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The stability of the internal dynamics of a wheeled mobile robot is analyzed. It is
shown that the wheeled mobile robot exhibits unstable internal dynamics when moving
backwards. Most control methods of wheeled mobile robots are designed based on
input-output relations. Since the internal dynamics are not represented in input-output
relations, stability properties of the internal dynamics are generally neglected. Neverthe-
less, the internal dynamics do affect the behavior of mobile robots. Taking the look-
ahead control method as an example, it is shown that, by using a novel Liapunov
function, the internal dynamics of a two-wheel differential-drive mobile robot are unsta-
ble when it is commanded to move backwards. Both simulation and experimental results
are provided to verify the analysis.  1997 John Wiley & Sons, Inc.
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1. INTRODUCTION By properly choosing a state transformation, the
internal dynamics as well as the zero dynamics of

Everyone who has learned how to drive an auto- the mobile robot are first characterized. The zero dy-
mobile should have noticed that driving backwards namics are always stable. The stability of the internal
is considerably more difficult than driving forwards. dynamics is then investigated. It turns out that the
Driving backwards over a longer distance and/or at internal dynamics are unstable under certain condi-
a higher speed is a skill that not everyone possesses. tions. More specifically, using a novel Liapunov func-
The subject of this article is wheeled mobile robots, tion, we show that the internal dynamics are unstable
not driving, but the driving experience helps explain when the mobile robot is commanded to move back-
the problem and results to be presented. The analogy wards. Although the unstable behavior of the internal
of backward driving versus forward driving in auton- motion has been observed earlier,8 the analysis of
omous wheeled mobile robots will be investigated, the internal dynamics is presented for the first time.
and it will be shown that ‘‘backward driving’’ is in- The stable tracking control method presented in refer-
herently unstable. ence 9 is established only for the case of moving for-

Feedback control of wheeled mobile robots has wards.
recently been studied by many researchers.1–4 Since Both a simulation and an experiment have been
dynamics of a wheeled mobile robot are nonlinear, conducted to verify the theoretical analysis. In the
the technique of feedback linearization is commonly experiment, the look-ahead control method is imple-
used to facilitate the controller design. A wheeled mented on a TRC LABMATE mobile platform. It is
mobile robot is subject to nonholonomic constraints. observed that when the reference point is com-
Because a nonholonomic dynamic system is not in- manded to move backwards along a straight line, the
put-state linearizable,5–7 most feedback control meth- mobile robot tends to swivel either left or right and
ods proposed for wheeled mobile robots use input- to change the heading angle by 180 degrees, de-
output linearization.1,2,7 Even though the closed-loop pending on minor misalignment of the heading angle
input-output map of the mobile robot system using or minor variation of floor conditions. The simulation
those control methods is linear, the system has nonlin- and experimental results are consistent and they con-
ear internal dynamics. While the stability of input- firm that the internal dynamics are unstable when
output map is ensured by a proper linear feedback the reference point moves backwards.
through pole placement, stability properties of the
internal dynamics are rarely discussed.

In this article, we study the internal dynamics of
a wheeled mobile robot under the look-ahead control.

2. DYNAMICS OF A WHEELED MOBILE ROBOTThe look-ahead control takes the coordinates of a
reference point in front of the mobile robot as the

2.1. Constraint Equationsoutput equation. By using a nonlinear feedback, the
input-output map is linearized. A linear feedback is In this section, motion equations and constraint equa-

tions of a wheeled mobile robot whose schematic topfurther applied to stabilize the system. With this con-
troller, the reference point can follow any trajectory. view is shown in Figure 1 are derived. It is assumed

that the mobile robot is driven by two independentNevertheless, the internal dynamics of this system
are not always stable. wheels and supported by four passive wheels at the
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where u1 and u2 are the angular positions of the two
driving wheels, respectively.

By using the techniques of differential geometry,
it can be shown that, among the three constraints,
two of them are nonholonomic and the third one
is holonomic.7

To obtain the holonomic constraint, we subtract
equation (3) from equation (2).

2bf
˙

5 r (u
.

1 2 u
.

2 ) (4)
Figure 1. Schematic of the mobile robot.

