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A classical solution is called universal if the quantum correction is a multiple of the metric.
Therefore, universal solutions play an important role in the quantum theory. We show that in a
spacetime which is universal all scalar curvature invariants are constant (i.e., the spacetime is CSI).

1. Universality

In [1, 2], metrics of holonomy Sim(n − 2) were investigated, and it was found that all 4-
dimensional Sim(2) metrics (which belong to the subclass of Kundt-CSI spacetimes) are
universal and consequently can be interpreted asmetrics with vanishing quantum corrections
and are automatically solutions to the quantum theory. A classical solution is called universal
if the quantum correction is a multiple of the metric and therefore plays an important role in
the quantum theory regardless of what the exact form of this theory might be.

That is, if the spacetime is universal, then every symmetric conserved rank-2 tensor,
Tab, which is constructed from the metric, Riemann tensor and its covariant derivatives, is of
the form

Tab = μgab, (1.1)

where μ is a constant. Now, for every scalar S that appears in the action (gravitational
Lagrangian) we obtain by variation (since these geometrical tensors are automatically
conserved due to the invariance of the actions under spacetime diffeomorphisms) a
symmetric conserved rank-2 tensor Sab. For each such tensor, we have from the condition of
universality that Sab = μ̂gab. By using an appropriate set of such scalars, we will show that the
resulting spacetime is CSI. Since the resulting spacetime is automatically an Einstein space,
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in effect we must show that all scalar contractions of the Weyl tensor and its derivatives are
constants [3–5]. We utilize the results of FKWC [6–8] to obtain all conserved rank-2 tensors
obtained from variations (byNoether’s theorem) of an elemental scalar Riemann polynomial.

There are a number of related results wewould like to investigate in this paper.Wewill
state these in terms of a conjecture and will corroborate this conjecture by proving a number
of subresults.

Conjecture 1.1. A Universal n-dimensional Lorentzian spacetime, (M,g), has the following
properties.

(1) It is CSI.

(2) It is a degenerate Kundt spacetime.

(3) There exists a spacetime, (˜M, g̃), of Riemann type D having identical scalar polynomial
invariants; consequently (˜M, g̃) is spacetime homogeneous.

(4) There exists a homogeneous isotropy-irreducible Riemannian spacetime (̂M, ĝ) having
identical scalar polynomial invariants as (M,g); that is, (̂M, ĝ) is universal as a
Riemannian space.

In low dimensions, this conjecture can be proven; in particular, dimension 2 is trivial
as there is only one independent component, namely, the Ricci scalar R. In dimension 3, there
are only Ricci invariants and the conjecture can be proven by brute force using symmetric
conserved tensors. Most of our investigation will focus on dimension 4, and unless stated
otherwise, we will assume that there is a 4 dimensional manifold.

We will use different methods to substantiate the above conjecture. This will consist of
partial proofs and other arguments.

2. The CSI Case

Let us first provide with results substantiating the claim that universal spacetimes are CSI.
This is clearly the case in the Riemannian case where Bleecker [9] showed that the critical
manifolds are homogeneous, hence, CSI.

2.1. The Direct Method

Field theoretic calculations on curved spacetimes are nontrivial due to the systematic
occurrence, in the expressions involved, of Riemann polynomials. These polynomials are
formed from the Riemann tensor by covariant differentiation, multiplication, and contraction.
The results of these calculations are complicated because of the nonuniqueness of their
final forms, since the symmetries of the Riemann tensor as well as Bianchi identities can
not be used in a uniform manner and monomials formed from the Riemann tensor may
be linearly dependent in nontrivial ways. In [6], Fulling, King, Wybourne, and Cummings
(FKWC) systematically expanded the Riemann polynomials encountered in calculations
on standard bases constructed from group theoretical considerations. They displayed such
bases for scalar Riemann polynomials of order eight or less in the derivatives of the metric
tensor and for tensorial Riemann polynomials of order six or less. We adopt the FKWC-
notations Rr

s,q and Rr
{λ1··· } to denote, respectively, the space of Riemann polynomials of rank

r (number of free indices), order s (number of differentiations of the metric tensor), degree
q (number of factors ∇pR...

