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Abstract. With the onset of new satellite radar constellations
(e.g. Sentinel-1) and advances in computational science (e.g.
grid computing) enabling the supply and processing of multi-
mission satellite data at a temporal frequency that is compat-
ible with real-time flood forecasting requirements, this study
presents a new concept for the sequential assimilation of Syn-
thetic Aperture Radar (SAR)-derived water stages into cou-
pled hydrologic-hydraulic models. The proposed methodol-
ogy consists of adjusting storages and fluxes simulated by a
coupled hydrologic-hydraulic model using a Particle Filter-
based data assimilation scheme. Synthetic observations of
water levels, representing satellite measurements, are assim-
ilated into the coupled model in order to investigate the per-
formance of the proposed assimilation scheme as a function
of both accuracy and frequency of water level observations.
The use of the Particle Filter provides flexibility regarding
the form of the probability densities of both model simula-
tions and remote sensing observations. We illustrate the po-
tential of the proposed methodology using a twin experiment
over a widely studied river reach located in the Grand-Duchy
of Luxembourg. The study demonstrates that the Particle Fil-
ter algorithm leads to significant uncertainty reduction of wa-
ter level and discharge at the time step of assimilation. How-
ever, updating the storages of the model only improves the
model forecast over a very short time horizon. A more effec-
tive way of updating thus consists in adjusting both states and
inputs. The proposed methodology, which consists in updat-
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ing the biased forcing of the hydraulic model using informa-
tion on model errors that is inferred from satellite observa-
tions, enables persistent model improvement. The present
schedule of satellite radar missions is such that it is likely
that there will be continuity for SAR-based operational water
management services. This research contributes to evolve re-
active flood management into systematic or quasi-systematic
SAR-based flood monitoring services.

1 Introduction

An appropriate, rapid, and effective response to any flood-
induced disaster is essential. Remote sensing with its exten-
sive spatial coverage in conjunction with prediction models
has the potential to deliver the kind and amount of informa-
tion needed to meet these objectives, especially in data sparse
regions across the globe. Optical imagery has been success-
fully used in the past to extract flooded areas (e.g. Marcus
and Fonstad, 2008). However, the rapid flood recession in
small- to medium-sized catchments and the typical weather
conditions during flood events hamper systematic and global
flood detection with visible satellite imagery. With its ability
to acquire data during all meteorological conditions, day and
night, and its capability to provide information about the ex-
tent of open water bodies, Synthetic Aperture Radar (SAR)
instruments enable monitoring flood extents over large areas
and thus show high potential for facilitating effective flood
disaster management. Although significant improvements
related to the usefulness, reliability and availability of mi-
crowave remote sensing data have been achieved over the
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last few years, there is a clear need for the development of
new strategies that allow for a more efficient use of remote
sensing-based flood hazard monitoring.

To date, the use of radar imagery is very often limited to
an instantaneous binary segmentation into flooded and non-
flooded pixels. Additionally, flooded areas retrieved from
remote sensing observations have been successfully used a
posteriori for calibrating and evaluating hydraulic models
(Aronica et al., 2002; Horritt and Bates, 2002, Werner et
al., 2005; Pappenberger et al., 2007; Di Baldassarre et al.,
2009). Over the last decade many studies have investigated
ways to introduce the vertical dimension in flood mapping
based on remote sensing observations. Surface water storage
can be estimated via the retrieval of inundated areas and wa-
ter surface elevation. Remote sensing-based techniques thus
enable the monitoring of changes in water volume in ways
that are not possible using stream gauges (Alsdorf and Let-
tenmaier, 2003). Two main techniques may be distinguished:
(1) direct measuring techniques such as those from the pro-
posed swath altimetry “Surface Water and Ocean Topogra-
phy” (SWOT) mission (Alsdorf et al., 2007) and (2) indirect
measuring techniques based on the estimation of river stages
at the land-water interface using topographic maps or Digi-
tal Elevation Models (DEM) (e.g. Smith, 1997; Brakenridge
et al., 1998; Raclot, 2006; Schumann et al., 2007a; Mat-
gen et al., 2007a). The reliability and repeatability are the
main advantages associated with water level products stem-
ming from wide swath altimetry. The expected accuracy is
0.5 m. However, the technique can only provide surface wa-
ter storage fluctuations in large rivers (50–100 m width) at a
sub-monthly time scale. Higher sampling rates are achiev-
able through a combination of indirect water level measure-
ments obtained from various high-resolution SAR sensors.
The accuracy of the data (ranging from 0.2–3 m) is unknown
a priori and depends on many factors (e.g. topography, sensor
characteristics, DEM). Maps of water stage can be expected
to contain more information than binary wet/dry maps and
would thus be able to constrain the uncertainty in hydraulic
models more efficiently than binary patterns (Schumann et
al., 2009). The calibration of flood inundation models with
remote sensing-derived water level data has been investigated
in only a few studies in the recent past (Schumann et al.,
2007b; Hostache et al., 2009; Mason et al., 2009).