Integrating the above equation and properly choosing
the initial condition of f, u1 , and u2 , we have

corners (not shown in Fig. 1). Before proceeding, let
us fix some notations (see Fig. 1). f 5 c(u1 2 u2 ) (5)

b : the displacement from each of the driving which is clearly a holonomic constraint equation. The
wheels to the axis of symmetry. two nonholonomic constraints are

d : the displacement from point Po to the mass
ẋ1 sin f 2 ẋ2 cos f 5 0 (6)center of the mobile robot, which is assumed

to be on the axis of symmetry. ẋ1 cos f 1 ẋ2 sin f 5 cb(u
.

1 1 u
.

2 ) (7)
r : the radius of the driving wheels.
c : a constant equal to r/2b. The second nonholonomic constraint equation in the

above is obtained by adding equations (2) and (3).mc : the mass of the mobile robot without the
These two constraint equations can be written in ma-driving wheels and the rotors of the motors.
trix formmw : the mass of each driving wheel plus the rotor

of its motor.
A(q)q̇ 5 0 (8)

Ic : the moment of inertia of the mobile robot
without the driving wheels and the rotors where
of the motors about a vertical axis through
the intersection of the axis of symmetry with
the driving wheel axis.

Iw : the moment of inertia of each driving wheel q 5 3
q1

q2

q3

q4

45 3
x1

x2

u1

u2

4 (9)
and the motor rotor about the wheel axis.

Im : the moment of inertia of each driving wheel
and the motor rotor about a wheel diameter.

A(q) 5Fa11 a12 a13 a14

a21 a22 a23 a24
G5F2sin f cos f 0 0

2cos f 2sin f cb cb
GThere are three constraints. The first one is that

the mobile robot can not move in a lateral direc-
(10)tion, i.e.,

ẋ2 cos f 2 ẋ1 sin f 5 0 (1) 2.2. Dynamic Equations

We use the Lagrange formulation to establish equa-where (x1 , x2 ) is the coordinates of point Po in the
tions of motion for the mobile robot. The total kineticfixed reference coordinated frame X–Y, and f is the
energy of the mobile base and the two wheels isheading angle of the mobile robot measured from

X-axis. The other two constraints are that the two
driving wheels roll and do not slip: K 5

1
2

m(ẋ2
1 1 ẋ2

2 ) 1 mc cd (u
.

1 2 u
.

2 )(ẋ2 cos f 2 ẋ1 sin f )

ẋ1 cos f 1 ẋ2 sin f 1 bf
˙

5 ru
.

1 (2)
1

1
2

Iw (u
.

2
1 1 u

.
2
2 ) 1

1
2

Ic2(u
.

1 1 u
.

2 )2 (11)
ẋ1 cos f 1 ẋ2 sin f 2 bf

˙
5 ru

.
2 (3)
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where 2.3. State Space Realization

In this subsection, a state space realization of them 5 mc 1 2mw
motion equation (17) and constraint equation (8) is

I 5 Ic 1 2mw b2 1 2Im established. Let S(q) be a 4 3 2 matrix

Lagrange equations of motion for the nonholo-
nomic mobile robot system are governed by10

S(q) 5 [s1 (q) s2 (q)] 5 3
cb cos f cb cos f

cb sin f cb sin f

1 0

0 1
4 (18)d

dt S­K
­q̇i
D2

­K
­qi

5 ti 2 a1i l1 2 a2i l2 ,

i 5 1, . . . 4 (12)

whose columns are in the null space of A(q) matrixwhere qi is the generalized coordinate defined in
in the constraint equation (8), i.e., A(q)S(q) 5 0. Fromequation (9), ti is the generalized force, aij s are the
the constraint equation (8), the velocity q̇ must be inelements of matrix A(q) in equation (10), and l1 and
the null space of A(q). It follows that q̇ [ spanhs1 (q),l2 are the Lagrange multipliers. Substituting the total
s2 (q)j, and that there exists a smooth vector h 5 [h1kinetic energy (Eq. (11)) into Eq. (12), we obtain
h2 ]T such that

mẍ1 2 mcd (f
¨

sin f 1 f
˙

2 cos f)
5 l1 sin f 1 l2 cos f (13) q̇ 5 S(q)h (19)

mẍ2 1 mcd (f
¨

cos f 2 f
˙

2 sin f)
and5 2l1 cos f 1 l2 sin f (14)

mccd(ẍ2 cos f 2 ẍ1 sin f) 1 (Ic2 1 Iw )u
¨

1 2 Ic2u
¨

2
q̈ 5 S(q)ḣ 1 S

˙
(q)h (20)5 t1 2 cbl2 (15)

2mccd(ẍ2 cos f 2 ẍ1 sin f) 2 Ic2u
¨

1 1 (Ic2 1 Iw )u
¨

2 For the specific choice of S(q) matrix in equation (18),
5 t2 2 cbl2 (16) we have h 5 u

.
, where u

.
5 [u

.
1 u

.
2 ]T.

