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SUMMARY

Subjects often drop out of longitudinal studies prematurely, yielding unbalanced data with unequal numbers
of measures for each subject. A simple and convenient approach to analysis is to develop summary measures
for each individual and then regress the summary measures on between-subject covariates. We examine
properties of this approach in the context of the linear mixed e!ects model when the data are not missing
completely at random, in the sense that drop-out depends on the values of the repeated measures after
conditioning on "xed covariates. The approach is compared with likelihood-based approaches that model
the vector of repeated measures for each individual. Methods are compared by simulation for the case where
repeated measures over time are linear and can be summarized by a slope and intercept for each individual.
Our simulations suggest that summary measures analysis based on the slopes alone is comparable to full
maximum likelihood when the data are missing completely at random but is markedly inferior when the
data are not missing completely at random. Analysis discarding the incomplete cases is even worse, with
large biases and very poor con"dence coverage. Copyright ( 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

Many longitudinal studies su!er from attrition, that is, subject dropping out prematurely.
Examples include panel surveys or cohort studies, and clinical trials with designs that involve
repeated measurements to chart the course of a disease. The resulting data are unbalanced with
unequal numbers of measures for each subject. Mixed linear e!ects models with normal errors1~3

provide a #exible tool for analysing unbalanced longitudinal data, and software for maximum
likelihood estimation under these models is now widely available to practitioners.4,5 These
analysis tools are valuable in that they incorporate all the available information in the data, and
they can reduce or even eliminate the bias resulting from an analysis con"ned to the complete
cases. However, estimates from these models assume that the missing data are missing at
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Figure 1. Schematic of a monotone missing data pattern, with X representing covariates,>
1
,2,>

4
repeated measures at

four time points, and blocks representing data

random, in Rubin's6 sense. A number of methods that provide for drop-out processes that are not
missing at random have also been proposed.7~15 Little16 reviews these methods within a
uni"ed framework based on likelihood inference for models for the data and the drop-out
mechanism.

A drawback of these approaches is that they require speci"cation of a full model for the vector
of repeated measures for each individual, and a model for the drop-out mechanism if it is not
missing at random. A simple and intuitive alternative approach is summary measures analysis;
one or more measures of interest are formulated, these measures are estimated for each subject
from their set of repeated measures, and the resulting summary measures are then regressed on
subject-level characteristics. This approach may be less e$cient than an analysis based on a full
statistical model for the repeated measures, but it has potential advantages in terms of simplicity
and reduced modelling assumptions, and it is very commonly applied in practice. NamKve applica-
tions of the summary measures approaches do not take into account the fact that the measures
have di!erential precision when based on variable numbers of repeated measures. We study here
a relatively re"ned version of the approach that takes this di!erential precision into account in
the context of a linear mixed e!ects model.

We compare the summary measures approach with inference based on a full model for the
repeated measures ignoring the missing-data mechanism, using both maximum likelihood and
the method of moments to estimate the variances. Our main interest is in comparisons when the
data are not missing completely at random, in the sense that missingness depends on values of the
repeated measures. For concreteness we consider linear models where the repeated measures are
regressed on time, and the summary measures are an estimated slope and intercept for each
individual. Speci"c questions we address are:

(a) What assumptions about the missing data mechanism are implied by the summary
measures approach?

(b) What are the relative merits of multivariate and univariate summary measures analyses
when the data are not missing completely at random?

(c) Under what circumstances is a full likelihood-based analysis based on a model for the
vector of repeated measures preferable to a summary measures analysis? Are there practic-
ally interesting situations where the summary measures analysis dominates an analysis
based on the full model?

(d) How important is it to estimate the variance parameters by maximum likelihood, rather
than by simpler approaches based on the method of moments?
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2. MODELS FOR THE REPEATED MEASURES AND DROP-OUT MECHANISM

We adopt the following general model for repeated-measures data with drop-outs.16 Suppose
that the data for subject i consist of up to K repeated measures on outcome variables >

1
,2,>

K
.

The data form a monotone pattern as displayed in Figure 1, so that if >
j
is missing then >

k
is

missing for all k'j. For subjects i"1,2, n, let y
i
"(y

i1
,2, y

iK
) be a (1]K) complete-data

vector of outcomes for subject i, possibly incompletely observed. We write y
i
"(y

0"4,i
, y

.*4,i
),

where y
0"4,i

"observed part of y
i
, y

.*4,i
"missing part of y

i
. Note that lower-case y

i
denotes rows

(cases) and upper-case >
k
denotes columns (variables).

