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customer's request for an interval to contain the life of a purchased product). To illustrate within-sample
prediction, we show how to compute a prediction interval for the number of future failures in a specified
period beyond the observation period (motivated by a warranty prediction problem). Then we present an
example that requires more general methods to deal with complicated censoring arising because units enter
service at different points in time (staggered entry).

Keywords
CNDE, Bootstrap, Maximum likelihood, Reliability, Simulation, Warranty

Disciplines
Statistics and Probability

Comments
This preprint has been published in Technometrics 41 (1999): 113–124, doi:10.1080/
00401706.1999.10485632.

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/stat_las_preprints/10

http://dx.doi.org/10.1080/00401706.1999.10485632
http://dx.doi.org/10.1080/00401706.1999.10485632
http://lib.dr.iastate.edu/stat_las_preprints/10?utm_source=lib.dr.iastate.edu%2Fstat_las_preprints%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages


Statistical Prediction Based on Censored Life Data

Luis A. Escobar

Dept. of Experimental Statistics

Louisiana State University

Baton Rouge, LA 70803

William Q. Meeker

Dept. of Statistics

Iowa State University

Ames, IA 50011

February 11, 1999

10h 36min

Abstract

This paper describes methods for using censored life data to construct prediction bounds or intervals

for future outcomes. Both new-sample prediction (e.g., using data from a previous sample to make

predictions on the future failure time of a new unit) and within-sample prediction problems (e.g.,

predicting the number of future failures from a sample, based on early data from that sample) are

considered. The general method, based on an assumed parametric distribution, uses simulation-

based calibration. This method provides exactly the nominal coverage probability when an exact

pivotal-based method exists and a highly accurate large-sample approximation, otherwise.

To illustrate new-sample prediction we show how to construct a prediction interval for a single

future observation from a previously sampled population/process (motivated by a customer's request

for an interval to contain the life of a purchased product). To illustrate within-sample prediction,

we show how to compute a prediction interval for the number of future failures in a speci�ed period

beyond the observation period (motivated by a warranty prediction problem). Then we present

an example that requires more general methods to deal with complicated censoring arising because

units enter service at di�erent points in time (staggered entry).

Key words: Bootstrap, Maximum Likelihood, Reliability, Simulation, Warranty.
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Figure 1: New-sample prediction.

1 Introduction

1.1 Motivation and prediction problems

Practical problems often require the computation of predictions and prediction bounds for future

values of random quantities. For example,

� A consumer purchasing a refrigerator would like to have a lower bound for the failure time of

the unit to be purchased (with less interest in distribution of the population of units purchased

by other consumers).

� Financial managers in manufacturing companies need upper prediction bounds on future war-

ranty costs.

� When planning life tests, engineers may need to predict the number of failures that will occur

by the end of the test, or predict the amount of time that it will take for a speci�ed number

of units to fail.

Some applications require a two-sided prediction interval [T
e

; eT ] that will, with a speci�ed high

degree of con�dence, contain the future random variable of interest, say T . In many applications,

however, interest is focused on either an upper prediction bound or a lower prediction bound (e.g.,

the maximumwarranty cost is more important than the minimum and the time of the early failures

in a product population is more important that the last ones).

Conceptually, it is useful to distinguish between \new-sample" prediction and \within-sample"

prediction. For new-sample prediction, data from a past sample is used to make predictions on a

future unit or sample of units from the same process or population. For example, based on previous

(possibly censored) life test data, one could be interested in predicting the

� Time to failure of a new item.
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� Time until k failures in a future sample of m units.

� Number of failures by time tw in a future sample of m units.

For within-sample prediction, the problem is to predict future events in a sample or process based

on early data from that sample or process. For example if n units are followed until tc and there are

r observed failures, t(1); : : : ; t(r), one could be interested in predicting the

� Time of the next failure, t(r+1).

� Time until k additional failures, t(r+k).

� Number of additional failures in a future interval (tc; tw).

1.2 Model

In general to predict a future realization of a random quantity one needs:

� A statistical model to describe the population or process of interest. This model usually

consists of a distribution depending on a vector of parameters �. Nonparametric new-sample

prediction is also possible (Chapter 5 of Hahn and Meeker 1991 gives examples and references).

� Information on the values of the parameters �. This information could come from either a

laboratory life test or �eld data.

We will assume that the failure times follow a continuous distribution with cdf F (t) = F (t; �) and

pdf f(t) = f(t; �), where � is an vector of parameters. Generally, � is unknown and will be estimated

from available sample data. In such cases we will make the standard assumptions of a) statistical

independence of failure times and b) that censoring times are independent of any future failure time

that would be observed if a unit were not to be censored (e.g., Section 1.4 of Lawless 1982).

r Failures

n Units
at Start

ct t w

∞

0

?

Figure 2: Within-sample prediction.
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1.3 Data

The beginning of this paper considers situations in which n units begin operation at time 0 and are

observed until a time tc where the available data are to be analyzed. Failure times are recorded for

the r units that fail in the interval (0; tc). Then the data consist of the r smallest order statistics

t(1) < � � � < t(r) � tc and the information that the other n � r units will have failed after tc. With

time (or Type I) censored data, tc is prespeci�ed and r is random. With failure (or Type II) censored

data, r is prespeci�ed and tc = t(r) is random. Section 5 shows how to compute prediction bounds

for more complicated multiply censored data that are frequently encountered in the analysis of �eld

reliability data.

1.4 Related literature

There is a considerable amount of literature on statistical prediction. Hahn and Nelson (1973),

Patel (1989), and Chapter 5 of Hahn and Meeker (1991) provide surveys of methods for statistical

prediction for a variety of situations.

Antle and Rademaker (1972) and Nelson and Schmee (1981) provide exact simulation-based pre-

diction interval methods for location-scale (or log-location-scale) distributions and Type II censored

data (Type II censoring, however, is rare in practical application). These methods are based on

the distribution of pivotal statistics. Engelhardt and Bain (1979) provide a corresponding approx-

imation to the distribution of the required pivotal statistics. Lawless (1973) describes a related

conditional method that uses numerical integration. Mee and Kushary (1994) present an alternative

simulation-based method that can save important amounts of computer time.