...), and the space of Riemann polynomials of rank r spanned by
contractions of products of the type∇λ1R...

... [6]. The geometrical identities utilized to eliminate
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“spurious” Riemannmonomials include (i) the commutation of covariant derivatives, (ii) the
“symmetry” properties of the Ricci and the Riemann tensors (pair symmetry, antisymmetry,
cyclic symmetry), and (iii) the Bianchi identity and its consequences obtained by contraction
of index pairs.

In this paper, we actually use a slightly modified version of the FKWC-bases [7, 8],
which are independent of the dimension of spacetime and provide irreducible expressions
for all of our results. In addition, the results of [8] provide irreducible expressions for the
metric variations (i.e., for the functional derivatives with respect to the metric tensor) of the
action terms associated with the 17 basis elements for the scalar Riemann polynomials of
order six in derivatives of the metric tensor (the so-called curvature invariants of order six).

2.1.1. Riemann Polynomials of Rank 0 (Scalars)

The most general expression for a scalar of order six or less in derivatives of the metric tensor
is obtained by expanding it on the FKWC-basis for Riemann polynomials of rank 0 and order
6 or less [6].

The subbasis for Riemann polynomials of rank 0 and order 2 consists of a single element:
R [R0

2,1].
Choosing S to be the Ricci scalar, R, we find that the Einstein tensor is conserved and

Rab = λgab, where λ is a constant, and the spacetime is necessarily an Einstein space:

Rpq = λgpq; Rpq;r = 0. (2.1)

Every scalar contraction of the Ricci tensor (or its covariant derivatives, which are in fact
zero) will thus necessarily be constant. Every scalar contraction of the Riemann tensor and
its derivatives with the Ricci tensor or its covariant derivatives will be constant. For example,
for S = RabR

ab for an Einstein space we have that Sab = 2(Racbd − (1/4)gabRcd)Rcd = μ̃gab
(where μ̃ ≈ λ2). Every mixed invariant (containing both the Ricci tensor and the Weyl tensor
and their derivatives, will be constant or can be written entirely as a contraction of scalars
involving just the Weyl tensor and its derivatives (up to an additive constant term).

Thus to prove that the resulting spacetimes are CSI, we must show that all scalar
contractions of the Weyl tensor and its derivatives are constants.

The subbasis for Riemann polynomials of rank 0 and order 4 has 4 elements: �R [R0
4,1]: R

2,
RpqR

pq, RpqrsR
pqrs[R0

4,2].
From (2.1), there is only one rank 0/order 4 independent scalar, C2 ≡ CpqrsC

pqrs.
By varying S = C2, we obtain a symmetric conserved rank-2 tensor which depends
on polynomial contractions of the Weyl tensor quadratically, which by universality is
proportional to the metric:

CalmnC
lmn
b + CblmnC

lmn
a = 2̂λgab. (2.2)

Hence we have that

C2 = ̂λ. (2.3)

Indeed, by choosing S to be a polynomial contraction of the Weyl tensor alone (higher
than quadratic), we find that by varying S we obtain symmetric conserved rank-2 tensors
which depend on polynomial contractions of the Weyl tensor which by universality are
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proportional to the metric, and hence all zeroth-order invariants constructed form the Weyl
tensor are constant (and the spacetime is said to be CSI0). We note that in higher dimensions,
all Lovelock tensors are divergence free and consequently (by universality) proportional to
the metric. However, we will not proceed in this way here.