X
i
denotes "xed covariates or design matrices, including times of measurement (t

i1
,2, t

iK
)

measured from some meaningful baseline, for example, calendar time or start of treatment. These
variables are assumed fully observed. R

i
is the missing-data indicator, indexing complete and

incomplete patterns of data. Speci"cally, let R
i
"0 for complete cases, and let R

i
"k if a subject

drops out between the (k!1)th and kth observation time, that is, y
i1
,2, y

i,k~1
are observed and

y
ik
,2, y

iK
are missing. b

i
is the (q]1) vector of unobserved random coe$cients characterizing the

mean of y
i
. c is the set of "xed model parameters for the distribution of y

i
and t is the set of "xed

model parameters for the distribution of R
i
given y

i
.

We focus here on a special case of this model where the mean of y
ij

is a linear function of time
with a random slope and intercept for each individual. That is
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denotes the k-variate normal distribution, the random coe$cients b
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M(y
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Large-sample inference for "xed parameters c can be based on the method of maximum
likelihood with associated asymptotic standard errors, using iterative algorithms such as scoring,
EM and extensions.17~19 Bayesian inference can be implemented via stochastic simulation,20~22

and provides a better analysis than maximum likelihood for small samples.
This approach requires speci"cation of a model for the distribution of R

i
given y

i
, X

i
, which is

often not an easy task. A simpler approach is to base inference on the likelihood ignoring the
drop-out mechanism:
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. (3)
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Inference based on (3) is valid (although not necessarily fully e$cient) when the drop-out
mechanism is missing at random,6,16 in that it does not depend on the missing data y

.*4,i
or

unobserved random coe$cients b
i
after conditioning on the observed variables X

i
, y

0"4,i
and the

parameters t:

p(R
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, b

i
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i
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i
, y

0"4,i
, t). (4)

If (4) holds and the parameters c and t are also distinct, then inference based on (3) is e$cient and
equivalent to inferences based on the full likelihood (2). The drop-out mechanism is then called
ignorable.6,16

We de"ne two other classes of drop-out mechanisms, one stronger than missing at random and
one weaker. As discussed in Little,16 a number of alternative methods to maximum likelihood,
including analysis of the complete cases and unweighted forms of generalized estimating equa-
tions, make the stronger assumption of covariate-dependent drop-out, where missingness is
allowed to depend only on the covariates X

i
:

p(R
i
DX

i
,y

0"4,i
, y

.*4,i
, b
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, t)"p (R
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, t). (5)

Some authors call this condition missing completely at random,13 but we adopt a terminology
more consistent with Rubin's original ideas6 and con"ne the latter term to mechanisms that do
not depend on the random e!ects, the repeated measures or the covariates.16

We also "nd it useful to distinguish mechanisms that are missing at random conditional on the
values of the unknown random coe$cients b

i
, and accordingly propose the following new

de"nition. The drop-out mechanism is called subject-speci"c missing at random if it does not
depend on the missing data but is allowed to depend on the observed variables and unobserved
random coe$cients:
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Subject-speci"c missing at random is clearly weaker than missing at random. It is relevant in the
repeated-measures setting since under this condition maximum likelihood-based summary
measures calculated separately for each individual are consistent for the true individual value as
the number of repeated measures on an individual tends to in"nity. This form of asymptotics is
unrealistic for small numbers of repeated measures but has some relevance for longer series of
measurements.

We now con"ne attention to the model (1), and analyses that ignore the drop-out mechanism.
We assume for simplicity that all cases have at least two observations. In that case, maximum
likelihood estimates for the average slope and intercept under (1) can be expressed in terms of the
least squares intercept and slope b)

i
"(b)

i0
, b)

i1
)T estimated from the observed vector of repeated

measurements for subject i. Since the number of repeated measures for each subject varies, these
estimates have di!erential precision. Under the model (1) we have
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i
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and tN
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and u
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"+ki

j/1
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ij
!tN

i
)2 are, respectively, the mean and sum of squares about the mean of

the times of measurement for subject i. We consider four methods of analyses for the average
slope h

1
, distinguished by (a) whether the least squares slope and intercept for each individual is
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included in the analysis or the slope alone, and (b) whether the variance parameters are estimated
by maximum likelihood or by the method of moments.