Nagaraja (1995) describes prediction problems for the exponential distribution. He discusses

various predictors proposed in the literature and he studies their properties. Nelson (1995) gives a

simple procedure for computing prediction limits for the number of failures that will be observed in

a future inspection, based on the number of failures in a previous inspection when the units have a

Weibull failure-time distribution with a given shape parameter.

Faulkenberry (1973) suggests a method that can be applied when there is a su�cient statistic that

can be used as a predictor. Cox (1975) presents a general approximate analytical approach to predic-

tion based on the asymptotic distribution of ML estimators. Atwood (1984) used a similar approach.

Efron and Tibshirani (1993, page 390-391) describe an approximate simulation/pivotal-based ap-

proach. Beran (1990) gives theoretical results on the properties of prediction statements com-

puted with simulated (bootstrap) samples. Kalbeisch (1971) describes a likelihood-based method,

Thatcher (1964) describes the relationship between Bayesian and frequentist prediction for the bino-
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mial distribution, while Geisser (1993) presents a more general overview of the Bayesian approach.

1.5 Overview

This paper explores a simulation-based implementation of the analytical approximate prediction

interval procedure suggested by Cox (1975) and studied further by Beran (1990). We illustrate the

methods for simple prediction problems and make the connection to the more well-known pivotal-

based and approximate pivotal-based methods. Then we illustrate the versatility of the simulation-

based method on applications for which neither exact nor approximate pivotal methods exist.

Section 2 describes probability prediction intervals, coverage probability, naive procedures, and

other basic ideas pertaining to prediction intervals. Section 3 presents a general approach for cali-

brating naive statistical prediction intervals. Section 4 shows how to apply the calibration method

to a commonly occurring problem of predicting future �eld failures on the basis of early �eld failures.

Section 5 extends the �eld prediction problem to situations where units enter the �eld over a longer

period of time (staggered entry). Section 6 contains some concluding remarks and suggestions for

further research. The appendix shows the relationship between calibration procedures procedures

based on pivotal or pivotal-like statistics as well as some other technical details.

2 Prediction Interval Concepts

2.1 Probability prediction intervals (� given)

With a completely speci�ed continuous probability distribution, an exact 100(1� �)% \probability

prediction interval" for a future observation from F (t; �) is (ignoring any data)

PI(1� �) = [T
e

; eT ] = [t�=2; t1��=2] (1)

where tp is the p quantile of F (t; �). The probability of coverage of the interval in (1) is

Pr[T 2 PI(1� �); �] = Pr(T
e

� T � eT ; �) = Pr(t�=2 � T � t1��=2; �) = 1� �

by the de�nition of quantiles of continuous distributions.

2.2 Coverage probability for statistical prediction interval procedures (�

estimated)

Before describing methods for constructing �-estimated prediction intervals, we �rst consider meth-

ods for evaluating the coverage probability in terms of new-sample prediction of a future failure
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time. The ideas also hold, however, for other new-sample prediction problems and for within-sample

prediction problems.

In statistical prediction, the objective is to predict the random quantity T based on sample

information (denoted by DATA). Generally, with only sample data, there is uncertainty in the

distribution parameters. The random DATA leads to a parameter estimate b� and then to a nominal

100(1��)% prediction interval PI(1��) = [T
e

; eT ]. Thus [T
e

; eT ] and the future random variable

T have a joint distribution that depends on a parameter vector �.

There are two kinds of coverage probabilities:

� For �xed DATA (and thus �xed b� and [T
e

; eT ]) the conditional coverage probability of a

particular interval [T
e

; eT ] is
CP[PI(1� �) j b�; �] = Pr(T

e

� T � eT j b�; �) = F ( eT ; �)� F (T
e

; �): (2)

This conditional probability is unknown because F (t; �) depends on the unknown �.

� From sample to sample, the conditional coverage probability is random because [T
e

; eT ] de-
pends on b�. The unconditional coverage probability for the prediction interval procedure is

CP[PI(1� �); �] = Pr(T
e

� T � eT ; �) = E
b�

n
CP[PI(1� �) j b�; �]o (3)

where the expectation is with respect to the random b�. Because it can be computed (at least

approximately) and can be controlled, it is this unconditional probability that is generally used

to describe a prediction interval procedure.

When CP[PI(1� �); �] = 1� � does not depend on �, the procedure PI is said to be \exact."

When CP[PI(1 � �); �] 6= 1 � � does not depend on �, it is generally possible to �nd a modi�ed

procedure PI that is \exact." When CP[PI(1� �); �] depends on the unknown �, PI is said to be

an approximate prediction interval procedure. In such cases it may be possible to modify a speci�ed

procedure to �nd a better approximation.

2.3 Relationship between one-sided prediction bounds and two-sided pre-

diction intervals

Combining a one-sided lower 100(1��=2)% prediction bound and a one-sided upper 100(1��=2)%

prediction bound gives an equal-tail two-sided 100(1 � �)% prediction interval. In particular, if

Pr(T
e

� T < 1) = 1 � �=2 and Pr(0 < T � eT ) = 1 � �=2; then Pr(T
e

� T � eT ) = 1 � �: It

may be possible to �nd a narrower interval with unequal probabilities in the upper and lower tails,
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still summing to �. Use of equal-tail prediction intervals, however, has the important advantage of

providing an interval that has endpoints that can be correctly interpreted as one-sided prediction

bounds (with the appropriate adjustment in the con�dence level). This is important because in most

applications the cost of predicting too high is di�erent from the cost of predicting too low and two-

sided prediction intervals are often reported even though primary interest is on one side or the other.

When computing a two-sided prediction interval, it is often necessary to compute separate lower and

upper one-sided prediction bounds and put them together to obtain the prediction interval.

2.4 The naive method for computing a statistical prediction interval

A \naive" prediction interval for continuous T is obtained by substituting the maximum likelihood

(ML) estimate for � into (1), giving

PI(1� �) = [T
e

; eT ] = [bt�=2; bt1��=2]
where btp = tp(b�) is the ML estimate of the p quantile of T . To predict a future independent

observation from a log-location-scale distribution (such as the Weibull or lognormal distribution)

with cdf Pr(T � t) = �[(log(t) � �)=�], a naive prediction interval is

PI(1� �) = [T
e

; eT ] = [bt�=2; bt1��=2]
= [exp(b�+ ��1(�=2)� b�); exp(b�+��1(1� �=2)� b�)] (4)

where �(z) is the cdf and ��1(p) is the p quantile of the particular standard location-scale distri-

bution. The unconditional coverage probability for this naive procedure is approximately equal to

the nominal 1�� with large samples sizes. For small to moderate number of units failing, however,

the coverage probability may be far from 1� �.

