are often hidden by the plot points.

distinctiveness at cuing, we expected more recall in the
matched color than the all-white condition and more recall
in the all-white than the random-color condition. Although
these predictions were met at each of the 10 lags, the
differences were small. Thus, we combined all 300 partici-
pants into one group for all further analyses. Nonetheless,
Figure 2 is a clear demonstration of three near replications
producing similar retention functions.

Figure 3 presents the data from the 300 participants
combined and regrouped into quintiles of approximately 60
participants each on the basis of their average probability of
recall for all lags combined. The division points for the
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Figure 3. Probability of correctly recalling a word as a function
of the number of items intervening since its presentation. The five
plots are the data for 300 participants divided into quintiles on the
basis of overall amount recalled. Error bars for standard error are
included but are not always visible because they are often hidden
by the plot points.
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quintiles were average probability of recall equal to .465,
.380, .315, and .265. Even though there are only 60
participants per group, grouping by overall level of recall
keeps the standard errors small.

We began our attempt at fitting the data with the 105
two-parameter functions used by Rubin and Wenzel (1996).
The best-fitting four functions from that study all fit the
recall data from the cembined 300 participants well, when
the zero lag was removed to allow the logarithmic and power
functions, which cannot fit lags of zero, to be included. The
variance accounted for by the power is .973; by the
hyperbola in the ¢, .963; by the logarithmic, .942; and by
exponential in the ¢, .906. The five-parameter function sum
of exponentials to be discussed shortly is a much better fit to
the data as shown in Figure 1. When it is applied to the same
nine data points with lag greater than zero, it accounts for
.999 of the variance. A correction for the degrees of freedom
was calculated for these five values by using the formula
used by TableCurve (1994): 1 — (SSE/SSM) - ((n — 1)/
(n — p — 1)), where SSE is the sum of the residuals squared
(i.e., 2(¥; — ¥D?), SSM is the sum of squares about the mean
(i.e., Z(y; — $?), n is the number of points plotted, and p is
the number of parameters. With this correction, the five
squared correlations just reported become .964, .951, .923,
.875, and .998, respectively, and the differences between the
two-parameter and five-parameter fits become even larger,
suggesting that the additional three parameters are picking
up more than just random variation. Because a sum of
exponentials is a good fit, it follows from the work of
Anderson (R. B. Anderson, 1996; R. B. Anderson & Tweney,
1997) that the power functions should be a good approxima-
tion, so the success of the power function is not surprising.
General measures of goodness of fit aside, none of the four
two-parameter functions were adequate because the more
precise data collected here had systematic deviations for all
four functions.

Figure 4 shows the fit of the best fitting of the four
functions that were successful in Rubin and Wenzel (1996),
the power function, to the five curves from Figure 3. Here
the data are displayed on logarithmic axes so that the power
function becomes a straight line. Also, for this figure and for
one other like it for the recognition data, to be conservative
(because we are arguing that the fit is poor instead of good),
we display .05 level confidence intervals instead of standard
errors. Five of the 5 lag 2 points are below their predicted
curve (3 outside their .05 confidence interval), and 14 of the
15 lag 7, 12, and 21 points are above their predicted lines (5
outside their .05 confidence interval). For the groups with
higher levels of recall, the data fall below the curves for the
longest lags, whereas for the groups with lower levels of
recall, the data fall above the curves for the longest lags.
Overall, 13 of the 45 points are outside of the .05 confidence
interval of their predicted fits, but this is not the main point;
rather, it is that the deviations are systematic. A family of
functions that bends to follow these systematic deviations
would do better, as do the ones shown in Figure 3. In fact, for
all 90 points plotted in Figures 1, 2, and 3, which contain all
of the amount recalled data, only 1 point falls outside *+1
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Figure 4. The same data as Figure 3 plotted on logarithmic scales
and fit to power functions. Note the systematic deviations in that at
Lag 2 all five points are below the lines fit; at Lags 7, 12, and 21, 14
of the 15 points are above the lines fit; and at Lags 35, 59, and 99
the points tend to converge to a middle value. For this figure, the
error bars are p < .05 confidence intervals.

standard error, and it falls within the .05 confidence interval
(i.e., within *2 standard errors).

We tried many functions before settling on a sum of
exponentials, including three- and four-parameter functions
proposed in the literature and the four best-fitting two-
parameter functions from Rubin and Wenzel (1996) ex-
tended by adding various third and fourth parameters.
However, given the infinite number of possible three-, four-,
and five-parameter functions, it is a near certainty that a
function with five or fewer parameters will fit as well as or
better than the one we found; we just could not find it after
considerable time searching. We chose the function we did
because (a) it best fit the complete set of data assembled, (b)
it allows for a straightforward interpretation of the results in
terms of existing theory, (c) it has more attractive mathemati-
cal properties than functions based on the logarithmic or
power functions that are not well behaved at their limits, and
(d) it makes use of the exponential that has a long history as
a retention function both alone (Loftus, 1985; Peterson &
Peterson, 1959; Wickelgren 1974) and in a sum of terms as
used here (Daily, 1998; Daily & Boneau, 1995; Simon,
1966). More functions could be tried and a systematic
comparison among them undertaken. All the data needed to
do this are presented. However, we feel that a more fruitful
path is to accept the function given as a good tentative
mathematical description and to combine the data of this
study with the other observations about memory that are
usually considered in modeling.

The general version of the function we use here is
aie™D + ae”"2 + a;e77"3, though it is never used in that
full form here. Rather, in all of its uses here, T3 is © and a3
becomes the asymptote for long lags. In Figures 1, 2, and 3
and all that follow using a three-term function, unless
specifically noted, T; and T, were fixed to be that of the best
fitting line for all the recall data combined, making the curve
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a,e"15 + g,e#2755 + q;. We fixed the T parameters and left
the a parameters to vary, as it is customary in modeling to
assume that the exponent describes a basic process, whereas
the coefficient describes an initial level that is more likely to
vary among individuals and conditions. Again a strong
theoretical prediction could change such conventions. Thus,
the eight data sets shown in Figures 2 and 3 were all fit to
this three-parameter. function. A limitation is that the two
numeric constants were derived from the same data being fit.
However, these values also work well for the recognition
data to be described later.