To derive the analyses that use the slopes and intercepts, note that the maximum likelihood
estimate of h for known <

i
weights the least squares estimates b)

i
according to their precision,

that is
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i
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0
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1
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iterative method such as scoring or EM. A simpler approach is to replace the maximum
likelihood estimates of the variance parameters by non-iterative method of moment estimates23
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where b1 is the unweighted average of the b)

i
. We call the resulting method generalized least

squares (GLS), following Wang-Clow et al.24
If interest is in the average slope and the intercept is a nuisance parameter, a univariate

summary measures approach discards the estimated intercepts and bases inference on the
individual slopes b)

i1
alone, together with a pooled estimate of p2. For known <

i
, the maximum

likelihood estimate of the slope based on these data is
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The residual variance p2 is estimated by the pooled mean square p( 2"+n
i/1

rss
i
/(N!2n) where

rss
i
is the residual sum of squares from the regression for individual i, N is the total number of

observations and n is the number of subjects. The between-subjects variance q2
1

is estimated by its
iterative maximum likelihood estimate conditional on p2"p( 2. We call the resulting approach
summary measures maximum likelihood (SMML). Estimates and large sample standard errors
are readily computed using a maximum likelihood program such as SAS Proc Mixed.5 More
simply, estimating q2

1
by the method of moments
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we obtain weighted least squares (WLS) estimates, again using the terminology in Wang-Clow
et al.24

An even simpler approach is to discard the incomplete cases and base inferences on the
complete cases. All the methods described above are equivalent when applied to the subset of
complete cases, and we call the resulting method complete-case (CC) analysis.

These "ve methods } IML, GLS, SMML, WLS, CC analysis } yield asymptotically valid
inferences when the missing data mechanism is missing completely at random, in that drop-out
does not depend on the repeated measures or the unobserved random e!ects. The e$ciency of the
estimates varies, however. When data are not missing completely at random, the methods vary
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not only in relative e$ciency but also in the degree of bias, as the simulation study described
below indicates.

It is well known that IML yields valid inferences when the drop-out mechanism is missing at
random, as in equation (4). CC analysis is consistent under covariate-dependent drop-out (5), but
is generally biased when drop-out depends on the underlying random coe$cients or the repeated
measures. The degree of bias depends on the speci"c form of the mechanism. The method
appeared competitive with IML in the simulation of Wang-Clow et al.,24 suggesting that gains in
methods that use the incomplete cases may be minor. However, the simulations reported here
suggest that this "nding was a consequence of the particular choices of parameters in that
simulation, and does not have broad validity.

SMML is a maximum likelihood technique, so one might think it is valid for drop-out
mechanisms that are missing at random. However, that is only true for maximum likelihood
methods like IML that use all the data. For maximum likelihood methods that use only partial
summaries of the data, the relevant assumption is that drop-out does not depend on the missing
values after conditioning on the observed data in each case that are included in the analysis, that is,
the summary measure for each case. Since the summary measure is a di!erent combination of the
repeated measures for each missing-data pattern, this condition reduces to the stronger assump-
tion of covariate-dependent drop-out (5). To see this, we can write the pertinent missing at
random assumption for the summary measures analysis as

p(R
i
"j DX
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i
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is the vector of coe$cients de"ning the summary measure for the pattern R
i
"j. In

particular, for the SMML method cT
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. Summing the probabilities over all J patterns yields
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"j DX

i
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j
y
i
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.

Consider this constraint as y
i
and X

i
ranges continuously over all their possible values. Since

the vector c
j
is di!erent for each pattern j, the constraint implies that each p (R

i
"j DX

i
, cT

j
y
i
, t)

must be a constant function of its argument cT
j
y
i
, implying a covariate-dependent drop-out

mechanism (5).
This argument does not prove that covariate-dependent drop-out is a necessary condition for

SMML to yield consistent estimates, since Rubin's theory6 shows that the missing at random
assumption is su$cient to ignore the mechanism, not necessary. The size of bias of SMML for
particular missing-at-random mechanisms is not clear, and it is also of interest to study the
properties of IML and SMML for non-MAR mechanisms. It seems possible that SMML
could have less bias than IML if the estimated intercepts for each case that are input
into the IML method are biased by the mechanism, but the estimated slopes are relatively free of
bias.