Example 1 Naive prediction interval for predicting the life of a ball bearing (lognormal

distribution). Figure 3 is a lognormal probability plot of the �rst 15 of 23 failures in a bearing

life test described in Lawless (1982, page 228) when the data are right-censored at 80 million cycles.

Failures occurred at 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80,

68.64, 68.64, and 68.88 million revolutions. The other eight bearings were treated as if they had

been censored at 80 million cycles. The lognormal ML estimates are b� = 4:160 and b� = :5451.

From (4), the naive two-sided 90% prediction interval is

[T
e

; eT ] =
�
exp(b� +��1

nor(:05)� b�); exp(b�+ ��1
nor(:95)� b�)� (5)

= [exp(4:160 + (�1:645)� :5451); exp(4:160 + 1:645� :5451)] = [26:1; 157:1] :
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Figure 3: Lognormal probability plot of bearing life test data censored after 80 million cycles (with

15 of 23 units failed) with lognormal ML estimates and pointwise 95% con�dence intervals.

Intervals constructed in this manner are generally too narrow and their coverage probability is below

the nominal value of 1� � because they ignore the uncertainty in b� and b� relative to � and �.

3 Calibrating Naive Statistical Prediction Bounds

Cox (1975) suggested a large-sample approximate method, based on maximum likelihood estimates,

that can be used to calibrate or correct a naive prediction interval. Atwood (1984) used a similar

method. The basic idea of this approach, for a one-sided lower con�dence bound, is to calibrate the

naive one-sided prediction bound by evaluating the function CP[PI(1� �c); �] at b� and �nding a

calibration value 1� �cl such that for a one-sided lower prediction bound for T

CP[PI(1� �cl); b�] = Pr

�
T
e

� T � 1; b�� = Pr
�bt�cl

� T � 1;b�� = 1� �: (6)

Here (and hereafter) the notation Pr

�
T
e

� T � 1; b�� and Pr
�bt�cl

� T � 1; b�� indicates the cor-

responding functions Pr

�
T
e

� T � 1; �

�
and Pr

�bt�cl
� T � 1; �

�
evaluated at b�.

Calibration for a one-sided upper prediction bound on T (described at the end of Section 3.2)

is similar. For a two-sided prediction interval, the calibration is done separately such that the

probability is �=2 in each tail. Figure 4, to be used in Example 2, provides an illustration of lower

and upper \calibration curves."
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Figure 4: Calibration functions for predicting the failure time of a future bearing based on a lognor-

mal distribution and life test data censored after 80 million cycles.

In problems where CP[PI(1� �c); �] does not depend on �, the calibration procedure provides

an exact prediction interval. In some simple cases (e.g., prediction based on uncensored samples

from exponential and normal distributions), the calibration curve can be obtained analytically in

terms of quantiles of standard distributions. Beran (1990) gives examples.

3.1 Approximate calibration of the naive statistical prediction bounds

Cox (1975) suggested an asymptotic analytical approximation for (6). To calibrate a naive lower

prediction bound (the method is similar for the upper prediction bound), let PI(1��) = [T
e

; 1] =

[bt�; 1] = [t�(b�); 1]. As described in Section 2.2, the conditional coverage probability of PI(1�

�) is a function of 1� �, b�, and �, say
CP

h
PI(1� �) j b�; �i = Pr(T

e

� T <1 j b�; �) = g(�; b�; �):
Then the unconditional coverage probability of PI(1� �) is CP [PI(1� �); �] = E

b�

h
g(�; b�; �)i :

Under standard regularity conditions, taking the expectation of a Taylor series expansion of

g(�; b�; �) gives
CP[PI(1� �); �] = 1� �+

1

n

kX
i=1

ai
@g(�; b�; �)

@b�i
�����
�

+
1

2n

kX
i;j=1

bij
@2g(�; b�; �)
@b�i @b�j

�����
�

+ o

�
1

n

�
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where ai, bij are elements of the vector a and matrix B, respectively, as de�ned by

E
b�

h
(b� � �)i = a(�) + o

�
1

n

�

E
b�

h
(b� � �)(b� � �)0i = B(�) + o

�
1

n

�
:

Even for seemingly simple problems (e.g., Type I censoring of a sample from a one-parameter ex-

ponential distribution), these expectations are extremely di�cult to compute. In the few situations

where the expressions are tractable (e.g., uncensored samples from exponential and normal distri-

butions), there already exist simple exact prediction procedures based on the distribution of pivotal

quantities.

3.2 Calibration by simulation of the sampling/prediction process

Modern computing capabilities make it easy to use Monte Carlo methods to evaluate, numerically,

quantities like (6), even for complicated statistical models. Beran (1990) provides asymptotic the-

ory for such prediction calibration. In particular, for a one-sided lower prediction bound, under

certain regularity conditions, and with no censoring, Beran shows that the unconditional coverage

probability for a once-calibrated prediction procedure PI(1� �cl) is

CP[PI(1� �cl); �] = 1� �+ O

�
1

n2

�
:

In other words, the dependency of the CP on � rapidly diminishes as n increases. The result also

holds for one-sided upper prediction bounds and two one-sided bounds used together to form a two-

sided prediction interval. Beran (1990) also shows that the order of the asymptotic approximation

can be improved by iterating the calibration procedure, but indicated that the performance of the

higher-order approximation might not be so good in small samples.

To calibrate with simulation, under the assumed model we can use ML estimates b� to simulate

both the sampling and prediction process a large number B (e.g., B = 50,000 or B = 100,000) times.

Although B = 2000 or so is often suggested for simulation-based con�dence intervals, larger values

of B are generally required for prediction problems due to the added variability of the single future

observation.