We use the —#/T form for the exponent instead of the —bT
form (i.e., e7#T), which is more common in psychology,
because the value of T is easier to interpret: Each time ¢
increases by 7, the value of e~“T decreases to .37 of its
original value. If a; were 1.0, then at ¢ = 0, g;e~%7 would be
1.0; atz = T, it would be .37; at t = 2T, .14 (i.e., .37%); at t =
3T, .05 (i.e., .37%); and at ¢ = 4T, .02 (i.e., .374). The function
we are using has three terms or processes. The first process
has a T equal to 1.15, which we argue later is a reasonable
estimate for working memory in our paradigm. By Lag 5,
this process is adding little that can be measured to the
retention function. The second process has a longer T equal
to 27.55 and accounts for the shape for the middle of the
curves. The third process, which has no discernible drop
over lags up to 99 and so has a T equal to infinity, provides
the asymptote.

The form of the equations initially fit to the data was the
sum of three terms, which assumes that information is stored
exclusively in one process corresponding to one term.
However, if there were three independent processes and if
information could be in each, then the coefficients of the
processes would change. We would have to extend the
standard p(a) + p(b) — p(a) - p(b), two independent process
formula, to three processes. Thus, if an item could be in
Process 1, 2, or 3 or more than one of them, the observed
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recall would be equal to the probability that it was in Process
1 or if not in Process 1 then in Process 2 or if not in Process 2
then in Process 3, orp; + (1 —p) - [p2 + (1 — po) - (py)].
This mathematical description leaves the basic exponential
components the same but changes their coefficients. Table 1
contains the values for the three free parameters using this
independent-processes model for the data combined, for the
three experimental conditions, for the data divided into
quintiles, and for later recognition studies, along with the
variance-accounted-for values and the increase in these
values if T; and T, are allowed to vary. The reason for
showing the fits to the five-, three-, and (where appropriate)
two-parameter versions of the equation is to demonstrate
that little predictive power is lost when the T;, T,, and
(where appropriate) the a; coefficients are forced to take the
values obtained by fitting the combined 300 participant
recall data. That is, such losses are small enough to be
caused by the five-parameter model changing to fit chance
variation. The proportion-of-variance-accounted-for values
in the table are always greater than .985, even with two or
three free parameters, which supports the claim that the
goodness of the fits is not caused by having five free
parameters to adapt to any changes that occur in the points
being fit, whether they are systematic or not.

These fits reveal an interesting property. For the recall
data, the g, coefficients do not show a systematic monotonic
change over quintile groupings. That is, the short time-
constant process does not vary systematically as a function
of the total amount recalled, whereas the other two param-
eters do. If the a; coefficients were all set to the value for the
grouped data, then the resulting five groups would be
described by equations with two parameters set from each
group (a; and a;) and three set from the groups combined
(a1, Ty, and T5). This would result in an average drop in
variance accounted for of only .0003 from the three-free-
parameter values shown in Table 1 and of only .0013 from

Table 1
Fits of All Data Sets to the Function a;e™T! + a,e ™2 + a;
r? with different no. Change in r?
Parameter of parameters with parameters
Data set a a as 5 3 2 5to3 3to2
Cued recall
Combined 92 32 10 9957
Matched 94 35 13 9945 9944 9940 .0001 .0004
White 92 31 10 9960 .9960  .9960 .0000 .0000
Random .89 31 .09 9957 9957  .9953 .0000 .0004
1st fifth 95 61 25 9885 9880 9874 .0005 .0006
2nd fifth 90 40 .12 9987 9967  .9860 .0020 .0007
3rd fifth 93 32 06 .9931 9928 9928 .0004 .0000
4th fifth 92 22 .05 9929 9911 9911 .0020 .0000
5th fifth 90 14 .03 9969 9967  .9963 .0002 .0004
Intrusions 0 .02 .00 9957 9956 .0001
Recognition
Old—new A1 80 22 9971 .9969 .0002
Remember + know .66 .63 .19 9967  .9947 .0020
Remember 64 44 10 9957 9943 .0014

Note. The ay, a, and a; parameters shown are for the three-parameter fit with T)=115and T, =
27.55, except for intrusions for which T; = 2.75 and for old—new recognition for which 7, = 13.38.

The two-parameter fit for the recall fixes a; = .92.
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the five-free-parameter solutions. In contrast, if either the a,
or a; coefficients were set to the value for the grouped data,
there would be an average drop in variance accounted for of
.0376 and .0286, respectively, from the three-free-parameter
values. Thus, the short time-constant term appears not to
vary systematically, both in its a; and T parameters.

In an attempt to further understand the processes underly-
ing recall, we examined the distribution of the intrusions of
response words from the list that were paired with an
incorrect cue word. As there were only an average of 14.54
intrusions per participant, we pooled all intrusions from the
three recall conditions. Because individual participants’ data
were not scored separately, the figure for these data, and this
figure only, has no error bars. We took each of the lags used
for the presentation of stimuli and summed the number of
intrusions that occurred at that lag and any trial after the
previously summed lag. This sum was divided by the
number of trals included and then by 4,362, the total
number of intrusions from all 300 participants, to give the
probability of an intrusion coming from each of the lags.
Thus, the number of intrusions at Lags 0, 1, and 2 were
divided by 4,362; the number of intrusions at Trials 3 and 4
were summed and divided by 2 times 4,362 and assigned to
Lag 4; the number of intrusions at Trials 5, 6, and 7 were
summed and divided by 3 times 4,362 and assigned to Lag 7;
and so forth till Lag 99. Because there were 430 trials in the
experiment, intrusions could come from beyond trial 100, so
we extended the logarithmic progression with ‘“lags” at
Trials 165, 275, and 429. This scheme was used because it
produced intrusion data directly comparable with the prob-
ability-of-correct-recall data and because the logarithmic
scale produced an approximately equal number of intrusions
at each lag, resulting in an approximately equal accuracy at
each lag.