The GLS and WLS methods can be expected to be more vulnerable to deviations from missing
completely at random than their maximum likelihood counterparts IML and SMML, since the
method-of-moments estimates of the variance parameters are not consistent under mechanisms
other than covariate-dependent drop-out. However, GLS and IML, and WLS and SMML, have
not been studied side by side in previous simulations, so the quantitative e!ects of using moment
estimators rather than maximum likelihood estimators of the variance parameters have not been
assessed.

2470 R. J. LITTLE AND T. RAGHUNATHAN

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2465}2478 (1999)



Figure 2. Pro"le plots of ten randomly chosen subjects from each of the four simulated populations

A simulation study was conducted to address these questions, under a broader range of
drop-out mechanisms than have been considered in earlier studies.

3. SIMULATION STUDY

The "ve methods (IML, GLS, WLS, SMML, CC) were implemented on incomplete data sets with
three time points and missing values con"ned to the third time point. That is, the observed data
had only two patterns: complete cases and cases with the third observation missing. The complete
data were generated using the following model. First, the subject-speci"c regression coe$cients
were generated as

C
b
i0

b
i1
D&NAC

1

2D ,C
1

oq
1

oq
1

q2
1
DB

then n observations were generated independently from univariate normal distributions
[y

ij
Db

i0
, b

i1
]&N(b

i0
#b

i1
j , p2). Four sets of parameter values were generated according to

a factorial design with p2"4, q2
1
"0)25, 4, o"!0)6, 0)6. For each parameter set 1000 data sets

were generated for sample sizes n"200 and 1000, yielding 8000 data sets in all. Figure 2 displays
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data for samples of ten individuals for each of the combinations of p2, q2
1

and o, to give a sense of
what the data look like. For each data set, missing values at the third time point were created by
each of the following six drop-out mechanisms:
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where ' is the cumulative normal distribution function. The coe$cients j
0
, j

1
in the above

mechanisms were chosen so that approximately 30 per cent of cases have the third time
point missing. The "rst mechanism is missing completely at random, which is equivalent to
covariate-dependent drop-out for this model. The next two mechanisms are missing at
random, where in MAR-SUM drop-out depends on the sum of the "rst two observations and
in MAR-DIFF drop-out depends on the di!erence; the fourth and "fth mechanisms are
non-ignorable (NI) elaborations of MAR-SUM and MAR-DIFF where missingness is also
allowed to depend on the underlying unobserved intercept (NI-Intercept) or the underlying
unobserved slope (NI-Slope); and the last mechanism NI-Y3 is non-ignorable since missing-
ness depends on the outcome at the third repeated measure, which is missing for some cases.
All the mechanisms except NI-Y3 are subject-speci"c missing at random as de"ned by
equation (6).

One reason for studying data sets with just three time points is that the individual estimated
intercepts and slopes are easily computed and interpreted. In particular

b)
i1
"G

y
i2
!y

i1
,

(y
i3
!y

i1
)/2,

for incomplete cases

for complete cases.

Table I displays the mean empirical bias and empirical standard deviation of the estimated
average slopes from each the "ve methods, calculated over the 1000 data sets, for each parameter
set and drop-out mechanism. Table IA shows results for the mechanisms that are missing
completely at random and missing at random, and Table IB shows results for the non-ignorable
mechanisms. The column label &Cov' shows the number of 90 per cent con"dence intervals that
cover the true parameter value. These intervals are based on large-sample standard errors and
a normal reference distribution, which are good approximations for the samples sizes simulated.
If the intervals have correct nominal coverage we expect 900 to cover the true parameter value.
The following conclusions can be drawn from this table:

(a) When data are missing completely at random, there is no evidence of bias for any of the
methods, and all the methods have close to nominal coverage, as theory predicts. The CC
method is less e$cient than the other method when q2