Calibration of a lower prediction bound. Conceptually, to obtain a calibration curve for a

lower prediction bound, like that shown in Figure 4, the function CP[PI(1� �c); b�] in (6), can be

evaluated as follows:

1. Choose a particular value of 1� �c, say 1� �0.
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2. Simulate DATA�

j from the assumed model with parameter values equal to the ML estimates

b� [i.e., from F (t; b�)]. Use the sampling procedures and censoring that mimics the original

experiment.

3. Compute the simulation ML estimate b��
j
from DATA�

j
.

4. Compute the naive 100(1 � �0)% lower prediction bound T
e

�

j

from the simulated DATA�

j .

Compare T
e

�

j

with an independent T �

j
simulated from F (t; b�) to see if T �

j
> T

e

�

j

.

5. Repeat steps 2 to 4 for j = 1; 2; : : : ; B. The proportion of the B trials having T �

j
> T

e

�

j

gives

the Monte Carlo evaluation of CP [PI(1� �0); �] at b�, which we denote by CP�[PI(1��0); b�].
To obtain the calibration curve, repeat steps 2 to 5 for di�erent values of 1� �0.

The di�erence between CP
h
PI(1� �0); b�i and CP�

h
PI(1� �0); b�i is due to Monte Carlo error

and can be made arbitrarily small by choosing a su�ciently large value of B. To avoid cumbersome

notation we will use CP
h
PI(1� �0); b�i even when the evaluation is done with simulation.

Operationally, for a log-location-scale distribution where � = (�; �), the entire CP[PI(1��c); b�]
function in (6) can be evaluated more directly, but equivalently, by using the following procedure:

1. Use simulation to compute B realizations of the pivotal-like statistic Zlog(T�) = [log(T �) �

b��]=b��.
2. The empirical distribution of the observed values of the random variable P = 1� �[Zlog(T�)]

provides a Monte Carlo evaluation of CP[PI(1 � �c); b�] in (6). In particular, for a lower

prediction bound, 1 � �cl is the 1 � � quantile of the distribution of the random variable

P = 1��(Zlog(T�)).

Calibration of an upper prediction bound. The naive one-sided upper prediction bound

for T is calibrated by �nding 1� �cu such that

CP[PI(1� �cu); b�] = Pr
�
0 � T � eT ; b�� = Pr

�
0 � T � bt1��cu

; b�� = 1� �: (7)

Then a Monte Carlo evaluation of the entire function CP[PI(1 � �c); b�] in (7) can be obtained

from the empirical distribution of the observed values of the random variable P = �[Zlog(T�)]. In

particular 1� �cu is the 1� � quantile of the distribution of the random variable P = �(Zlog(T�)).

Appendix Section A.1 provides justi�cation for these procedures and demonstrates the equiva-

lence of the calibration method and the pivotal method for complete and Type II censored data,

mentioned in Section 1.4, as well as the corresponding approximate pivotal method that can be used

with Type I censoring. For predicting random variables with distributions that are not log-location-

scale, the approach is similar, as will be illustrated in Sections 4 and 5.
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3.3 Calibration by averaging conditional coverage probabilities

As shown by Mee and Kushary (1994), it can be much more e�cient, computationally, to obtain the

needed calibration curves for (6) and (7) by simulating conditional coverage probabilities like those

in (2) and averaging these to estimate the expectation in (3). The procedure is similar to the one

in Section 3.2, replacing steps 4 and 5 with

4. For each simulated sample, compute the naive 100(1��0)% upper and lower prediction bounds

T
e

� and eT �, respectively. For a log-location-scale distribution, T
e

� = exp(b�� + ��1(�0) � b��)
and eT � = exp(b�� +��1(1� �0)� b��).

5. A Monte Carlo evaluation of the unconditional coverage probability is obtained from the

average of the simulated conditional coverage probabilities CP[PI(1 � �0); b�] = P
B

j=1 Pj=B

where

(a) For the upper prediction bound calibration Pj = Pr(T �

� eT �) = F (eT �; b�). For a log-

location-scale distribution, Pj = �[(log( eT �)� b�)=b�].
(b) For the lower prediction bound calibration, compute the conditional coverage probability

Pj = Pr(T �

� T
e

�) = 1 � F (T
e

�; b�). For a log-location-scale distribution, Pj = 1 �

�[(log(T
e

�)� b�)=b�].
To obtain the entire calibration curves, one would need to compute CP[PI(1 � �0); b�] for a

large number of di�erent values of 1� �0 between 0 and 1. Operationally, to compute a one-sided

lower prediction bound one needs only to �nd the appropriate 1��cl value. The CP[PI(1��c); b�]
function is a continuous, increasing function of 1 � �c, so the appropriate calibration value can be

found by using a simple root-�nding method.

The procedure for Monte Carlo evaluation of the coverage probability in Section 3.2 utilized

the observed proportion of correct prediction bounds. The advantage of the probability-averaging

procedure is that it does not require a simulation of the future random variable in the evaluation.

Thus the procedure requires fewer Monte Carlo samples to get the same level of accuracy. The

method in Section 3.2 might be preferred in situations where a naive prediction interval is easy to

compute, but when the conditional probabilities cannot be computed easily (e.g., when the cdf and

quantiles of the random variable to be predicted cannot be computed in closed form).

For either evaluation method, it is a simple matter to use standard sampling methods to quantify

Monte Carlo error. For example, the standard error of the Monte Carlo evaluation of CP[PI(1 �
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Figure 5: Histogram of 100,000 simulated Zlog(bT�) values, based on the bearing life test data censored

after 80 million cycles.

�0); b�] for any particular 1� �0 isvuut BX
j=1

(Pj � CP[PI(1� �0); b�])2
B(B � 1)

:

For the probability-averaging procedure, the variability in the Pj values is related to the variability

in b��j values. The probability-averaging procedure can provide substantial savings in computing

time.

Example 2 Calibration of the naive prediction interval for a future lognormal bearing

life. Figure 5 is a histogram of the 100,000 simulated values of Zlog(T�). Figure 6 is a corre-

sponding histogram of the B=100,000 simulated values of �nor[Zlog(T�)]. The lower and upper

CP[PI(1 � �c); b�] calibration functions in Figure 4 could have been computed from the empiri-

cal cdfs of the simulated 1 � �nor[Zlog(T�)] and �nor[Zlog(T�)] values, respectively. Visually, one

can imagine integrating the histogram of �nor[Zlog(T�)] in Figure 6 and its complement to obtain,

respectively, the upper and lower calibration curves shown in Figure 4.