Figure 5 presents the probability of intrusion as a function
of lag for lags up to 100. The remaining three points not
shown were 165, .0010; 275, .0005; and 429, .0002. The
data were not fit well by the function used for the recall data
unless the short time constant, 7, was changed from 1.15 to
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Figure 5. The probability of an intrusion as a function of the
number of items intervening since its presentation.
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Table 2
Source of Intrusions Measured in Number of Trials
Before Test Item

Lag M Mdn "Mode n Q] Q3 Q3 - Ql
0 14 3 2 90 2 7 5
1 21 3 1 454 1 7 6
2 36 13 1 407 4 36 32
4 38 8 2 493 3 27 24
7 53 15 3 464 5 62 57
12 42 9 2 550 3 37 34
21 45 16 2 450 5 47 42
35 55 25 2 460 4 76 72
59 59 215 1 496 4 79 75
99 62 205 2 498 3 92 89

Note. Q; and Qs are quartiles; n is the number of intrusions
observed at each lag.

its best-fitting value of 2.75, as was done for the curve in
Figure 5. Moreover, as the values were very small at long
lags, the asymptote, as, could be removed with little
decrease in the fit. The greater value for 7 occurred because
there were fewer intrusions from the shortest lags, which
could be because participants recognized these words as not
the correct answer and did not give them as often as they
come to mind. The 0.0 asymptote can be seen as what would
occur as a natural extension from Figure 3, if a group of
recall participants had as low an overall recall as there were
intrusions. Aside from these minor differences, participants
seemed to be retaining words to use as intrusions with the
same distribution that they retained them for correct response.

The participants also showed a sensitivity to how long ago
the correct answers were presented. Table 2 lists the mean,
mode, median, and quartiles for how many trials back the
intrusions came as a function of the lag of the correct answer
that was displaced by the intrusion. In addition to the
tendency to recall intrusions from recent trials as shown in
Figure 5, Table 2 shows a tendency to recall intrusions that
were presented longer ago when the correct, but not given,
answer occurred longer ago. Thus, the participants had an
idea of where in the list the correct answer was, and they
used that information in selecting the wrong answer.

Figure 6 shows the reaction times from the onset of the
cue words until the first letter of the response was typed for
correct and incorrect responses as a function of lag. Only the
combined data are shown because there were no systematic
differences among the three experimental conditions or
quintiles. These data were also fit by a sum of two
exponentials and an asymptote, but because there is little
historical basis on which to argue for a specific function, and
as testing of other functions with more than two parameters
was not undertaken, this is just offered as a convenient fit.
Thus, here and with other reaction time data, as opposed to
amount remembered data, little can be made of the data
points that are not within a standard error or two of their
functions. What is clear is that errors take longer than correct
responses and that reaction times rise sharply and then
asymptote at well below the maximum 6-s value that is
possible. Such an asymptote in reaction time is apparent
even at much longer retention intervals (Reber, Alvarez, &
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Figure 6. Reaction times for correct and incorrect responses as a
function of the number of items intervening between presentation
and test. Error bars for standard error are included.

Squire, 1997). The reaction time for L.ag O is much shorter
than the other reaction times.

Fits to Individual Participants’ Recall Data

Anderson (R. B. Anderson, 1996; R. B. Anderson &
Tweney, 1997) has shown, by a series of simulations, that
averaging over individual power functions, exponentials,
and truncated linear and logarithmic functions with reason-
ably distributed parameters can produce an aggregate power
function. Their simulations do not show the deviations from
a power function that our data show in Figure 4. Nonethe-
less, we cannot rule out the possibility that functions other
than the sum of exponentials fit the individual participants’
data and still averaged to the sum of exponentials. These
other functions would have to be either the standard ones
used by Anderson but with different distributions of param-
eters than they used or one of the infinite number of
functions they did not use. Moreover, given that the
individual participants’ data are noisy, many functions
should be indistinguishable from each other and the sum of
exponentials. However, we can at least ensure that the sum
of exponentials fits the individual participants’ data and that
the average value of the coefficients fit to the individual
participants’ data are consistent with the coefficients fit to
the grouped data (Estes, 1956).

To investigate whether the function that fit the grouped
data would hold for individual participants, we fit it to the
individual data of all 300 participants who took part in the
recall conditions. We chose these participants because (a) we
could include the same two- and three-parameter versions
for all 300 participants, and (b) we had information on the
gender and American College Test (ACT) scores for 289
and 266 of the 300 participants, respectively, that could
be correlated with the parameters of the fit. Note that in all
fits reported in this section, the values of T, and T, were
fixed at 1.15 and 27.55. In the three-parameter fits, the
values of the a,, a,, and a; parameters were allowed to vary,
and in the two-parameter fits the value of a; was fixed at
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at 92 and a, and a; were allowed to vary. For the
three-parameter fit, the average variance accounted for of
the individual fits was .89 (SD = .09), and the average a,, a,,
and a; parameters were .90 (SD = .17), .33 (SD = .20), and
.10 (SD = .11) compared with values of .92, .32, and .10 for
the grouped data. For the two-parameter fit, in which a, was
fixed at .92, the average variance accounted for of the
individual fits was .87 (SD = .11), and the average a, and a,
parameters were .33 (§D = .20) and .10 (SD = .12). Be-
cause the individual participants’ data were fit well by the
same function that fit the grouped data, the results need not
be seen as an artifact of averaging over participants; that is,
the grouped data were representative of the individual data.