1
is large, re#ecting the fact that there

is more information in the incomplete cases in these settings. The other methods have very
similar properties. In particular any loss of e$ciency in the summary measures methods
SMML and WLS is minor, and method of moments estimates of the variances parameters
do not lead to noticeably inferior estimates of the average slope than the maximum
likelihood estimates of the variance parameters.
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Table IA. Bias, standard deviation (SD) and con"dence coverage of estimates of h
1

from "ve methods
(missing completely at random and missing at random mechanisms)

N o q2
1

Method MCAR MAR-SUM MAR-DIFF

Bias SD Cov Bias SD Cov Bias SD Cov

200 !0)6 0)25 CC !1 70 898 !267 67 12 219 68 56
WLS 2 68 900 17 75 908 !66 78 784
SMML 0 65 930 !14 69 898 !35 74 836
GLS 2 68 894 53 74 832 !66 77 782
IML !1 70 904 9 74 894 !8 76 892

200 0)6 0)25 CC !1 72 904 !145 74 346 228 67 40
WLS 0 68 902 64 76 788 !58 78 818
SMML 4 69 912 58 72 770 !29 76 832
GLS 1 67 900 48 76 830 !58 78 816
IML 2 67 912 19 73 894 !21 72 896

200 !0)6 4)0 CC 6 176 902 !646 176 178 949 138 0
WLS 7 152 902 175 156 704 !27 158 902
SMML 1 154 900 158 154 740 !24 164 878
GLS 7 152 906 62 154 892 !32 156 900
IML 6 159 892 !7 150 908 !4 152 904

200 0)6 4)0 CC !6 177 906 41 181 886 956 143 0
WLS !3 154 914 246 159 534 !11 161 898
SMML !5 155 904 238 167 568 !20 150 920
GLS !2 154 898 59 160 874 !17 159 890
IML 12 148 908 12 152 918 !17 162 904

1000 !0)6 0)25 CC 0 33 904 !264 29 0 218 30 0
WLS !1 31 910 16 32 882 !67 33 370
SMML !1 31 890 !18 33 810 !29 32 738
GLS !1 31 902 52 32 542 !67 33 372
IML 0 30 892 1 30 912 !5 33 899

1000 0)6 0)25 CC 1 32 908 !143 33 4 220 31 0
WLS 0 30 902 68 33 330 !65 34 412
SMML 1 30 914 56 32 462 !30 33 724
GLS 0 30 900 52 33 528 !64 34 406
IML !3 30 912 18 29 898 !15 33 896

1000 !0)6 4)0 CC 4 81 912 !438 77 0 942 64 0
WLS !1 68 912 169 72 236 !26 71 876
SMML 0 68 914 165 71 258 !15 73 884
GLS !1 67 914 55 71 788 !29 70 880
IML !3 70 880 7 68 908 13 68 908

1000 0)6 4)0 CC 2 83 892 41 82 846 945 68 0
WLS 3 72 896 240 70 38 !22 70 908
SMML !2 73 894 244 67 42 !13 68 914
GLS 3 71 896 51 71 810 !28 70 892
IML !8 70 900 16 72 892 1 69 899

(b) For the MAR-SUM mechanism, IML is the best method, re#ecting its large-sample
optimality under this mechanism. It has no evidence of bias, precision that is generally
better than the other methods, and close to nominal coverage. GLS exhibits moderate bias,
re#ecting the fact that the method of moments variance estimate is not consistent for
mechanisms that are not missing completely at random. This bias translates into poor
coverage, particularly for the large sample size. SMML performs comparably to IML when
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Table IB. Bias, standard deviation (SD) and con"dence coverage of estimates of h
1

from "ve methods
(non-ignorable mechanisms)

N o q2
1

Method NI-Intercept NI-Slope NI-Y3

Bias SD Cov Bias SD Cov Bias SD Cov

200 !0)6 0)25 CC !254 68 14 219 70 82 136 68 394
WLS !22 75 886 7 75 886 100 64 570
SMML !43 69 822 17 72 864 97 68 582
GLS 22 75 878 9 75 886 117 64 470
IML !14 74 860 36 65 856 123 67 432

200 0)6 0)25 CC !65 33 756 215 69 70 206 70 100
WLS 69 70 748 4 74 896 136 70 390
SMML 66 66 764 28 77 826 142 66 304
GLS 49 73 824 !3 73 894 111 71 496
IML 32 66 880 12 66 916 116 62 444