Actually the lower and upper CP[PI(1� �c); b�] calibration functions in Figure 4 were obtained

by using the conditional probability averaging method instead, with B = 100,000. The simulation

sample size of B = 100,000 was chosen to be large enough to assure that the printed calibration

values are correct to the number of digits shown. Because B is so large, the di�erences between the
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Figure 6: Histogram of 100,000 simulated �nor[Zlog(bT�)] values, based on the bearing life test data

censored after 80 million cycles.

two calibration methods described here were small. With B = 10,000, the di�erences were more

pronounced, but B = 10,000 would, for practical purposes, be large enough for the conditional prob-

ability averaging method. Using the calibration points in Figure 4, a naive 96.4% lower prediction

bound for T provides a calibrated approximate 95% lower prediction bound for T . Also, a naive

96.7% upper prediction bound for T provides a calibrated approximate 95% upper prediction bound

for T .

To compute the 90% two-sided prediction interval for T , these two one-sided prediction bounds

can be combined. Operationally, substitute ��1
nor(1� :964) = �1:802 for ��1(�=2) and ��1

nor(:967) =

1:837 for ��1(1 � �=2) in (4) giving

[T
e

; eT ] = [exp(b�+ ��1
nor(1� :964)� b�); exp(b�+ ��1

nor(:967)� b�)]
= [exp(4:160 + (�1:802)� :5451); exp(4:160 + 1:837� :5451)]

= [24:0; 174:4] :

Thus we are 90% con�dent that the future bearing will fail between 24:0 and 174:4 million cycles of

operation.

It is important to note that the upper prediction bound requires some extrapolation given that

there were only 15 failures in the sample of 23 of the bearings. This upper bound does not account

for possible model error in the unobserved upper tail of the failure-time distribution.
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4 Prediction of Future Failures from a Single Group of Units

in the Field

Consider the situation where n units are placed into service at approximately one point in time.

Failures are reported until tc, another point in time where the available data are to be analyzed.

Suppose that F (t; �) is used to describe the failure time distribution and that r > 0 units have failed

in the interval (0; tc). Thus there are n� r unfailed units at tc.

A common problem (e.g., in warranty exposure prediction) is the need to predict the number

of additional failures K that will be reported between tc and tw, where tw > tc. In addition, it is

sometimes necessary to quantify the uncertainty in such a prediction. The upper prediction bound

for K is usually of particular interest.

Conditional on the number of failures r, K follows a BINOMIAL(n � r; �) distribution where

� =
Pr(tc < T � tw)

Pr(T > tc)
=

F (tw; �) � F (tc; �)

1� F (tc; �)
(8)

is the conditional probability of failing in the interval (tc; tw), given that a unit survived until tc.

The corresponding binomial cdf is Pr(K � k) = BINCDF(k; n� r; �).

The naive 100(1��)% upper prediction bound for K is eK(1��) = bK1��. This upper prediction

bound is computed as the smallest integer k such that BINCDF(k; n�r; b�) � 1��. The ML estimate

b� is obtained by evaluating (8) at ML estimate b�. This upper prediction bound can be calibrated

by �nding 1� �cu such that

CP[PI(1� �cu); b�] = Pr
h
K � eK(1� �cu); b�i = 1� �: (9)

Then the 100(1� �)% calibrated upper prediction bound would be eK(1� �cu) = bK1��cu
.

The naive 100(1 � �)% lower prediction bound for K is K
e

(1 � �) = bK�. This naive lower

prediction bound is computed as the largest integer k such that BINCDF(k; n � r; b�) < �. This

lower prediction bound can be calibrated by �nding 1� �cl such that

CP[PI(1� �cl); b�] = Pr

�
K � K

e

(1� �cl); b�
�
= 1� � (10)

and the calibrated lower prediction bound would be K
e

(1 � �cl) = bK�cl
.

The needed calibration curves for (9) and (10) can be found by averaging conditional coverage

probabilities obtained from Monte Carlo simulation by using the following procedure that is similar

to the one in Section 3.3.

1. Choose a particular value of 1� �c, say 1� �0.
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Figure 7: Prediction of the future number failing in the Product-A population.

2. Generate simulated samples of size n, say DATA�

j for j = 1; : : : ; B from the assumed model

with parameter values equal to b� and the same censoring scheme as in the original sample

(leading to the same censoring pattern, except for the variability in n� r).

3. The jth simulated sample DATA�

j
provides n� r�

j
, b��

j
, and b��

j
.

4. Use the cdf BINCDF(k;n � r�
j
; b��

j
) to compute the upper and lower naive prediction bounds

eK(1� �0)
�

j
and K

e

(1� �0)
�

j
.

5. For the upper prediction bound calibration, compute the conditional coverage probability Pj =

BINCDF
h eK(1� �0)

�

j ;n� r�j ; b�i. A Monte Carlo evaluation of the unconditional coverage

probability is CP[PI(1� �0); b�] =PB

j=1 Pj=B.

6. For the lower prediction bound calibration, compute the conditional coverage probability

Pj = 1 � BINCDF

�
K
e

(1� �0)
�

j
� 1;n� r�

j
; b��. A Monte Carlo evaluation of the uncondi-

tional coverage probability is CP[PI(1� �0); b�] =P
B

j=1 Pj=B.

The justi�cation for this procedure is given in Appendix Section A.2.

Example 3 Prediction interval to contain the number of future Product-A failures.

During one month, n =10,000 units of Product-A (the actual name of the product is not being used

to protect proprietary information) were put into service. After 48 months, 80 failures had been

reported. Management requested a point prediction and an upper prediction bound on the number

of the remaining n � r = 10000 � 80 = 9920 units that will fail during the next 12 months (i.e.,

between 48 and 60 months of age). The available data and previous experience suggested a Weibull

failure-time distribution and the ML estimates are b� = 1152 and b� = 1:518. From these,

b� = bF (60)� bF (48)
1� bF (48) = :003233:

Figure 7 shows the point prediction, the naive 95% upper prediction bound, and the calibrated

approximate 95% upper prediction bound. The point prediction for the number failing between 48
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Figure 8: Calibration functions for upper and lower prediction bounds on the number of �eld failures

in the next year for the Product-A population.

and 60 months is bK = (n� r)� b� = 9920� :003233 = 32:07. The naive 95% upper prediction bound

on K is eK(:95) = bK:95 = 42, the smallest integer k such that BINCDF(k; 9920; :003233)� :95. The

calibration curve shown in Figure 8 gives, for the upper prediction bound, CP[PI(:986);b�] = :95.