Even if the prediction models are thoroughly calibrated
with observations stemming, for instance, from remote sens-
ing observations, a mismatch will remain between modelled
and observed state and flux data. Hydraulic models do pro-
vide spatially and temporally continuous surface fields but
they are subject to uncertainties in input data, model struc-
ture, model parameters and initial conditions. Periodically
updating the models with observations may thus reduce the
predictive uncertainty of the models (Bates et al., 2004). This
approach relies on the rationale that the merging of model
results and remote sensing observations, both subject to con-
siderable uncertainty, yields the best possible model analyses

and eventually better predictions. Schumann et al. (2009) ar-
gue that the lack of maturity of processing chains needed to
extract hydraulically relevant information from remote sens-
ing data explains why, to date, only point measurements of
river stage and discharge are routinely assimilated in hy-
draulic models (Madsen and Skotner, 2005; Neal et al., 2007;
Smith et al., 2009). Data assimilation studies investigating
the usefulness of remote sensing derived water level mea-
surements are rare.

In one of the few data assimilation studies using real-
event satellite data (as opposed to synthetic satellite observa-
tions), Neal et al. (2009) showed that it is possible to retrieve
discharge and level estimates from ENVISAT Advanced
Synthetic Aperture Radar (ASAR) imagery when combined
with hydraulic modelling using an Ensemble Kalman Filter
(EnKF). In their proof-of-concept study the assimilation of
SAR-derived water level data led to a significant reduction in
discharge and water level uncertainty over that derived from
a sequence of atmospheric, hydrologic and hydraulic mod-
els alone. In another study dealing with real-event satellite
data, Matgen et al. (2007b) used a direct insertion method
that forced the prognostic state (i.e. water stage) of the model
to fall within the confidence interval of ENVISAT and Eu-
ropean Remote Sensing Satellite (ERS) SAR-derived water
stages. Although the modelled water levels were more accu-
rate immediately after assimilation, during subsequent time
steps the modelled water surface line gradually bounced back
to the initial water surface line obtained without data assim-
ilation. Several hours after image acquisition the results ob-
tained with and without assimilation completely overlapped.
The effect of the assimilation of remote sensing information
is thus limited by the persistence of the initial condition and
due to the dominating effect of the upstream boundary con-
dition (i.e. inflows); only a temporary improvement can be
achieved through a mere re-initialization of hydraulic models
(Schumann et al., 2009). Andreadis et al. (2007) came to a
similar conclusion in their proof-of-concept study. To tackle
the problem of non-persistent model improvements, the au-
thors successfully exploit the time correlation of model er-
rors. By complementing the state updating approach with an
update of the boundary condition, thereby correcting errors
in forcing data as part of the data assimilation scheme, they
achieve a more sustainable model improvement. Hostache
et al. (2009) propose a parameter updating approach as an
alternative to the state updating method that was used in pre-
vious studies. A variational data assimilation method using
distributed water level information was used to combine in
an optimal sense measurement data and a 2-D shallow wa-
ter model. The remote sensing-derived water level data al-
lowed identifying clusters of optimal Manning friction co-
efficients for various areas in the floodplain that are charac-
terized by homogeneous friction. Parameter updating has a
significant history with respect to the assimilation of in situ
hydrometric measurements. A detailed review can be found
in Smith et al. (2008). However, as it was pointed out by
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Fig. 1. Scheme of the data assimilation experiment (adapted after Moradkhani et al., 2008). H-H model stands for coupled hydrologic-
hydraulic model.