200 !0)6 4)0 CC !544 165 48 975 138 0 916 130 0
WLS 81 151 876 66 150 888 213 142 604
SMML 81 158 852 92 154 874 212 143 566
GLS !19 148 902 25 150 904 127 142 808
IML !46 152 904 62 155 864 127 143 796

200 0)6 4)0 CC 209 176 676 985 136 0 1024 140 0
WLS 217 152 614 69 155 870 218 153 582
SMML 224 152 570 87 156 862 226 150 530
GLS 23 154 882 8 154 900 96 154 822
IML 11 162 892 26 155 888 104 153 796

1000 !0)6 0)25 CC !252 29 0 214 31 0 136 33 4
WLS !23 32 842 7 33 908 99 30 64
SMML !51 32 494 27 32 764 100 30 32
GLS 21 32 858 9 33 898 117 30 12
IML !16 32 856 38 29 644 119 31 4

1000 0)6 0)25 CC !63 33 386 215 30 0 208 32 0
WLS 67 32 336 6 32 888 139 31 4
SMML 60 31 404 26 31 782 142 29 2
GLS 47 33 550 !2 32 908 115 32 30
IML 32 32 716 13 31 864 121 29 4

1000 !0)6 4)0 CC !535 77 0 989 58 0 905 62 0
WLS 92 71 622 76 69 728 195 66 114
SMML 89 71 662 92 70 670 215 65 42
GLS !9 70 906 33 69 864 107 67 546
IML !52 65 788 59 64 780 120 72 424

1000 0)6 4)0 CC 214 78 140 994 61 0 1015 60 0
WLS 216 66 52 76 67 714 214 63 62
SMML 220 68 68 97 71 636 226 69 52
GLS 19 68 888 16 67 912 907 64 632
IML !0 70 908 36 70 840 97 67 600

o"!0)6, q2
1
"0)25 but exhibits substantial bias and poor coverage for other choices of

parameters, particularly when o"0)6, q2
1
"4. WLS is generally similar to SMML for these

problems. Finally, CC is seriously biased and has very poor coverage in this setting.
(c) Results for the MAR-DIFF mechanism are broadly similar to results for the MAR-SUM

mechanism. IML is again the best method, and GLS is competitive with IML for some
choices of parameters but exhibits bias for others. SMML is comparable to IML when
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o"0)6, q2
1
"4 but inferior to IML for other choices of parameters, where it is moderately

biased and has inferior coverage. The bias of SMML is smaller for the MAR-DIFF
mechanism than for the MAR-SUM mechanism. WLS is notably inferior to SMML for
this set of simulations, and CC is again much worse than all the other methods in terms of
bias and coverage.

(d) For the NI-Intercept mechanism, all the methods exhibit bias and below nominal coverage
to some degree, but important di!erences between the methods emerge (Table IB). IML is
the best method overall, with small or moderate bias and close to nominal coverage in all
but one problem (n"1000, o"0)6, q2

1
"0)25). GLS is similar and nearly as good as IML

for these problems. SMML and WLS exhibit more bias and inferior coverage to IML and
GLS, and CC is once again much the worst method in terms of bias and coverage.

(e) For the NI-Slope mechanism, IML and GLS are again the best methods, but GLS has
somewhat lower bias and better coverage than IML for some problems (n"1000,
o"!0)6, q2

1
"0)25). Further examination of the estimates indicates that IML tends to

underestimate q2
1

for these problems and GLS tends to overestimate q2
1
. These character-

istics tend to lead to estimates of the slope that are less biased for GLS than for IML.
SMML and WLS are similar and somewhat inferior to IML and GLS for these problems,
and CC is again the worst method by a wide margin.

(f ) For the NI-Y3 mechanism none of the methods is very satisfactory. IML and GLS again
emerge as the best methods, but their coverage in the cases with sample size 1000 is very
poor. CC is again the worst of the methods considered in terms of bias and coverage.

Table II displays bias and standard deviation of estimates of the between-subject variance q2
1

from the "ve methods; the bias and precision of estimates of the within-subject variance p2 did not
vary much between methods. GLS and WLS produce the same estimates of q2

1
and hence have the

same results in Table II. When data are missing completely at random, IML shows considerable
gains in e$ciency over alternative methods, with some evidence of bias that is diminished in the
larger sample size problems. For other mechanisms, IML generally produces the best estimates of
q2
1
, and the superiority of the maximum likelihood methods (IML, SMML) over method of

moments counterparts (GLS, WLS) is evident.