Thus the calibrated approximate 95% upper prediction bound on K is eK(:986) = bK:986 = 45, the

smallest integer k such that BINCDF(k; 9920; :003233) � :986. The naive 95% lower prediction

bound on K is K
e

(:95) = bK:05 = 22, the largest integer k such that BINCDF(k; 9920; :003233)< :05.

The calibration curve shown in Figure 8 gives, for the lower prediction bound, CP[PI(:981);b�] = :95.

Thus the calibrated approximate 95% lower prediction bound on K is K
e

(:981) = bK:019 = 20, the

largest integer k such that BINCDF(k; 9920; :003233)< 1� :981 = :019.

5 Prediction of Future Failures fromMultiple Groups of Units

with Staggered Entry into the Field

This section describes a generalization of the prediction problem in Section 4. In many applications

the units in the population of interest entered service over a period of time. This is called staggered

entry. As in Section 4, the need is to use early �eld-failure data to construct a prediction interval

for the number of future failures in some interval of calendar time, where the amount of previous

operating time di�ers from group to group. This prediction problem is illustrated in Figure 9.
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Figure 9: Illustration of staggered entry prediction.

Staggered entry failure-time data are multiply censored because of the di�erences in operating time.

The prediction problem can be viewed as predicting the number of the additional failures across

the s groups during a speci�ed period of calendar time. The problem is more complicated than the

prediction procedure given in Section 4 because the age of the units, the failure probabilities, and

number of units at risk to failure di�er from group to group. For group i, ni units are followed for

a period of length tci and the �rst ri failures were observed at times t(i1) < � � � < t(iri), i = 1; : : : ; s:

Conditional on ni�ri, the number of additional failures Ki from group i during interval (tci; twi)

(where twi = tci +�t) is distributed BINOMIAL(ni � ri; �i) with

�i =
Pr(tci < T � twi)

Pr(T > tci)
=

F (twi; �)� F (tci; �)

1� F (tci; �)
: (11)

Let K =
P

s

i=1Ki be the total number of additional failures over �t. Conditional on the

DATA (and the �xed censoring times) K has a distribution that can be described by the sum of s

independent but non-identically distributed binomial random variables with cdf denoted by Pr(K �

k) = SBINCDF(k;n� r;�) where n� r = (n1 � r1; : : : ; ns � rs) and � = (�1; : : : ; �s). Appendix

Section A.3 describes methods for evaluating SBINCDF(k;n� r;�) and the corresponding quantiles

of K.

A naive 100(1��)% upper prediction bound eK(1��) = bK1�� is computed as the smallest integer

k such that SBINCDF(k;n� r�; b��) � 1 � �. This upper prediction bound can be calibrated by

�nding 1� �cu such that

CP[PI(1� �cu); b�] = Pr
h
K � eK(1� �cu); b�i = 1� �:
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Figure 10: Weibull probability plot of the bearing cage data showing the ML estimate of F (t) along

with a set of approximate 95% pointwise con�dence intervals for F (t).

A naive 100(1��)% lower prediction bound K
e

(1��) = bK� is computed as the largest integer k

such that SBINCDF(k;n� r�; b��) < �. This lower prediction bound can be calibrated by �nding

1� �cl such that

CP[PI(1� �cl); b�] = Pr

�
K � K

e

(1� �cl); b�
�
= 1� �:

To calibrate these one-sided prediction bounds, one can use the same procedure outlined in

Section 4, replacing BINCDF(k;n� r; b�) with SBINCDF(k;n� r; b�).
Example 4 Prediction interval to contain the number of future bearing cage failures.

Abernethy, Breneman, Medlin, and Reinman (1983, pages 43-47) describe the analysis of bearing

cage failure data. Groups of bearing cages, installed in a larger system, were introduced into service

at di�erent points in time (staggered entry). Failures had occurred at 230, 334, 423, 990, 1009,

and 1510 hours of service. There were 1697 other units that had accumulated various amounts

of service time without failing. Figure 10 is a Weibull probability plot for the data. Because of

an unexpectedly large number of failures in early life, the bearing cage was to be redesigned. It

would, however, be some time before the design could be completed, manufacturing started, and

the existing units replaced. The analysts wanted to use the initial data to predict the number of

additional failures that could be expected from the population of units currently in service, during

the next year, assuming that each unit will see � = 300 hours of service during the year. Abernethy
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Figure 11: Prediction of the future number failing in the bearing-cage population.

et al. (1983) computed point predictions. We will extend their results to compute a prediction

interval to quantify uncertainty.

Table 1 is a future-failure risk analysis. This table gives, for each of the groups of units that had

been put into service, the number of units installed, accumulated service times, number of observed

failures, estimated conditional probability of failure, and the estimated expected number failing

in the 300-hour period. The sum of the estimated expected numbers failing is 5.057, providing a

point prediction for the number of failures in the 300-hour period. The Poisson distribution will,

in this example, provide a good approximation for the SBIN distribution of K. Figure 11 shows

the point prediction, naive upper prediction bound, and the calibrated upper prediction bound for

the bearing-cage population. The naive 95% upper prediction bound on K is eK(:95) = bK:95 = 9,

the smallest integer k such that SBINCDF(k;n� r;�) � :95. The upper calibration curve shown

in Figure 12 gives, for the upper prediction bound, CP[PI(:991);b�] = :95. Thus the calibrated

95% upper prediction bound on K is eK(:991) = bK:991 = 12, the smallest integer k such that

SBINCDF(k;n� r;�) � :991. The naive 95% lower prediction bound on K is K
e

(:95) = bK:05 = 1,

the largest integer k such that SBINCDF(k;n� r;�) < :05. The lower calibration curve shown in

Figure 12 gives CP[PI(:959);b�] = :95. Thus the calibrated 95% lower prediction bound on K is

K
e

(:959) = bK:041 = 1, the largest integer k such that SBINCDF(k;n� r;�) < 1� :959 = :041. Note

that, in this particular case, the naive and the calibrated prediction bounds are the same.