The most general expression for a gravitational Lagrangian of order six in derivatives
of the metric tensor is obtained by expanding it on the FKWC-basis for Riemann polynomials
of order 6 and rank 0. This subbasis consists of the 17 following elements [6]: ��R [R0

6,1]:
R�R, R;pqR

pq, Rpq�Rpq, Rpq;rsR
prqs[R0

{2,0}]: R;pR
;p, Rpq;rR

pq;r , Rpq;rR
pr;q, Rpqrs;tR

pqrs;t[R0
{1,1}]:

R3, RRpqR
pq, RpqR

p
rR

qr , RpqRrsR
prqs, RRpqrsR

pqrs, RpqR
p

rstR
qrst, RpqrsR

pquv, Rrs
uv, and

RprqsR
p
u
q
vR

rusv[R0
6,3].

In general, only 10 of these give rise to independent variations. The other 7 depend on
these via total divergences (and Stokes theorem); the functional derivatives (i.e., conserved
tensors)with respect to the metric tensor of the 7 remaining action terms can then be obtained
in a straightforward manner.

In the case of an Einstein space satisfying the conditions (2.1), (2.2), and (2.3), there
are only three independent rank 0/order 6 scalars:

(∇C)2 ≡ Cpqrs;tC
pqrs;t, C3

1 ≡ CpqrsC
pquvCrs

uv, C3
2 ≡ CprqsC

p
u
q
vC

rusv, (2.4)

(where, for example, (∇C)2 ≡ Rpqrs;tR
pqrs;t = Cpqrs;tC

pqrs;t).
Variations of the last four scalars in the list above give rise to 4 independent conserved

rank-2 tensors (although RRpqrsR
pqrs and RpqR

p
rstR

qrst are equivalent to λ̂λ, their variations
are nontrivial). Note that Rpqrs;tR

pqrs;t depends on the other 4 scalars via a total divergence
(and Stokes theorem).

2.1.2. Conserved Rank 2 Tensors of Order Six

The functional derivatives of the ten independent action terms on the FKWC basis were
expanded in [7]: for an Einstein space satisfying the conditions (2.1), (2.2), and (2.3), we
obtain the following 4 independent explicit irreducible expressions for the metric variations
of the action terms constructed from the 17 scalar Riemann monomials of order six:

H
(6,3)(7)
ab

≡ 1√−g
δ

δgab

∫

M
dDx

√−gRpqrsR
pquvRrs

uv

= 24Rp
(a

;qrR|pqr|b) − 12Rp
a;qRpb

;q + 12Rp
a;qR

q
b;p

+ 3Rpqrs
;aRpqrs;b − 6Rpqr

a;sRpqrb
;s − 6RpqRrs

paRrsqb

+ 12RprqsRt
pqaRtrsb +

1
2
gab

[

RpqrsR
pquvRrs

uv

]

,

(2.5)

which implies that (using (2.1), (2.2)-(2.3))

3Cpqrs
;aCpqrs;b − 6Cpqr

a;sCpqrb
;s + 12CprqsCt

pqaCtrsb +
1
2
gab

[

CpqrsC
pquvCrs

uv

]

= λ1gab. (2.6)
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In addition,

H
(6,3)(5)
ab

≡ 1√−g
δ

δgab

∫

M
dDx

√−gRRpqrsR
pqrs,

H
(6,3)(6)
ab

≡ 1√−g
δ

δgab

∫

M
dDx

√−gRpqR
p
rstR

qrst,

H
(6,3)(8)
ab

≡ 1√−g
δ

δgab

∫

M
dDx

√−gRprqsR
p
u
q
vR

rusv

(2.7)

yield (respectively)

2CpqrsCpqrs;(ab) + 2Cpqrs
;aCpqrs;b

+ gab
[−2Cpqrs;tC

pqrs;t + 2CpqrsC
pquvCrs

uv + 8CprqsC
p
u
q
vC

rusv] = λ2gab,

1
2
CpqrsCpqrs;(ab) +

1
2
Cpqrs

;aCpqrs;b − Cpqr
a;sCpqrb

;s

+ CpqrsCpqtaCrs
t
b + 4CprqsCt

pqaCtrsb − Cpqr
sCpqrtC

s
a
t
b

+
1
4
gab

[−Cpqrs;tC
pqrs;t + CpqrsC

pquvCrs
uv + 4CprqsC

p
u
q
vC

rusv] = λ3gab,

− 3
4
CpqrsCpqrs;(ab) +

3
4
Cpqrs

;aCpqrs;b − 3
2
CpqrsCpqtaCrs

t
b − 9CprqsCt

pqaCtrsb

+
3
2
Cpqr

sCpqrtC
s
a
t
b +

1
2
gab

[

CprqsC
p
u
q
vC

rusv] = λ4gab.