Kirchner (2006), sequential state updating is conceptually
preferable to sequential parameter updating because param-
eter updating violates a basic principle of physically-based
modelling, namely that the constants should stay constant
while variables vary.

As pointed out by Schumann et al. (2009), there is no
doubt that a comprehensive remote sensing data assimilation
framework has the potential of becoming a critical compo-
nent in future flood forecasting systems. The objective of
this paper is to contribute to the ongoing debate on how to
integrate remote sensing-derived data into hydraulic mod-
elling. In particular, we aim at investigating the accuracy and
sampling rate requirements for remote sensing inferred water
stage products. Moreover, we want to propose a data assim-
ilation framework that is adapted to the form of probability
density functions that are typically associated with modelled
and remotely sensed water stages. Lastly, we need to de-
fine new ways for updating the forcings in order to achieve
a persistent improvement of hydraulic models with the infor-
mation contained in satellite observations.

2 Methods

2.1 Experimental design

Figure 1 shows the synthetic experiment design used in this
study for assessing the added-value of the proposed data as-
similation technique.

The adopted experimental design is similar to the ones
presented by Andreadis et al. (2007) and Moradkhani et
al. (2008). The experiment consists in assimilating synthetic
water stage observations into an ensemble of hydraulic mod-
els whose upstream boundary conditions (flow hydrographs)
are produced using corrupted semi-distributed hydrologic
models. De Lannoy et al. (2007) showed that one of the
main underlying assumptions of filtering schemes, namely
that both observations and model predictions are unbiased, is
often not satisfied. For this reason they recommend that data
assimilation schemes should include a bias correction algo-
rithm. While we assume remote sensing observations to be
unbiased and to only contain a random error component, we
consider model predictions to contain both random and sys-
tematic errors. A two-step approach is therefore adopted to
generate model predictions. Step one consists in randomly
disturbing model parameters, forcings and initial conditions
of the hydrologic model. The procedure for generating the
unbiased ensemble of model realizations is explained in de-
tail in Sect. 3.4. Step two consists in introducing an artifi-
cial bias to the simulated upstream boundary discharges and
to run the hydraulic model with these biased forcings (i.e.
the “open loop” simulations). It is important to note that the
same hydraulic model (same model structure, initial condi-
tions and parameter sets) is used for all coupled hydrologic-
hydraulic model runs.

Synthetic observations are generated by adding white
noise to a so-called “truth” model. The “truth” corresponds
to one hydraulic model realization which is integrated for
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one upstream inflow. The latter corresponds to one unbi-
ased hydrologic model realization. The “truth” and the en-
semble of model predictions are generated separately but
using the same model structure. Only the model parame-
ters, forcings and initial conditions of the hydrologic model
component differ. Here we assume that there is no struc-
tural error. Furthermore, it is worth mentioning that in the
context of a proof-of-concept study, the “truth” does not at-
tempt to precisely represent the real system, but only a hy-
pothetical system, which approaches the real world. For a
given time step, the “truth” thus corresponds to a water sur-
face line that is computed between the upstream and down-
stream boundaries of the river reach. The prognostic states
of the model consist of water levels that are computed for
every river cross section (1-D) or grid point (2-D/3-D) of the
model domain. As a matter of fact, synthetic observations
can be easily mapped to modelled state variables. In order
to produce temporally and spatially distributed synthetic ob-
servations of water stage, the “truth” is corrupted by a white
noise. Hence, we assume that there is no non-stationary bias
and variance in the observational error structure. Different
observation perturbation magnitudes are chosen in order to
investigate the performance of the assimilation scheme as
a function of observation uncertainty. Reported root mean
squared errors of remote sensing-derived water levels range
from 20 cm (Schumann et al., 2008) to 3 m (Oberstadler et
al., 1997) depending mostly on satellite sensors, floodplain
topography and DEM accuracy. It is worth mentioning here
that the upcoming SWOT mission (Alsdorf et al., 2007) is
expected to deliver water elevation products with an accu-
racy of 50 cm (Andreadis et al., 2007). Similarly, the im-
pact of the sampling rate of satellite data will be investigated
by changing the time interval between observations. Inves-
tigated observation frequencies range between 12 and 48 h.
While no single satellite provides water stage data with stan-
dard deviations down to 20 cm every 12 h, the combination
of high-precision data sets stemming from different high-
resolution satellite missions does provide coverage over Eu-
rope and many other part of the world in less than 2 days.
Alternatively, coarse resolution imagery with associated re-
visit times of 48 h and less might be considered. However,
it has to be noted that because of a strong inverse relation-
ship between spatial resolution and revisit times of satellites,
higher observation uncertainties need to assumed in this case
(e.g. 1–2 m).