6 Concluding Remarks and Extensions

The methodology described here can be extended in a number of di�erent directions to handle

various problems that arise in practice.

� We have illustrated the prediction methods for log-location-scale distributions (such as the

Weibull or lognormal distribution). Application to other distributions could follow directly.
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Table 1: Bearing cage data and future-failure risk analysis for the next year (300 hours of service

per unit).

Group Hours in Failed At Risk

i Service ni ri ni � ri b�i (ni � ri)� b�i

1 50 288 0 288 .000763 .2196

2 150 148 0 148 .001158 .1714

3 250 125 1 124 .001558 .1932

4 350 112 1 111 .001962 .2178

5 450 107 1 106 .002369 .2511

6 550 99 0 99 .002778 .2750

7 650 110 0 110 .003189 .3508

8 750 114 0 114 .003602 .4106

9 850 119 0 119 .004016 .4779

10 950 128 0 128 .004432 .5673

11 1050 124 2 122 .004848 .5915

12 1150 93 0 93 .005266 .4898

13 1250 47 0 47 .005685 .2672

14 1350 41 0 41 .006105 .2503

15 1450 27 0 27 .006525 .1762

16 1550 12 1 11 .006946 .0764

17 1650 6 0 6 .007368 .0442

18 1750 0 0 0 .007791 0

19 1850 1 0 1 .008214 .0082

20 1950 0 0 0 .008638 0

21 2050 2 0 2 .009062 .0181

Total 1697 6 5.057

Data from Abernethy, Breneman, Medlin, and Reinman (1983, pages

43-47).
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Figure 12: Calibration curve for a prediction interval for the number of bearing cage failures in the

next 12 months.

� The calibration methods illustrated here could also be used for problems of simultaneous

prediction (e.g., intervals to contain each of several future random variables), and for predicting

particular order statistics (in both new-sample and within-sample problems).

� We have illustrated the use of simulation-based prediction methods for two applications that

we have encountered in the analysis of product �eld data. We have seen other variations of

these problems. In particular, staggered entry data arise when groups of units are introduced

into service every period (commonly, in industry, the number shipped per month is reported).

Sometimes there are di�erences among the underlying failure-time distributions from period to

period, resulting from changes in product design. There may, in addition, be strong seasonal

e�ects in the failure process (e.g., in the northern Unites States, there are more automobile

battery failures in the winter than in the summer). In some cases there will be end-of-warranty

boundaries on the time intervals. These extensions would be straight-forward to handle from a

technical point of view, but would require additional bookkeeping and corresponding computer

programming beyond that used in the applications presented here.

� In some applications (e.g., failure of outdoor paints and coatings), there may be strong tem-

poral and spatial environmental e�ects that would have to be considered to obtain accurate

prediction bounds.
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� Today, the computational price for computing the prediction intervals is relatively small. The

di�culty is that each new situation still requires some amount of new programming. It would

be useful to have general-purpose software that could easily be adapted to run and use the

needed simulations in a time-e�cient manner.
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A Technical Details

This appendix outlines some technical details to justify some of the procedures in the body of the

paper.

A.1 Equivalence of the calibration procedure and the pivotal-based (ap-

proximate pivotal-based) procedure for prediction intervals from a

log-location-scale distribution

This section shows the equivalence of the prediction intervals obtained from the calibration procedure

of Section 3.2 and the procedure based on the pivotal (approximate pivotal) quantity Zlog(T ) =

[log(T ) � b�]=b� when the data are from a log-location-scale distribution.

With Type II (failure) censoring, a life test is run until a speci�ed number of r failures where

1 � r � n. For complete or Type II (failure) censored data, Zlog(T ) = [log(T ) � b�] =b� is pivotal.

That is, the distribution of Zlog(T ) depends only on n and r but not on � and �. For single time

censoring (test run until a speci�ed censoring time tc), Zlog(T ) is only approximately pivotal and

quantiles of Zlog(T ) depend on F (tc;�; �) (the unknown expected proportion failing by time tc) and

the sample size n. For more information on the pivotal-based method see, for example, Antle and

Rademaker (1972), Engelhardt and Bain (1979), and Mee and Kushary (1994). In general, for the
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lower prediction bound in a log-location-scale prediction problem

CP[PI(1� �cl);�; �] = Pr
�
T � bt�cl

;�; �
�

= Pr
�
log(T ) � b�+ b���1(�cl);�; �

�
= Pr

�
[log(T ) � b�]=b� � ��1(�cl);�; �

�
= 1� Pr[Zlog(T ) � ��1(�cl)] = 1� �: (12)

Consequently, Pr[Zlog(T ) � ��1(�cl)] = �, or equivalently, the � quantile of the distribution of

Zlog(T ) is �
�1(�cl); that is zlog(T )(�)

= ��1(�cl). It follows that 1 � �cl = 1 � �(zlog(T )(�)
) is the

1� � quantile of the distribution of P =
�
1��(Zlog(T ))

�
.

When Zlog(T ) is pivotal, the coverage probability in (12) does not depend on (�; �). Thus the the

pivotal-based lower prediction bound is b�+b��zlog(T )(�)
and the calibrated (approximate calibrated)

lower prediction bound is b� + b� � ��1(�cl). Noting that zlog(T )(�)
= ��1(�cl) shows that the two

prediction procedures yield the same prediction bound.

When Zlog(T ) is not pivotal, (12) is evaluated at the ML estimates � = b� and � = b�, giving an
approximate calibration. This evaluation is expressed as

CP�[PI(1� �cl); b�; b�] = Pr
�
[log(T �) � b��]=b�� � ��1(�cl); b�; b��

= 1� Pr[Zlog(T�) � ��1(�cl)] = 1� �:

The approximate pivotal-based lower prediction bound is b� + b� � zlog(T�)(�)
and the calibrated

(approximate calibrated) lower prediction bound is b� + b� � ��1(�cl). Noting that zlog(T�)(�)
=

��1(�cl)) shows that the two prediction procedures yield the same prediction bound.