One could argue more strongly that the different compo-
nents of the function represented different processes if the
parameters of these components varied in systematic ways
with individuals. To test this hypothesis, we correlated the
parameters from individual participants with their gender
and ACT score. Because the a, parameters of the two- and
three-parameter fits correlated .95 with each other, and
because the a; parameters of the two- and three-parameter
fits correlated .97 with each other, we consider the two- and
three-parameter fits as nearly identical and concentrated on
the three-parameter fit because its a; parameter was also
available. For the three-parameter fit, a, correlates with a,
and with a; — .16 and —.16 (ps < .0l), indicating that
individuals who had higher a, values tended to have slightly
lower a, and a; values. By contrast, @, and a; had a moderate
positive correlation of .34 (p < .0001). ACT scores
(M = 25.10, SD = 3.49) correlated with the a4, a,, and as
parameters —.05 (ns), .24, and .26 (ps < .0001). Men had
lower a; parameters than did women (.86 [SE = .03] vs. .92
[SE = .01]), #(287) = 2.82, p < .01, did not differ on a, (.36
(SE = .03]vs. .32 [SE = .01]), #(287) = 1.30,p = .19; and
had higher values on a; (.13 [SE = .01] vs. .09 [SE = .01]),
t(287) = 2.17, p < .05. Thus, a measure of scholastic
aptitude correlated with parameters associated with longer
term memory but not working memory, and men and women
differed on the parameters associated with the shortest and
longest time constants. Although these results cannot offer
strong evidence outside a predictive theoretical framework,
they do suggest that the three parameters may be measuring
different processes.

Recognition Experiments

We divided the number of correct remember and remem-
ber-plus-know responses at each lag by 27 (the number of
presentations at each lag) to compute the probability of a hit.
In scoring know responses, however, we assumed that
people would make a know response only if they thought
that the item occurred earlier but could not “remember” it.
We therefore divided the number of correct know responses
at each lag by 27 minus the number of remember responses
at that lag. Because the false-alarm rate was high, we used
(p(hit) — p(false alarms)) / (1 — p(false alarms)) as a mea-
sure of performance for each participant that was most
directly comparable with the probability of a correct re-
sponse used with the recall data. This measure ranges from
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—1.0 to 1.0, but if there are at least the same number of hits
as false alarms, it has the 0.0-to-1.0 range of a probability
measure. Separate false-alarm figures were calculated for
remember and for know responses in the remember—-know
recognition condition. We also calculated 4’ and present
these data in the Appendix (see Tables A2 and A3).

The best-fitting four functions from the 105 two-
parameter functions used by Rubin and Wenzel (1996) were
also fit to the recognition data with the zero lag removed
to allow the logarithmic and power functions, which cannot
fit lags of zero, to be included. The variance accounted for
the old-new recognition and the remember recognition
judgments by the logarithmic are .967 and .982; by exponen-
tial in the #, .963 and .972; by the hyperbola in the z, .967
and .976; and by the power, .932 and .955. These eight
values when corrected for degrees of freedom in the same
manner as the recall values become .956, .976, .951, 962,
956, .968, .909, and .940, respectively. The five-parameter
fit shown in Figure 7 for the old-new and remember
judgments, when made to the nine nonzero lags, are .996 and
.998, and when corrected for degrees of freedom become
.989 and .994. Thus, as with recall, the numerical differences
among the two- and five-parameter fits increase when the
correction for degrees of freedom is applied, suggesting that
the extra parameters are accounting for more than just
random variation. Figure 7 presents the results of the
old-new and remember—know recognition conditions with
the remember and know responses combined into a single
“old” response, allowing a direct comparison between the
two recognition conditions. Figure 8 presents the same data
fit to power functions. As with Figure 4, the axes are both
logarithmic, so that the power function is a straight line. Also
as with Figure 4, the error bars are .05 confidence interval.
The confidence intervals of several points do not include
their functions, but of more importance, again there is
systematic variation that a more complex function can fit, as
shown in Figure 7.
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Figure 7. The probability of correctly recognizing a word as a
function of the number of items intervening since its presentation
for both an old versus new judgment and a remember versus know
versus new judgment. The dependent measure is (hits — false
alarms) / (1 — false alarms). Error bars for standard error are
included.
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Figure 8. The same data as Figure 7 plotted on logarithmic scales
and fit to power functions. For this figure, the error bars are p < .05
confidence intervals.

Returning to Figure 7, although the curves are similar in
their overall level of performance, they differ in their shape.
The old-new condition has more curvature, being well
below the remember-know condition at Lags 21 and 35.
Figure 9 reproduces the combined remember—plus—know
response and gives its separate components. The remember—
plus—know and remember curves shown in Figures 7 and 9
are fit to the a,e?1'15 + a,¢"2"%5 + g, function used for the
recall data. The parameters are shown in Table 1 for the
1 (p(hit) — p(false alarms)) / (1 — p(false alarms)). As
shown in Table 1, the variance-accounted-for values de-
creased little by dropping from five free parameters, which
included T and 7, to only the three free a parameters.

For the know responses, a different set of parameters for
T, and T, was needed. We started at Lag 1 instead of Lag O
because no monotonically decreasing function could fit the
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Figure 9. The probability of correctly recognizing a word as a
function of the number of items intervening since its presentation
as shown by a correct judgment that was remember or know,
remember, or know. The dependent measure is (hits — false
alarms) / (1 — false alarms). Error bars for standard error are
included. ’
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Lag 0 point. Participants were not likely to report that they
knew but did not remember an item they had seen 1 s before
with no intervening items. The best-fitting curve using
the simpler exclusive process model was .182¢~%776 +
1164838 4 086 with a variance accounted for of .9817 as
compared with .9493 for the three-parameter version of the
function that was fit to the recall data. Given that five free
parameters were needed even with the first point eliminated,
little confidence can be placed in this curve as any more than
an empirical description. A nonmonotonic function is needed
for more theoretical purposes, but the limited data do not
support such a search here.