2.2 Data assimilation algorithm

The data assimilation technique implemented in thi s study
is based on the Particle Filter (PF), an ensemble filtering
method that has its origin in Bayesian estimation. Un-
like the widely used EnKF (Evensen, 1994; Burgers et al.,
1998), which simplifies the recursive estimation by assuming
a Gaussian distribution of the observation and model errors,
the PF relaxes the need for restrictive assumptions regarding

the forms of the probability density functions; that is, PF can
easily manage the propagation of a non-Gaussian distribution
through nonlinear hydrologic and hydraulic models (Morad-
khani, 2008). A detailed description of the PF can be found
in Moradkhani (2005a). A short description is given here.

Early implementations of the PF were based on the Se-
quential Importance Sampling (SIS) method, which is a Se-
quential Monte Carlo procedure developed mainly to allow
approaching the probability distributions of state variables
via a number of independent random samples, called par-
ticles. These particles are sampled directly from the state-
space to represent the posterior probability, and a weight is
computed for each particle according to the information con-
tained in the observations. Next, an estimate is computed
based on these particles and weights. Weights and estimates
are sequentially updated every time an observation becomes
available.

The SIS algorithm has serious limitations that need to be
addressed. The particles tend toward dispersion owing to
the stochastic behaviour of the system, with the result that
many of them drift away from the “truth” and obtain negligi-
ble weight. Only a few particles do participate effectively in
the filter causing also wastage of computation resources. To
reduce the degeneracy of the SIS method, a selection (i.e. re-
sampling) stage needs to be introduced to eliminate samples
with low weight and replicate samples with high weight. The
most common resampling scheme is the Sequential Impor-
tance Resampling (SIR) developed by Gordon et al. (1993).
The authors refer to Moradkhani et al. (2005a) and Weerts
et al. (2006) for more detailed explanations of the PF and its
use in hydrologic sciences.

Each particle represents the water surface line resulting
from one hydraulic model at the assimilation timetk. The
differences between particles stem from differences in up-
stream hydrographs that were propagated across the hy-
draulic model. The number of prognostic state variables (i.e.
water levels) corresponds to the number of cross sections
or grid points. Since observations are direct measurements
of the state, the mapping of observations to modelled state
variables is straightforward. One weight per particle and per
model output location is computed by using a Gaussian like-
lihood, as follows:
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In Eq. (1), w
i,j
k is the weight (probability) ofi-th particle

andj -th observation atk-th discrete time step (assimilation
time),z is the observation vector (i.e. synthetic water stages),
x is the state vector (i.e. prior estimates of water stages),h

is a nonlinear operator that relates state and observation (in
this caseh(x,θ) = x), θ is a vector of time-invariant param-
eters andσ is the standard deviation associated to the obser-
vation. The proposed weighting procedure (Eq. 1) assumes
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water stage observations to be normally distributed. A more
likely theoretical distribution function has not been specified
in previous studies. In one of the rare studies dealing with
real-event data, Schumann (2007) showed that probability
density functions of ENVISAT ASAR-derived water stage
observations are non Gaussian at many cross-sections. How-
ever, the spatial coverage offered by remote sensing means
that it is not necessary to consider all measurements derived
from an image. Therefore, Neal et al. (2009) propose a sub-
sampling method that only assimilates measurements that did
not fail a normality test.