(2.8)

Contracting (2.6), (2.8), and using Cpqrs�Cpqrs = −C3
1 − 4C3

2 + 2λ̂λ (etc.) [7], we then
obtain

−3(∇C)2 + 2C3
1 + 12C3

2 = 4λ1,

−3(∇C)2 + 3C3
1 + 4C3

2 = 2λ2 − 2λ̂λ,

−3(∇C)2 + 3C3
1 + 12C3

2 = 8λ3 − 2λ̂λ,

−3(∇C)2 + 3C3
1 + 16C3

2 = −16λ4 − 6λ̂λ,

(2.9)

and hence the 3 independent scalars of order 6 are all constant:

(∇C)2 = μ1, C3
1 = μ2, C3

2 = μ3. (2.10)

Since all of the basis scalars of order six are constant, then all scalars of order six are constant.
We now proceed with the higher-order scalars: orders (8,10,12) were considered

in [6]. In particular, there is a subbasis of scalar (rank-0) order 8 polynomials consisting
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of 92 elements given in [6, Appendix B] from which, by variation, we can obtain a set of
independent conserved rank-2 tensors of order 8. For an Einstein space satisfying (2.1), (2.2)-
(2.3) and (2.10), there are only 11 independent scalars: Cpqrs;tuCpqrs;tu and CpqrsCp

tuvCqtru;sv, 3
scalars (involving squares of the first covariant derivative) of the form CprqsCtuv

p;qCtuvr;s, and
6 algebraic fourth-order polynomials of the form CpqrsCpqr

tCuvw
sCuvwt. By obtaining the set

of (more that 12) independent conserved rank-2 tensors of order 8, it follows that all of these
11 independent scalars are constant. In particular, the 3 scalars involving the first covariant
derivative of the Weyl tensor are constant, and we are well on our way to show that the
spacetime is CSI1. Indeed, in four dimensions, this is sufficient to show that the resulting
spacetime is CSI [3–5]. Continuing in this way, we obtain the result that in a universal
spacetime all scalar curvature invariants are constant.

2.2. The Slice Theorem

Let Ii be all possible curvature invariants. Then we can generate a corresponding set of
conserved symmetric tensors, Ti,μν, by considering the variation of S[Ii] =

∫

Ii
√−gdNx.

Assume that the spacetime under consideration is universal. If the spacetime is
strongly universal, then all of these symmetric tensors are zero: Ti,μν = 0. If there is a Ti,μν
which is nonzero, then the spacetime is weakly universal, and, assuming that T1,μν = λ1gμν /= 0,
then we can define the equivalent set of invariants:

˜I1 = I1 + 2λ1, ˜Ii = Ii − λi
λ1

I1. (2.11)

We notice that for this new set of invariants, the corresponding conserved tensors are all zero:
˜Ti,μν = 0.

This means that we have a full set of invariants all of which has a zero variation:
δS/δgμν = 0. This is a signal that the universal metric has degeneracy in their curvature
structure. In particular, consider a metric variation δgμν = εhμν where hμνg

μν = 0 (traceless).
Then this implies that the variation with respect to the metric is zero implying that the
variation of all the invariants in the direction of hμν is zero. The metric is therefore a fixed
point of all possible actions.