Multiplying both sides of equation (17) by ST(q)
where t1 and t2 are the torques acting on the two and noticing that ST(q)AT(q) 5 0 and ST(q)E(q) 5 I232wheels. These equations can be written in the ma- (the 2 3 2 identity matrix), we obtain
trix form

ST(q)M(q)q̈ 1 ST(q)V (q, q̇) 5 ST(q)E(q)t 5 t (21)M(q)q̈ 1 V(q, q̇) 5 E(q)t 2 AT(q)l (17)

where A(q) is defined in equation (10) and Substituting equation (20) into the above equation,
we haveM(q) 5

ST(q)M(q)(S(q)ḣ 1 S
˙
(q)h) 1 ST(q)V (q, q̇) 5 t (22)

3
m 0

0 m

2mccd sin f mccd cos f

mccd sin f 2mccd cos f

2mccd sin f mccd sin f

mccd cos f 2mccd cos f

Ic2 1 Iw 2Ic2

2Ic2 Ic2 1 Iw

4 By choosing the following state variable

V (q, q̇) 5 3
2mcdf

˙
2 cos f

2mcdf
˙

2 sin f

0

0
4 E(q) 5 3

0 0

0 0

1 0

0 1
4 x 5 3

x1

x2

x3

x4

x5

x6

45 3
x1

x2

u1

u2

h1

h2

45 Fq

h
G (23)

t 5 Ft1

t2
G l 5 Fl1

l2
G
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the motion equation (22) may be represented in the Po (see Fig. 1). The coordinates of Pr in the fixed coordi-
nate frame are taken as the output equation, i.e.,state space form

ẋ 5 f (x) 1 g(x)t (24) y 5 h(x) 5 Fx1 1 L cos f

x2 1 L sin f
G (27)

where
To verify if the system is input-output linearizable
with this output equation, it is straightforward to
compute the derivatives of y.f (x) 5 F Sh

2(STMS)21(STMS
˙
h 1 STV )

G ,

ẏ 5
­h
­x

ẋ 5
­h
­x

( f 1(x) 1 g1(x)e)
g(x) 5 F 0

(STMS)21
G

5 Fcb cos f 2 cL sin f cb cos f 1 cL sin f

cb sin f 1 cL cos f cb sin f 2 cL cos f
G Fh1

h2

G
Note that the dependent variables for each term have
been omitted in the above representation for clarity. 5 F(x)h
All the terms are functions of the state variable x only.
Since q̇ is not part of the state variable, it is replaced Since ẏ is not a function of the input e, it is differenti-
by S(q)h by noting equation (19). To simplify the ated once more.
discussion, the following state feedback is first ap-
plied ÿ 5 F(x)ḣ 1 F

˙
(x)h 5 F(x)e 1 F

˙
(x)h

The input e shows up in the second order derivativet 5 a1 (x) 1 b1 (x)e
of y. Clearly, the decoupling matrix in this case is

5 (STMS
˙
h 1 STV ) 1 (STMS)STEe (25) F(x). Since the determinant of F(x) is (22c2bL), it is

nonsingular as long as the look-ahead distance L is
not zero. It follows that the system can be input-where e is the new input variable. The closed-loop
output linearized and decoupled.11 The nonlinearsystem becomes
feedback for achieving the input-output linearization
and decoupling is

ẋ 5 f 1(x) 1 g1(x)e (26)

e 5 F21(x)(u 2 F
˙

(x)h) (28)
where

Applying this nonlinear feedback, we obtain

ÿ1 5 u1 (29)f 1(x) 5 FSh

0
G g1(x) 5 F 0

I232
G

ÿ2 5 u2 (30)

Therefore, the mobile robot can be controlled so that
the reference point Pr tracks a desired trajectory. The