The old—new recognition data fit a different function. The
equation shown in Figure 7 and noted in Table 1 has a 7,
value of 13.38. This 7', value is different from the value in
the equation that fit the recall data and the remember or
remember—plus—know data of the remember—know condi-
tion. If that 27.55 T, value were used, the variance accounted
for would drop by .0268. It appears that when people have to
make both remember and know judgments, they do some-
thing somewhat different than when making only recogni-
tion judgments, something empirically more similar to
recall. Perhaps they are searching for a context with which to
make the remember—know distinction, a process not unlike
searching for a context in recall. The a coefficients on the
T; = 1.15 term is much less than in the remember—know
condition. This difference may be due to the process
described by that term being less or to the lower value of
T, = 13.38 producing more curvature, which makes the 7
term less necessary to describe the data.

We have used the (p(hit) — p(false alarms)) / (1 — p(false
alarms)) corrected probability measure throughout our analy-
ses because it is more directly comparable with the probabil-
ity of recall measure than is d4’'. However, the basic
conclusions do not change if we use d’. For the remember
judgments, when all five parameters in our a1 +
ae~ "2 + g, independent store equation are free to vary, the
resulting equation is .66e=#100 + 51e-#2056 4 15, 2 =
.9983. If we restrict T; and T, to the 1.15 and 27.55 values of
the combined recall data as we did with the corrected
probability measure, the variance accounted for drops by
only .0013. For the old-new judgments, when all five
parameters are free to vary the resulting equation is .32¢~%18 +
78e~#1345 + 21, ¥2 = .9979. If we restrict T; and T to the
1.15 and 13.38 values of the old—new corrected probability
fit, the variance accounted for drops by only .0014. Thus, the
probability and d’ measure produce very similar results.

We examined the increase in interference by plotting the
probability of a false alarm over the course of the two
recognition conditions. The 630 trials of the experiment
were divided into 21 bins of 30 trials each. The first bin of 30
trials contained the practice period. Although recognition
data could not be scored for these trials, there were
opportunities to indicate that an item occurred earlier when
it did not. Figure 10 presents the false alarms for the
incorrect yes responses from the old—new condition and the
incorrect know and incorrect remember responses from the
remember—know condition. The curves fit are two-param-
eter power functions, which resulted in slightly higher fits
than three-free parameter exponentials and slight lower fits
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Figure 10. The false-alarm rate as a function of trials into the
experiment, in blocks of 30 trials, old, remember, and know
judgments. Error bars for standard error are included.

than five-free parameter exponentials, except for the Lag 0
point on the know data. Again there .is little theoretical or
historical guidance in selecting a function for these data, and
the function is offered only as a convenient fit.

Reaction times for the old-new and remember—know
conditions are shown in Figures 11 and 12, respectively.
They are similar in form to those for the recall experiment
and, like them, are fit to the five-parameter exponential
equation for convenience. Note that the reaction times for
the hits and misses for the old-new condition are nearly
identical to those for the remember hits and the misses for
the remember—know condition and that the know responses
are longer than the misses. Having reaction times for a
correct yes response longer than an incorrect no response
(i.e., a miss) is surprising in that correct responses are
typically shorter than errors. It offers support for the claim
that know responses are made only after remember and new
responses are rejected.
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Figure 11. Reaction times for hits and misses in the old versus

new recognition condition as a function of the number of items
intervening between presentation and test. Error bars for standard
error are included.
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Figure 12. Reaction times for know hits, remember hits, and
misses in the remember versus know versus new recognition
condition as a function of the number of items intervening between
presentation and test. Error bars for standard error are included.

Discussion
Overview

Here we provide the most precise data sets for retention
yet to be obtained, achieved simply by testing more partici-
pants than have been tested previously in standard experimen-
tal procedures. We provide three continuous cued-recall and
two continuous recognition data sets that have the precision
to discriminate among alternative functions. We reject all the
105 two-parameter functions used by Rubin and Wenzel
(1996) but fit the data well and in a theoretically satisfying
way with a series of negative exponentials. That is, we
provide the first data sets, outside autobiographical memory
research, that are able to reject simple competing functions.
In doing so, we raise some interesting theoretical possibili-
ties about retention and argue for the value of quantitative
analyses in memory research. We provide only five such data
sets, leaving many questions about the range of generality of
the findings and possible alternative theoretical explanations
unanswered, but we do begin the precise study of retention.

Several conclusions can be drawn from the present study.
From a methodological standpoint, it is clear that by
increasing the precision of our results by testing more
participants without any other methodological improve-
ments over work done decades ago by Shepard and Teght-
soonian (1961) and Wickelgren (1972, 1974), it was possible
to learn more about the nature of retention. At the least, these
data provide memory researchers a precise quantitative
description of a central phenomenon in their field—the time
course of retention—for a few experimental conditions.
Using this description, we were able to exclude a host of
two-parameter functions about which there has been con-
siderable debate in the literature and to substitute a
more adequate mathematical description. In particular, the
function y = aq;e™"15 + a7 + a5 is a good fit to
continuous cued-recall and continuous remember—know
recognition, where ¢ is measured in number of intervening
trials. This mathematical description holds for several data
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sets with a range of lags between 0 and 99, and it holds for
both grouped and individual data. Thus, contrary to past
speculation, the logarithmic, power, and many other func-
tions that have been proposed are not adequate to describe
this form of laboratory retention, which was always meas-
ured under conditions of high interference. Moreover, this
finding implies that laboratory retention does not follow the
same time course as autobiographical memory retention,
which is best described as a power function, az~? (Rubin,
1982; Rubin & Wenzel, 1996). In addition, we now have
evidence that the fit to remember—know recognition judg-
ments is the same as that of recall and that the fit to old—new
recognition judgments is of the same form but requires a .
different time constant. The function for old—new recogni-
tion judgments is y = a;e 7115 + g,e 71338 + g, The data
show that intrusions come from a distribution like that of
recall with Lag O reduced. Finally, the reaction time data
make sense in terms of earlier studies. They support the
claim that the Lag O point (or the a,¢~*! term) is caused by a
different process than the later lags and that know judgments
as opposed to remember judgments are very slow.