For the degenerate Kundt metrics, there exists a one-parameter family of metrics
gτ such that Ii[g] = Ii[gτ]. Clearly, this implies that limτ → 0((S[g] − S[gτ]))/τ) = 0; that
is, δS/δgμν valishes along hμν ≡ limτ → 0((gμν − gτ,μν)/τ). We note that for the Kundt
spacetimes this metric deformation can always be chosen to be traceless (indeed, nilpotent).
The universality condition puts additional conditions since all variations of the metric
are required to be zero. However, degenerate Kundt metrics are particularly promising
candidates for universal metrics [10].

In the Riemannian case, the slice theorem was used by Bleecker [9] to show many
results regarding critical metrics. The slice theorem considers the manifold of metrics modulo
the diffeomorphism group. Ebin [11] proved the slice theorem for compact Riemannian
case. The Lorentzian case is a bit more problematic, and its validity is questionable for the
general case but Isenberg and Marsden [12] showed a slice theorem for solutions to the
Einstein equations given some assumptions (essentially, gobal hyperbolicity and compact
spatial sections). In its infinitesimal version, it states that a symmetric tensor can be split as
follows:

Sμν = £Xgμν + Tμν, (2.12)
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for a vector field X, and T is conserved: ∇μTνμ = 0. The vector field X can be interpreted as
the generator of the diffeomorphism group and thus is a “gauge freedom”.

Consider the case when the slice theorem is valid. One can now show that universality
implies CSI (following parts of Bleecker’s argument). Assume therefore that the spacetime
is not CSI. Then there must exist a nonconstant invariant I. In particular, there must exists
a nontrivial interval [a, b] onto which the invariant I is onto. Choose therefore a sufficiently
small and smooth function f(I). The space of such functions is clearly infinite dimensional.
Construct then the tensor deformation g̃μν = (1 + f(I))gμν. By the slice theorem, there
exists a diffeomorphism φ such that φ∗g̃μν is conserved. Clearly, φ∗g̃μν is an invariant
tensor and thus, by universality, φ∗g̃μν = λgμν. This implies that the metric deformation
is a conformal transformation. However, the space of conformal transformations is finite,
thus, it must be possible to choose an f(I) such that φ∗g̃μν /=λgμν. Consequently, the space
is not universal. To summarise, not CSI implies not universal, thus universality implies
CSI.

Note that in the compact Riemannian case the slice theorem holds thus universality
implies CSI. In the Riemannian case, CSI implies locally homogeneous, and thus this provides
a slightly alternate proof to that of Bleecker [9].

This result depends crucially on the validity of the slice theorem and it is unclear to
the authors for which Lorentzian spaces it holds. However, the result is important as one
can see that there is a clear link between universality and CSI spaces and thus supports our
conjecture.

3. Kundt CSI Metrics

In [5], we proved that if a 4D spacetime is CSI, then either the spacetime is locally
homogeneous or the spacetime is a Kundt spacetime. The Kundt-CSI spacetimes are of
particular interest since they are solutions of supergravity or superstring theory when
supported by appropriate bosonic fields [13]. It is plausible that a wide class of CSI solutions
are exact solutions to string theory nonperturbatively [14]. In the context of string theory,
it is of considerable interest to study higher-dimensional Lorentzian CSI spacetimes. In
particular, a number of higher-dimensional CSI spacetimes are also known to be solutions of
supergravity theory [13]. The supersymmetric properties of CSI spacetimes have also been
studied, particularly those that admit a null covariantly constant vector (CCNV).

A Kundt CSI can be written in the form [15]

ds2 = 2du
[

dv +H
(

v, u, xk
)

du +Wi

(

v, u, xk
)

dxi
]

+ g⊥
ij

(

xk
)

dxidxj , (3.1)

where the metric functions H and Wi, requiring CSI0, are given by

Wi

(

v, u, xk
)

= vW
(1)
i

(

u, xk
)

+W
(0)
i

(

u, xk
)

,

H
(

v, u, xk
)

= v2σ̃ + vH(1)
(

u, xk
)

+H(0)
(

u, xk
)

,

σ̃ =
1
8

(

4σ +W (1)iW
(1)
i

)