When the quantiles of the distribution of Zlog(T ) (or Zlog(T�)) are not available we use simulation

to obtain (or approximate) the quantiles of the distribution of these two random variables. For a

simulation of size B, the pivotal-based (approximate pivotal-based) procedure uses the � quantile,

zlog(T�)(�), of the empirical distribution of the simulated values Zlog(T�
j
) = [log(T �

j
� b��

j
)]=b��

j
, j =

1; : : : ; B to construct the lower prediction bound, b�+ b�� zlog(T�)(�)
. Also the empirical distribution

of the observed values of P � = [1 � �(Zlog(T�))] provides an evaluation of CP�[PI(1 � �cl); b�; b�].
Then, from the results immediately following (12), 1 � �cl = [1��(zlog(T�)(�)

)] and the calibrated

(approximate calibrated) lower prediction bound is b�+ b� ���1(�cl). Again, zlog(T�)(�)
= ��1(�cl)

showing that the two procedures give identical lower prediction bounds.

When the data are complete or Type II censored, the only di�erences between the quantiles

zlog(T )(�)
and zlog(T�)(�)

are due to Monte Carlo error and the coverage of the prediction intervals

can be made as close to 1� � as desired by taking a large value for the simulation size B.
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For the upper prediction bound, the calibration consists of �nding 1� �cu such that

CP[PI(1� �cu);�; �] = Pr
�
T � bt1��cu

;�; �
�

= Pr
�
log(T ) � b�+ b���1(1� �cu);�; �

�
= Pr

�
Zlog(T ) � ��1(1� �cu);�; �

�
= 1� �:

Thus the 1 � � quantile of the distribution of Zlog(T ) is �
�1(1 � �cu). It follows that 1 � �cu =

�(zlog(T )(1��)
) is the 1 � � quantile of the distribution of P = �(Zlog(T )). When the quantiles of

the distribution of Zlog(T ) are not available we again use simulation to approximate the quantiles

and the prediction bounds are obtained by replacing zlog(T )(1��)
with zlog(T�)(1��)

and 1 � �cu =

�(zlog(T )(1��)
) with 1� �cu = �(zlog(T�)(1��)

).

The pivotal-based (or approximate pivotal-based) upper prediction bound is b�+ b�� zlog(T�)(1��)

and the (approximate) calibrated upper prediction bound is b� + b� � ��1(1 � �cu). Noting that

zlog(T�)(1��)
= ��1(1 � �cu), this shows that the two prediction procedures yield the same upper

prediction bounds.

Note that � denotes a quantity obtained with Monte Carlo but, as indicated in Section 3.2, we

have, for the most part, suppressed this notation in the body of the paper.

A.2 Justi�cation of the calibration procedure for prediction bounds for

the number of future failures

For a given 1 � �0, a naive upper prediction bound has the form eK(1 � �0). The unconditional

coverage probability evaluated at � is

CP[PI(1� �0); �] = Pr
h
K � eK(1� �0); �

i
= E

b�

n
Pr
h
K � eK(1� �0) j b�; �io

= E
b�

h
BINCDF( eK(1� �0);n� r; �)

i
:

By using simulation, this coverage probability can be evaluated at b� as follows. For the jth simulated

sample of size n, say b��j , the upper prediction bound is eK(1 � �0)
�

j and the conditional coverage

probability of the upper prediction bound is P �

j
= BINCDF( eK(1 � �0)

�

j
;n � r�

j
; b�). Using the B

simulated samples, the unconditional coverage probability CP[PI(1 � �0); b�] is approximated by

CP�[PI(1 � �0); b�] = PB

j=1P
�

j
=B. The calibration problem consists of �nding 1 � �cu such that

CP�[PI(1� �cu); b�] = 1� �.

Similarly, the unconditional coverage probability corresponding to a lower prediction bound



26

K
e

(1� �0) is

CP[PI(1� �0); �] = 1� E
b�

�
BINCDF

�
K
e

(1� �0)� 1;n� r; �

��
:

Using evaluation at b�, the calibration problem problem is �nding 1 � �cl such that CP�[PI(1 �

�cl); b�] =PB

j=1 P
�

j
=B = 1� �, where P �

j
= 1� BINCDF

�
K
e

(1� �cl)j � 1;n� r�
j
; b��.

Note that in either case, for �xed b�, CP�[PI(1� �c); b�] is a continuous function of 1� �c.

A.3 Evaluation of the distribution of the sum of s independent non-

identically distributed binomial random variables

This appendix describes some methods for evaluating SBINCDF(k;m;�), the cdf of K =
P

s

i=1Ki,

the sum of s independent non-identically distributed binomial randomvariables. Herem = (m1; : : : ;ms)

and � = (�1; : : : ; �s) are the number of trials and probabilities for the s di�erent binomial distribu-

tions. In general there is not a simple closed form expression for SBINCDF(k;m;�). If the number

of groups is small (e.g., s � 3), then one can write a convolution formula for the cdf. The complexity

of the expression, however, grows exponentially with s and for values of s larger than 3 or 4 it will

be useful to consider alternative methods of computation.

If �i << mi; i = 1; s then one can use the Poisson approximation Ki _� POISSON(�i), where

�i = mi�i. Thus SBINCDF(k;m;�) � POISSON(�), where � =
P

s

i=1 �i can be used. If 5 < �imi <

mi � 5; i = 1; s then by the central limit theorem SBINCDF(k;m;�) � NOR(�; �), should provide

an adequate approximation where � =
P

s

i=1mi�i and � = [
P

s

i=1mi�i(1� �i)]
1=2

. In general,

SBINCDF(k;m;�) can be evaluated to any degree of accuracy using Monte Carlo simulation. To

approximate SBINCDF(k;m;�) with Monte Carlo simulation,

1. Generate vju from BINOMIAL(mu; �u), for u = 1; : : : ; s.

2. Compute vj =
Ps

u=1 vju.

3. Repeat steps 1 and 2 for j = 1; : : : ;M where M should be chosen to be large enough to keep

the Monte Carlo error small.

4. The empirical cdf of v1; : : : ; vM approximates the cdf SBINCDF(k;m;�).

Quantiles of the SBINCDF distribution can also be obtained from this empirical distribution.

The Monte Carlo approach will require more computer time than the simple approximations,

but less than direct evaluation when s is large.
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