3. LOOK-AHEAD CONTROL motion of the mobile robot itself, particularly the mo-
tion of the center point Po , is determined by the inter-It is known that the center point Po of the mobile
nal dynamics of the system, which are the topic ofrobot cannot be controlled by using a static feedback,
the next section.and that an alternative control method is to control

a point in front of the mobile robot.1,2,7 This method
is motivated from vehicle maneuvering. When op-

4. INTERNAL DYNAMICSerating a vehicle, a driver looks at a point or an area
in front of the vehicle. To facilitate the discussion on

4.1. Characterizing Internal Dynamicsthe internal dynamics, the look-ahead control method
is briefly described. We define a reference point Pr The previous section introduced the look-ahead con-

trol method for the mobile robot. In this section, wethat is a distance L (called look-ahead distance) from
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proceed to study the behavior of the internal dynam- T (x) is a valid state space transformation. The inverse
information transformation x 5 T21(z) is given byics, including the zero dynamics of the system. For

a general discussion of internal dynamics and zero
dynamics, see Chapter 6 of reference 12 or see refer- x1 5 z1 2 L cos (cz5 2 cz6 )
ence 13.

x2 5 z3 2 L sin (cz5 2 cz0 )A diffeomorphism is constructed, by which the
overall system can be represented in the normal form u1 5 z5
of nonlinear systems.12 Since the relative degree of

u2 5 z6each output is two, four components of the needed
diffeomorphism from the two outputs and its Lie
derivative may be constructed, i.e., h1 (x), Lf h1 (x), h2(x), Fh1

h2
G5 F21 Fz2

z4
G

and Lf h2 (x). Since the state variable x is six dimen-
sional, two more components are needed. u1 and u2

are chosen to be these two components. Thus the We partition the state variable z into two blocks
proposed diffeomorphic transformation would be

z1 5 [z1 z2 z3 z4]T

z2 5 [z5 z6]T

After applying the feedback (28), the system of the
mobile robot is represented in the following nor-z 5 T (x) 5 3

z1

z2

z3

z4

z5

z6

45 3
h1 (x)

Lf h1 (x)

h2 (x)

Lf h2 (x)

u1

u2

4 (31)
mal form.

ż1 5 Az1 1 Bu (32)

ż2 5 w(z1, z2 ) (33)

y 5 Cz1 (34)To verify that T(x) is indeed a diffeomorphism, its
Jacobian is computed:

where

A 5 3
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0
4 , B 5 3

0 0

1 0

0 0

0 1
4 ,­T

­x
53

1 0

0 0

0 1

0 0

0 0

0 0

2cL sin f

p

cL cos f

p

1

0

cL sin f

p

2cL cos f

p

0

1 C 5 F1 0 0 0

0 0 1 0
G

w(z1, z2 ) 5 F21(z) Fz2

z4
G5 2

1
rcL

F cb sin f 2 cL cos f

2cb sin f 2 cL cos f

2cb cos f 2 cL sin f

cb cos f 2 cL sin f
GFz2

z4
G

0

cb cos f 2 cL sin f

0

cb sin f 1 cL cos f

0

0

0

cb cos f 1 cL sin f

0

cb sin f 2 cL cos f

0

0
4 It is understood that f in the expression of w(z1, z2)

is a short-hand notation for c(z5 2 z6). Together, the
linear state equation (32) and the linear output equa-
tion (34) are an equivalent representation of the input-It is easy to check that ­T/­x has full rank.a Thus
output map (Eqs. (29) and (30)). Eq. (33) represents
the unobservable internal dynamics of the mobilea The terms denoted by p do not affect the computation of

the rank. robot under the look-ahead control.
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4.2. Zero Dynamics where c1 is a constant. That is, the two wheels rotate
at exactly the same angular velocity and the mobileThe zero dynamics of a control system are defined platform moves straight in the negative X direction.as the dynamics of the system when the outputs are We now study the stability of the internal motionidentically zero (i.e., y 5 0, ẏ 5 0, ÿ 5 0, . . .). In this described by Eqs. (36) and (37). We first change thecase, z1 5 0, and the zero dynamics are state variable so that the stability of the internal mo-
tion in z2 can be formulated as the stability of equilib-

ż2 5 w(0, z2) 5 0 (35) rium points in z.