,

(3.2)
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where σ is a constant. The remaining equations for CSI0 that need to be solved are (hatted
indices refer to an orthonormal frame in the transverse space):

W
(1)

[̂i;̂j] = a
̂îj ,

W
(1)

(̂i;̂j) −
1
2

(

W
(1)
̂i

)

(

W
(1)
̂j

)

= s
̂îj ,

(3.3)

and the components R⊥
̂îjm̂n̂

are all constants (i.e., dS2
H = g⊥

ij(x
k)dxidxj is curvature homo-

geneous). In four dimensions, g⊥
ij(x

k)dxidxj is 2 dimensional, which immediately implies
g⊥
ij(x

k)dxidxj is a 2-dimensional locally homogeneous space and, in fact, maximally
symmetric space. Up to scaling, there are (locally) only 3 such, namely, the sphere, S2; the
flat plane, E

2; and the hyperbolic plane, H
2.

Equation (3.3) now gives a set of differential equations for W
(1)
̂i

. These equations

determine uniquely W
(1)
̂i

up to initial conditions (which may be free functions in u). Also,
requiring CSI1 gives an additional set of constraints:

α
̂i = σW

(1)
̂i

− 1
2

(

s
̂ĵi + a

̂ĵi

)

W (1)̂j ,

β
̂îĵk = W (1)n̂R⊥

n̂̂îĵk
−W

(1)
̂i

a
̂ĵk +

(

s
̂i[̂j + a

̂i[̂j

)

W
(1)
̂k]

,

(3.4)

where αi and β
̂îĵk are constants determined from the curvature invariants. We note that for a

four-dimensional Kundt spacetime, CSI1 implies CSI [5].
The relation between CSI spacetimes and those that are universal is strong.

Theorem 3.1. A universal spacetime of Petrov type D, II, or III, is Kundt CSI.

Proof. Consider type D first. Here, assuming the spacetime is Einstein, we have that the
spacetime is necessarily CSI0 (which follows from previous discussion). This implies that
the b.w. 0 components are constants also in the canonical frame. Using the Bianchi identities,
it immediately follows that it is Kundt also. Since the previous analysis also implies that it is
CSI1, then we have that the spacetime is Kundt-CSI.

For type II, the analysis is almost identical to the type D analysis. For type III, it
requires to calculate some conserved tensors. Using the Weyl type III canonical form, the
Bianchi identities imply that κ = σ = 0 (and ρ = ε, β = τ , α = −2π , γ = −2μ). Requiring
also that H(6,3)(8)

ab
= λgab, say, gives the additional equation: ρ2 = 0. Clearly, ρ = 0 and the

spacetime is Kundt. Since CSI1 implies CSI for Kundt spacetimes, the theorem follows.

Although the theorem does not include Weyl type N and I, it is believed that these are
Kundt. For type I, the expressions are so messy for the conserved tensors to be manageable,
and for type N it is necessary to compute a partricular order 16 conserved tensor.

Thus proves the first two statements in the Conjecture 1.1 for Petrov types D, II and III
in 4 dimensions. However, we can also see that the last two statements are true.

Proposition 3.2. Given a 4DKundt CSI spacetime (M,g). If (M,g) is universal then Conjecture 1.1
is true.
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Proof. The proof utilises the results from [5]. Assuming Einstein and Kundt CSI reduces
to the cases where the corresponding homogeneous spacetime (˜M, g̃) is locally one of the
following: Minkowski, de Sitter, anti-de Sitter, dS2 × S2, or AdS2 ×H2. These again have the
corresponding Riemannian counterparts, (̂M, ĝ), with identical invariants: flat space, S4,H4,
S2 × S2,H2 ×H2.

Note. The opposite is not true namely, that for every Riemannian universal spacetime there
is a Lorentzian spacetime with the same invariants. For example, the symmetric spaces CP 2

and H2
C
(with the corresponding Fubini-Study and Bargmann metrics, respectively) do not

have Lorentzian counterparts. Thus the Conjecture 1.1 is signature dependent.
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