Generality to Implicit Memory Tasks

Our past work reviewing existing retention data sets
(Rubin & Wenzel, 1996) suggests that the function proposed
here with appropriate parameters may fit a wide variety of
conditions because it makes similar predictions to the
two-parameter functions that did. Although attempts at
describing the limits and generalizability of our function
remain, a recent article uses a similar enough procedure to
let us investigate whether our functions would also fit
implicit-memory data. McBride and Dosher (1997) used
versions of the continuous recognition task to test cued
recall, stem completion, and recognition separately under
both shallow- and deep-processing conditions. They fit their
data to a function that for each lag chose the larger of either a
power function or a constant. Their shortest lag was 20, by
which point our 7;, = 1.15 term would be too small to be of
any use. We therefore tested a reduced form of our equation,
y = a,e”"T2 + a;. When we used the more conventional sum
rather than a choice of the maximum value, as McBride and
Dosher did in their article, the exponential plus an asymptote
was at least as adequate as the power plus an asymptote for
all data, though we cannot claim either function to be
superior with their data. For their Experiment 3 stem
completion using semantic and graphemic processing and
cued recall using semantic and graphemic processing and
their Experiment 4 recognition using semantic and graphe-
mic processing, our variance-accounted-for values were .95,
.94, .97, .99, .86, and .96, respectively. Of more interest, our
T, values were 34, 31, 47, 36, 39, and 45, respectively, not
far from the values of 13 and 27 from our experiments. The
larger values could be due to undetermined changes in
experimental procedure or to participants adapting to the
longer retention intervals (R. B. Anderson, Tweney, Rivardo,
& Duncan, 1997). Consistent with McBride and Dosher’s
analysis, we found that forcing all T, values to be 38.5, their
average value for the six conditions, reduced the variance
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accounted for of the fits by an average of only .0028. Thus,
there is some evidence that the function that best fits our
continuous cued recall and recognition, with minor adjust-
ment in pararneters, will fit other similar continuous explicit
tasks and also fit continuous implicit-memory tasks. More-
over, once within an experimental procedure, the values of
the T parameters in McBride and Dosher’s data as well as
our own do not seem to change much with the particular task
participants perform.

The Problem of Comparing Functions With Different
Numbers of Free Parameters

One could ask whether our five-parameter function fits
better than the two-parameter functions that have been used
to mode] retention simply because it has more parameters.
At one level the answer is yes. A two-parameter exponential
does not provide a good fit to the data, but a series of them
does. Adding exponential terms with free parameters clearly
helps. But there is more to our use of a five-parameter
function than this. The function we use to describe the
retention data works well for other situations when we fix all
but two of the parameters from the combined recall data. The
remaining two free parameters vary in systematic and
theoretically interpretable ways when we group the data on
the basis of five levels of total amount recalled or when we
investigate individual participants’ data, and we need only
minor theoretically interpretable changes in the three “fixed”
parameters to account for recall intrusions and recognition.
Moreover, we argue that the standard two-parameter func-
tions fail, not because they account for less variance, but
because the variance they fail to account for is systematic
rather than random error variance. This is one reason to
increase precision (Meehl, 1978).

Nonetheless, a problem remains in comparing our pro-
posed function to the two-parameter functions that have
been used previously that should be considered in more
detail. Even when the five-parameter function is reduced to
two free parameters for a subset of the recall data, it is
reduced by using an aggregate of the same data that are
being predicted. This lack of independence is the reason we
do not in general adjust for the number of parameters when
calculating variance-accounted-for figures, though when we
did make such a correction to compare the five-parameter
function with the standard two-parameter functions, such as
the power, the numerical superiority of the five-parameter
function increased. Thus it is clear that the better fit of
functions of more than two parameters is not due to the extra
parameters being used to fit only chance variation. The only
true two-parameter versions of our five-parameter function
occurred when we fit recall-intrusion and recognition data
with parameters fixed by the recall data. This worked well
for the old—new recognition data but required a change of
one of the “fixed” parameters for the intrusion data and for
the remember-know-new recognition data. This overall
pattern of results gives us confidence that the five parameters
are not being used to capture primarily random variation as
opposed to reliable resuits.
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Theoretical Interpretations

In general, our view has been that the way to advance our
understanding of memory is not to try to derive a retention
function or theory of memory based on just retention data,
but to include quantitative descriptions of retention data in
mathematical models that explain many memory phenom-
ena (Rubin, 1982; Rubin & Wenzel, 1996). Where we make
any theoretical claims consistent with the function, as we do
next, we support them with data from errors or reaction
times. In particular, the claim that the first term of our
function, a,e 11>, represents working memory depends on
prior work on spaced practice (Braun & Rubin, 1998) and on
the short reaction times of the Lag 0 recalls and recognitions,
as if items from Lag O were immediately available rather
than having to be retrieved. If a different function were
adopted that did not have a term or parameter dependent on
the first few lags, these other observations would still
remain.