4. DISCUSSION

Our simulation study includes a broader range of drop-out mechanisms and parameter values
than previous studies. Nevertheless it is important to be cautious in generalizing conclusions,
since no simulation can cover all the situations that arise in practice. With that caveat, a number
of interesting "ndings emerge from our results.

A striking result is the very poor performance of CC. This is in contrast with the simulations in
Wang-Clow et al.,24 where CC was very competitive with other methods. Those authors
simulated a case where the variability of the slopes was very small. Our results underline the fact
that CC can be very biased when data are not missing completely at random, and methods that
use all the available data can reduce bias, improve precision and improve coverage in these
settings.

Methods that use all the available information (IML and GLS) outperformed summary
measures methods that discard the intercepts (SMML and WLS) when the mechanism was not
missing completely at random, including both missing at random and non-ignorable cases. This is
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Table II. Bias and standard deviation of estimates of q2
1

from "ve methods

N o q2
1

Method MCAR MAR-SUM MAR-DIFF NI-Intercept NI-Slope NI-Y3
Bias SD Bias SD Bias SD Bias SD Bias SD Bias SD

200 !0)6 0)25 CC 3 107 !88 88 !28 90 !94 96 !45 94 !30 111
WLS 15 173 279 184 348 162 210 176 162 186 6 169
SMML 18 107 62 116 138 132 24 111 41 116 !10 97
GLS 15 173 279 184 348 162 210 176 162 186 6 169
IML 20 86 27 95 27 95 !3 85 !13 80 !18 75

200 0)6 0)25 CC !10 110 12 94 !31 91 26 106 !63 97 !78 98
WLS !5 167 216 171 353 159 135 166 182 157 !3 165
SMML 24 110 105 120 129 118 74 109 32 113 !68 92
GLS !5 167 216 171 353 159 135 166 182 157 !3 165
IML 70 78 84 85 84 88 78 81 64 86 16 71

200 !0)6 4)0 CC 21 550 !354 496 !1673 358 !562 489 !1926 331 !1773 327
WLS 7 523 364 544 454 519 368 531 211 532 !64 519
SMML 18 492 285 564 130 569 190 528 !186 512 !507 498
GLS 7 523 364 564 456 519 368 531 211 532 !64 519
IML 4 297 9 501 !22 513 !101 460 !146 447 !344 494

200 0)6 4)0 CC !13 541 108 542 !1672 360 !65 530 !1928 329 !1950 320
WLS !23 524 174 530 447 533 2 513 247 562 !44 543
SMML 0 493 51 495 119 526 !75 471 !219 530 !682 525
GLS !23 524 174 530 467 533 2 513 247 542 !46 543
IML !63 663 62 438 33 487 76 458 !4 526 !252 490

1000 !0)6 0)25 CC !3 46 !85 41 !31 40 !96 41 !54 43 !36 48
WLS !1 78 281 80 352 79 209 83 157 84 !12 83
SMML !6 48 50 57 115 56 3 55 24 53 !25 48
GLS !1 78 281 80 352 79 209 83 157 84 !12 83
IML !5 39 8 39 12 37 !10 33 !30 35 !33 35

1000 0)6 0)25 CC 2 46 13 45 !33 40 28 50 !55 44 !76 42
WLS 2 77 214 78 352 80 116 82 159 81 !8 81
SMML 6 49 95 54 115 55 65 50 24 51 !58 48
GLS 2 77 214 78 352 80 116 82 159 81 !8 81
IML 6 36 76 34 77 34 74 36 54 36 3 34

1000 !0)6 4)0 CC 7 239 !346 221 !1650 161 !540 218 !1933 143 !1792 150
WLS !5 223 368 231 437 238 337 230 247 227 !66 246
SMML !11 213 292 211 84 236 185 232 !207 239 !524 221
GLS !5 223 368 231 437 238 337 230 247 227 !66 246
IML 24 216 !11 211 !32 233 !125 205 !197 213 !371 227

1000 0)6 4)0 CC 5 249 28 256 !1662 167 !83 228 !1931 145 !1945 151
WLS !6 232 103 236 431 228 !23 219 258 242 !55 247
SMML !16 220 107 212 92 234 !39 229 !193 242 !514 249
GLS !6 232 103 236 431 228 !23 219 258 242 !55 247
IML 30 192 22 210 58 213 57 216 !100 211 !217 206

an important "nding since the simplicity of methods based on the slopes alone is compelling, and
it is generally thought that these methods involve minor losses of e$ciency over full maximum
likelihood. Our simulations suggest that this is indeed the case when the mechanism is missing
completely at random, but not when missingness depends on the data.