Thus, z2 remains constant while the outputs are z1 5 z5 2 z*5
identically zero. The zero dynamics are stable but not
asymptotically stable. In other words, if the reference z2 5 z6 2 z*6
point Pr remains still, so does the mobile robot (or
more specifically, the wheels do not move). The internal dynamics may be expressed in terms of

z 5 [z1 z2]T.

4.3. Stability of Internal Dynamics
z
.
5Fz

.
1

z
.

2
G5

n(t)
rcL F cb sin (cz1 2 cz2 ) 2 cL cos (cz1 2 cz2 )

2cb sin (cz1 2 cz2 ) 2 cL cos (cz1 2 cz2 )
GWe now look at the internal dynamics while the refer-

ence point is in motion. More specifically, we are
interested in the internal motion of the mobile robot
when it moves straight forward or backward. Let the

1 3
1
r

n(t)

1
r

n(t)4mobile robot be initially headed in the positive X
direction. It is assumed that the reference point is
controlled to move in the negative X direction. The
position of the reference point is denoted by This system has an equilibrium subspace character-

ized by

Fy1

y2
G5 F2«(t)

0
G Ez 5 hz u z1 5 z2 j

No conclusion can be drawn based on the linear ap-
and the velocity of the reference point is then proximation of the internal dynamics that has an ei-

genvalue at the origin. The Liapunov method is then
used to establish the stability condition. Consider theFẏ1

ẏ2
G5 Fz2

z4
G5 F2n(t)

0
G following candidate for a Liapunov function

V (z) 5 1 2 cos (cz1 2 cz2 )
where n(t) 5 «̇(t). Since the reference point moves in
the negative X direction, ẏ1 is negative and therefore In a neighborhood of Ez , V(z) 5 0 if z [ E, and
n(t) . 0. Substituting this into the internal dynamics V(z) . 0 if z Ó Ez . Thus V(z) is positive definite with
(33), we obtain respect to Ez , and may serve as a Liapunov function

for testing the stability of Ez . The derivative of V(z)
with respect to the time is:Fż5

ż6
G5

n(t)
rcL F cb sin f 2 cL cos f

2cb sin f 2 cL cos f
G

V
˙

(z) 5
­V
­z

z
.

5 sin (cz1 2 cz2 )[c 2c]z
.

A solution of this internal dynamics is

5 sin(cz1 2 cz2 )(z
.

1 2 z
.

2 )c 5
n(t)

L
sin2(cz1 2 cz2 )

z*5 5 2
1
r

«(t) 1 c1 (36)
Since n(t) . 0, V

˙
(z ) is also positive definite with

respect to Ez . Therefore the equilibrium subspace Ezz*6 5 2
1
r

«(t) 1 c1 (37)
is not stable.
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Figure 2. The actual trajectories of the reference point from the simulation. All three
curves coincide with the X-axis, indicating that the reference point follows the desired
trajectory very closely.

Figure 3. The trajectories of the point P0 on the wheel axis from the simulation. The curve
for the first case coincides with the X-axis. The curves for the second and third cases show
that the point P0 departs from the X-axis.
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Figure 4. The heading angle of the platform from the simulation. While the heading angle
of the first case maintains at zero degrees in the entire duration, the heading angle of the
second and third cases changes by 180 degrees.

Figure 5. The trajectory of the mobile platform in Case 3 from the simulation. The mobile
platform exhibits a swiveling motion.
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Figure 6. The actual trajectories of the reference point from the experiment.

On the other hand, if the reference point is con- 5. SIMULATION AND EXPERIMENTAL RESULTS
trolled to move in the positive X direction, the velocity

Simulations and experiments have been conductedof the reference point is
to verify the theoretical analysis presented in the pre-
ceding section. In particular, simulations and experi-
ments are focused on the verification of unstable be-Fẏ1

ẏ2
G5 Fż2

ż4
G5 Fn(t)

0
G haviors when the mobile robot is commanded to

move backward. The desired trajectory for the refer-
ence point is chosen to be

where n(t) . 0. Using the same Liapunov function,
it can be similarly shown that yd

1 (t) 5 2Vx t (38)

yd
2 (t) 5 0 (39)

V
˙

(z ) 5 2
n(t)

L
sin2(cz1 2 cz2 )

where Vx . 0 is the desired velocity. The following
parameters are used in both simulations and experi-
ments: L 5 0.487 m, b 5 0.171 m, r 5 0.0228 m,along the forward internal motion. Therefore, the for-
d 5 0 m, and c 5 0.0667.ward internal motion is stable.