Thus, rather than starting with a theory, we began by
trying to obtain a description worthy of theoretical descrip-
tion and extension. This means that the theoretical account
to be offered here is post hoc with respect to the data
collected, but it is consistent with other claims we have
made earlier (Braun & Rubin, 1998; Rubin, 1995; Rubin &
Wenzel, 1996). The general form of the function we fitis y =
aje™"M + agye™"2 + a4, where T is approximately 1 and 7,
is approximately 27 for most conditions but approximately
half that value for old—new recognition. How can we
interpret this function? We consider the first term (i.e.,
ae~YT, with T) = 1) a description of working memory. At
t=0,ithasavalueof q;;atf = 1, .37a;; and at £ = 2, .14q,
(i.e., e® =1, e7} = .37, and e¢~? = .37%). Having working
memory be reduced to .37 of its value with each intervening
trial makes sense in terms of a 2-s storage in the phonologi-
cal loop of working memory (Baddeley, 1997). This is
because the numerous rehearsal, retrieval, and match pro-
cesses being performed in the continuous recognition and
recall tasks will in one trial nearly exhaust a 2-s working-
memory phonological loop. In the recognition conditions, a
trigram is shown in each trial, and the participant tries to
match it with an earlier trigram. If the trigram is being shown
for the first time, then many trigrams will be retrieved and
compared in vain with the one being presented. If the
trigram is being shown for the second time, many retrievals
and comparisons are still likely. In the recall conditions,
similar processing would occur for test trials, and active
rehearsal would occur during the learning trials. Thus, in all
cases, working memory will be taxed by even a single
intervening trial. This argument depends on the first process
being a working memory or temporary buffer rather than a
more permanent store. Moreover, the clearing of working
memory with one intervening item is consistent with the
finding in the laboratory spacing literature that there are
large differences between Lag O and Lag 1 (the spacing
effect) but small, often nonsignificant, differences among lags
longer than 0 (the lag effect; Braun & Rubin, 1998).

The reaction time data also support the claim that Lag 0,
and possibly in the recall conditions Lag 1, depend heavily
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on working memory (see Braun & Rubin, 1998). The
reaction times from these lags are much shorter than those
from all the later lags, yvhich are all similar to each other. For
the recall conditions the Lag 0 and Lag 1 reaction times are
942 and 476 ms faster than the mean of the longest 7 lags,
which show little difference. For the old—new, remember,
and know recognition conditions, the Lag O reaction times
are 209, 144, and 212 ms faster than the mean of the longest
7 lags, which show little difference. This pattern would arise
if the process of remembering a to-be-remembered item that
had several intervening items spaced between its study and
test trials was based on retrieval from long-term memory
into -working memory, whereas the remembering of items
with no or sometimes with one intervening trial could be
done directly from working memory without retrieval. In
addition, the decreased values of know responses and recall
intrusions from Lag 0 are consistent with direct access from
a buffer rather than retrievals from long-term memory.

Inthe y = a;e Tt + a,e~"T2 + a; equation, the a,e ~¥72 +
a, terms can either be considered as the description of one
long-term memory process or as an intermediate and a
long-term memory process. Although there has been consid-
erable debate about dividing memory into a short-term and
long-term store (Healy & McNamara, 1996), there has been
less attention paid to dividing long-term memory into
several stores of differing periods, despite some behavioral
(Bahrick, 1984; Ericsson & Kintsch, 1995) and biological
(Gibbs & Ng, 1977; Ng et al., 1991; Rosenzweig, Bennett,
Colombo, Lee, & Serrano, 1993) suggestions. The biologi-
cal data indicate that, in addition to a short-term memory,
there are at least two distinct, pharmacologically dissociable,
longer term memory systems. Although comparisons across
both species and tasks are extremely speculative, the time
spans of the longey term memories would not exclude the
times as measured here. All that is intended at this point is to
note that dividing long-term memory into components of
differing duration is not without some possible support and
cannot be excluded.

Moreover, we believe that the a; asymptote is not really a
constant in time but represents a decline too small to detect
in our experiment or even in experiments with considerably
longer delays (McBride & Dosher, 1997). The possibility of
a constant residue of recall until the experimental context
changes, however, cannot be rejected. Whether we assume
two kinds of processes for long-term memory or one
depends on future work. If we were to opt for one process,
however, it would have to be fit by the two terms, a,e ™72 +
as, or another function that produces values very similar to
it. In either case, the longer time constant implies that this
process should be viewed as a more permanent store rather
than a buffer that is continually being overwritten. It
describes our participants’ ability to retrieve items as a
function of lag, both for items that are correct and items that
are incorrect but present on the list that appear as intrusions.

We have no evidence that the information not remem-
bered on a given trial is lost permanently, and there is much
evidence from the history of the study of memory to indicate
that at least some information can be recovered with the
right cues. For instance, the same long-term components that
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describe correct recall also describe intrusions, and the level
of recall increases when cuing with the same as opposed to a
random color or no color. Thus we view our mathematical
description as a retention function as opposed to a forgetting
function. From this perspective, remembering involves
selecting the correct investigator-requested item from among
all other potential items in memory (Hunt & Smith, 1996;
Rubin, 1995). Why does the ability to discriminate one item
from among all others in memory decrease with trials?
Interference from or confusion among the target and added
items could be at fault. For shorter lags, the time (or number)
of intervening trials that have passed is a good disambiguat-,
ing cue (Baddeley, 1997, pp. 33-35). For longer lags it is
not. Our analysis of the lags of intrusions as a function of the
lag of the target shown in Table 2 supports this claim. There
are increases in both the number of intervening trials since
intrusions and the spread in the number of intervening trials
of intrusions with increases in the lag of the target. If this
view is correct, the added need to reinstate a context in recall
or in making a remember—know-new judgment as opposed
to just making an old-new judgment decreases the rate of
loss of disambiguating information, as the value of the 7,
constant is twice as great for such conditions.