A related point is that SMML is generally biased under missing at random mechanisms, as is
seen in our simulations under MAR-SUM and MAR-DIFF and predicted by the theoretical
argument in Section 2. SMML is a maximum likelihood method, but it is not valid under missing
at random since it discards data, namely the intercepts. Further inspection of the results shows
that the bias of SMML is generally greater for MAR-SUM and NI-Intercept mechanisms than
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for MAR-DIF and NI-Slope mechanisms. This "nding re#ects the fact that missingness is more
closely associated with the estimated intercepts for MAR-SUM and NI-Intercept mechanisms
than for the MAR-DIF and NI-Slope mechanisms. Thus dropping the information about the
mechanism carried in the intercepts leads to a greater bias in those cases.

Note that under subject-speci"c missing at random, the estimated slope for each individual is
a consistent estimate of the true slope for that individual as the number of repeated measures
tends to in"nity. The individual-level summary measures are valid in this weak sense for all the
mechanisms in our study except NI-Y3, which is not subject-speci"c missing at random.
However, the overall estimate of the slope in SMML is a weighted average of the individual
slopes, with weights that depend on the estimate of q2

1
. It is bias in the estimate of q2

1
, as re#ected in

Table II, that creates the problem in the SMML estimate of h
1
.

The bias of SMML for missing at random mechanisms does not necessarily mean that the
method is always inferior to IML for non-ignorable mechanisms. We believe that it is theoret-
ically possible for SMML to have less bias than IML under some circumstances, but we found no
real evidence of this in our simulations. IML generally outperformed SMML for the non-
ignorable mechanisms we simulated.

We note that IML was noticeably superior to GLS in our missing at random simulations,
re#ecting the fact that maximum likelihood, unlike the method of moments, yields consistent
estimates of variance under MAR-SUM and MAR-DIFF. For the non-ignorable mechanisms
neither method consistently dominated the other. Overall the added computation of IML over
GLS has little pay-o!when the data are missing completely at random, but IML seems preferable
to GLS when the data are not missing completely at random.

None of the methods considered here is satisfactory for all mechanisms, as indicated by the
disappointing results for the NI-Y3 mechanism. As noted in the introduction, in these simulations
we have not studied methods that are tuned to non-ignorable drop-out mechanisms. There is
a growing literature of these methods,7~15 as discussed in Little.16 In their simulation study,
Wang-Clow et al.24 consider unweighted least squares (UWLS), which computes unweighted
averages of the least squares slope of individuals in each treatment group. This method is
unbiased for mechanisms that depend on the unobserved random slopes and intercepts, but the
method had poor precision in their simulations. A more promising approach is the weighted
least squares method considered by Wang-Clow et al.24 that incorporates a covariate adjust-
ment on time to drop-out. This ANCOVA method performed well for the non-ignorable
mechanisms in Wang-Clow et al., but was inferior to IML for missing at random mechanisms.
Wang-Clow et al.24 computed the variance components in this ANCOVA method using the
method of moments, as in Wu and Bailey;8 since method of moments approaches did not
do as well as maximum likelihood in our simulations, we suggest that a maximum likelihood
version of the method ANCOVA based on the pattern-mixture model in Little16 might do even
better.

Methods tuned to particular non-ignorable mechanisms yield consistent estimates under
covariate-dependent drop-out, although there is a loss of e$ciency of estimation that
might be considerable. It is important to emphasize that these methods are in general biased
under missing at random drop out, since the missing at random model is not generally
a submodel of the hypothesized non-ignorable mechanism. No method has been found that
performs uniformly well for the broad range of missing at random and not missing at random
mechanisms that might occur in practice. Whether such methods can be found remains an open
question.
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