Depending on the initial conditions of the stateTo state the results in terms of driving experience,
variable x, the following three cases are examined inthe internal dynamics of the vehicle are stable when
simulations and experiments:driving forwards, and unstable when driving back-

wards (the driver still looking at a point in front of
the vehicle in analogy to the look-ahead control). 1. The initial value of x1 and x2 are chosen such
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that the actual reference point coincides with the de- 5.1. Simulations
sired trajectory at t 5 0, i.e., Simulations are conducted with the sampling rate of

100 Hz. Figure 2 shows the actual trajectory of they1 (0) 5 yd
1 (0) 5 0

reference point, and Figure 3 shows that of the point
P0 for the three cases. Figure 4 depicts the trajectoryy2 (0) 5 yd

2 (0) 5 0
of the heading angle. In all three cases, the reference
point follows the desired trajectory very closely. (TheThe initial values of u1 , u2 , h1 , and h2 are all set to

zero. Consequently, the initial heading angle is zero. three curves in Figure 2 coincide with the X-axis.)
Nevertheless, the internal motions of the mobile plat-2. The initial values of u1 and u2 are chosen such
form corresponding to the three cases are distinc-that the initial heading angle f(t 5 0) 5 c(u1 (0) 2
tively different. In the first case, the mobile platform

u2 (0)) 5 0.1 degrees. All other initial conditions are
moves backward without changing the headingthe same as in case 1.
angle. In the second and third cases, while the refer-

3. The initial conditions are the same as in case ence point tracks the desired trajectory, the mobile
1. However, a disturbance in the heading angle is platform itself exhibits a swiveling motion and
introduced in the middle of the trajectory. In simula- changes the heading angle by 180 degrees. To clearly
tions, the disturbance is introduced by adding see the swiveling motion, the trajectory for the third
Df 5 0.1 degrees to the actual heading angle for two case is repeated in Figure 5 in which a box and the
sampling intervals 3.0 s later. In experiments, the tip of the line extended from a corner of the box
disturbance is introduced by placing a magazine in represent the platform and the reference point, re-
the path of the vehicle. When one of the driving spectively. Therefore, these simulation results sup-
wheels runs over the magazine, the heading angle is port that the internal motion of the mobile platform
altered slightly due to different floor conditions at when the reference point moves in the negative X

direction is unstable.the two wheels.

Figure 7. The trajectories of P0 on the wheel axis from the experiment.
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Figure 8. The heading angles of the LABMATE from the experiment.

5.2. Experiments the internal dynamics do not show up in the input-
output map, they do affect the behavior of the mobile

Experiments are conducted using a LABMATEb mo- robot. In particular, when the mobile robot moves
bile platform that is controlled with the sampling rate backwards, it tends to swivel itself by 180 degrees
of 9 Hz. The trajectories of the reference point and subject to small disturbances. It is important to keep
the point P0 for the three cases are shown in Figures 6 this result in mind when planning trajectories of mo-
and 7, respectively. Also the trajectory of the heading bile robots in the same way as we plan for driving:
angle is shown in Figure 8. The experimental results driving backwards over a short distance is feasible,
show strong correlations with the simulation results. but driving backwards over a substantially long dis-
A minor difference appears in the trajectories of the tance is not advisable (it would be easier to make a
reference point, comparing Figure 2 and Figure 6. In U-turn and drive forwards.)
the experiment, the reference point has some notice- The phenomenon of unstable mobile robot behav-
able deviations from the desired trajectory while the iors has been observed earlier. However, for the first
mobile platform is making the swiveling motion. time, stability properties of the internal dynamics are
Nevertheless, it is evident that the internal dynamics fully analyzed using the Liapunov stability theory.
of the mobile platform are unstable when it moves For a two-wheel differential-drive mobile robot under
backwards. the look-ahead control, the internal dynamics are pre-

cisely described. Using a novel Liapunov function, it
is shown that the internal dynamics when the mobile

6. CONCLUSION robot moves forward are stable, but the internal dy-
namics when it moves backwards are unstable. The

Stability properties of the internal dynamics of a result is confirmed by both computer simulation and
wheeled mobile robot were investigated. Although physical experiment.

b LABMATE is a trademark of Transitions Research Corpo- This work was supported in part by NSF grants IRI-
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