The theoretical account just offered is.consistent with our
data, but it is not the only account that could be given. We
provide all of our key findings in the Appendix so that others
can formulate their own accounts. We do this so comprehen-
sive mathematical models of memory can now include the
shape of the retention function and perhaps a quantitative
description of the times taken to make a response, among the
other properties of memory they attempt to explain.
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Appendix
Values Obtained in Experiments
Table Al
Probability of Recall
Lag Matched White Random All3
Y 962 (.005) 943 (.007) .927 (.008) 944 (.004)
1 .663 (.018) 642 (017) 632 (.016) .646 (.010)
2 451 (.020) 431 (017) 418 (.020) 434 (011)
4 409 (.020) .372 (.019) .354 (.020) .379 (.011)
7 .358 (.020) .324 (.020) .323 (.020) 335 (.012)
12 .326 (.020) .296 (.019) 281 (.020) 301 (011)
21 248 (.018) 225 (.017) 220 (.017) .231 (.010)
35 .206 (.016) .176 (.015) .168 (.013) .183 (.009)
59 .140 (.014) 133 (.013) 127 (.013) .133 (.008)
99 126 (.013) 112 (.010) 2099 (.010) 112 (.006)

Note. Standard errors are in parentheses.

Table A2
Probability of Recognition ((Hits — False Alarms)/(1 — False Alarms)) and
False Alarms
Lag Old—new r + know Remember Know
0 .859 (.015) .890 (.012) .810 (.020) 217 (.076)
1 .825 (.016) 797 (.017) 642 (.029) .342 (.043)
2 741 (.020) .687 (.022) .503 (.026) .356 (.038)
4 .676 (.022) 659 (.022) 475 (.027) 309 (.034)
7 .599 (.025) .578 (.025) 401 (.025) 264 (.032)
12 .499 (.025) .514 (.023) 358 (.024) 197 (.030)
21 353 (.023) 413 (.025) 278 (.022) .176 (.026)
35 251 (.027) .330 (.025) .195 (.022) .158 (.024)
59 .233 (.030) .240 (.026) .141 (.023) .109 (.019)
99 228 (.024) 228 (.026) .134 (.018) .104 (.024)
FA .643 (.007) .649 (.008) 436 (.019) 213 (.018)

Note. Standard errors are in parentheses. FA = false alarms.

Table A3
Values for Ebbs for Recall and d' for Recognition
Lag Match White Random Old-new Remember Know
0 1.777 1.583 1.455 1.312 1.328 0.394
1 0.420 0.363 0.338 1.170 0.905 0.518
2 —-0.123 —-0.174 —0.206 0.973 0.679 0.504
4 -0.229 —0.326 —0.373 0.836 0.609 0.471
7 —0.364 —0.455 —0.458 0.691 0.507 0.377
12 -0451 —0.536 —0.580 0.558 0.443 0.258
21 —0.681 —0.755 -0.772 0.374 0.344 0.255
35 —0.822 —0.932 —0.963 0.264 0.233 0.228
59 —1.080 -1.113 —1.140 0.229 0.176 0.149

99 —1.145 —1.218 —1.288 0.223 0.158 0.146
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Table A4
Reaction Times in Milliseconds for Correct Responses and False Alarms (FA)

Cued recail Recognition
Lag Matched White Random All3 Old-new Remember Know

0 1,33521) 1,344(19) 1,390(23) 1,356(12) 1,041(17) 1,128(20) 1,331(61)
1 1,80036) 1,81536) 1,850(31) 1,822(20) 1,157(22) 1,214(23) 1,486 (40)
2 2029(47) 1,924 (34) 2,097 (47) 2,017(25) 1,191(20) 1,227(26) 1,469 (33)
4
7

2,138(52) 2,016 (40) 2,104 (47) 2,086 (27) 1215(22) 1,247 (23) 1,531(32)

2,117 (51) 2,116 (50) 2,100 (45) 2,111 (28) 1,221(23) 1,261(23) 1,511(33)
12 2278 (55) 2220(47) 2,215(55) 2,238(30) 1,241(22) 1,282(24) 1,530(33)
21 2,300(55) 2,264 (67) 2,272(59) 2,279(35) 1,250(22) 1,254(23) 1,583(33)
35 2,362(62) 2385(57) 2461(72) 2402(37) 1,280(23) 1,292(24) 1,578 (30)
59 2,502(77) 2,536(76) 2,584 (76) 2,540(44) 1.259(24) 1,278(22) 1,508 (26)
99 2,408 (83) 2474(84) 2,394(84) 2427(48) 1,282(24) 1,287(28) 1,559 (30)

FA 1,294 (23) 1,314 (21) 1,579 (28)
Table AS
Reaction Times in Milliseconds for Recall Error and Recognition Misses
Cued recall Recognition
Lag Matched White Random All3 Old—new r + know

0 2,345(183) 2,114 (105) 2,421 (135)  2,292(81)  1,230(55) 1,324 (65)
1 2,792 (66) 2,666 (79) 2,711 (70) 2,722 (41) 1,461 (52) 1,456 (47)
2 3,060 (73) 2,886 (60) 2,871 (62) 2,938 (38) 1,450(41) 1,509 (37)
4 2,925 (69) 2,849 (72) 2,846 (69) 2,872 (40) 1,493(35) 1,481 (36)
7 2,980 (61) 2,970 (66) 2,931 (73) 2,960 (38) 1,563 (33) 1,505 (33)
12 3,055 (70) 2,985 (81) 2,962 (62) 3,001 (41) 1,484 27y  1,517(33)
21 3,078 (65) 2,945 (68) 2,888 (67) 297039  1479(29) 1,463 (27)
35 2,989 (73) 3,053 (70) 2,890 (61) 2978 (40) 1,495(24)  1,485(29)
59 3,022 (65) 2,926 (68) 2,958 (65) 2,969 (38) 1,503 (26) 1,472 (25)
99 2,962 (71) 2,769 (69) 3,047 (74) 2927(42) 1470(25) 1,472(25)

Note. Standard errors are in parentheses.
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