It is worth mentioning that the weighting procedure (Eq. 1)
can be easily adapted to any kind of empirical or theoretical
distribution function. In fact, weights can be attributed to ev-
ery simulated water stage based on the empirical histogram
or theoretical pdf of remote sensing-derived water levels.
Moreover, Schumann et al. (2007) demonstrated that the ob-
servational error standard deviationσ related to SAR-derived
water stages is characterized by spatial variability. For sake
of simplicity, the assumption is made here thatσgemains
constant along the length of the river reach. Similarly, we
assume that the observational error standard deviationσ is
the same at every assimilation time.

Subsequently, one single weight per particle is computed
by applying the joint probability theory for independent vari-
ables (Eq. 2), which is then normalized (Eq. 3).Np is the
number of particles andNo is the number of observations
that is equal to the number of model output locations.
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The probability obtained at the previous steps allows for
computing an expectation of the updated water stage as fol-
lows:

E(xk) =

Np∑
i=1

xi
kW

i
k (4)

The above-described procedure represents the SIS algorithm
and provides the posterior pdf of the particles{xi

k,W
i
k} and

the expectationE(xk). However, as explained previously,
an additional resampling step is needed in order to avoid
degeneracy of the system toward a few particles. The SIR
algorithm proposed by Gordon et al. (1993) replicates the
particles in proportion to their weights: those with an asso-
ciated low importance weight are replaced with replicas of
those having higher weight. Finally, the same weight1

Np

is assigned to each “new” particle in order to create equally
weighted random measures{xi

k,
1

Np
}.

As a result, atk-th discrete time step, each model will be
re-initialized using updated water levels before being inte-
grated until the next assimilation time. The re-initialization
corresponds to the substitution of water levels in the model.
The SIR algorithm has been used throughout the study. It
is important to note that the SIR algorithm also suffers
from particle degeneracy. According to Smith et al. (2008),
the resampling step only helps reducing the degeneracy of
the particles. Moreover, another problem that may arise,
termed “sample impoverishment”, causes particles with high
weights to be selected many times leading to a loss of diver-
sity in the sample. In fact, due to the discrete approximation
of the filtering density, inaccuracies accumulate over many
time steps and generate a clustering of particles in small ar-
eas of the state-space (Fearnhead, 2002). In the experimental
set-up that is used in this study, the problem of sample im-
poverishment is partially avoided through a loose coupling
of the hydrologic and hydraulic models. Only water levels
are resampled, while the spread in the forcings (i.e. hydro-
graphs at the upstream boundary) is maintained. This means
that in case only a few particles are replicated, the diversity
in the forcings causes a direct divergence of the replicated
state variables (i.e. water levels).

2.3 Coupled hydrologic-hydraulic model

The modelling sequence consists of the loose coupling of
a semi-distributed hydrologic model and a 1-D hydraulic
model. The sequence consists of the discharge hydrographs
computed by the hydrologic model being integrated with the
hydraulic model as upstream boundary condition. The up-
stream boundary discharge is produced using the Commu-
nity Land Model (CLM) (Dai et al., 2003), a global land
surface model built on the fundaments of ecological clima-
tology, over the 356 km2 drainage area of the Alzette River
extending upstream of the gauging station at Pfaffenthal. The
model’s structure is characterized by a grid limited to 4 cells.
The surface heterogeneity is represented in the surface data
using different fractions of land cover type and different plant
functional types through patches. The observed atmospheric
forcings were assumed to be uniform and kept constant for
the different patches for all the grid cells. Ten soil physical
parameters from CLM were estimated for the observed dis-
charge. The selected parameter set is directly related to sur-
face runoff and baseflow processes (for a detailed descrip-
tion of the parameters and physical processes in CLM 2.0,
the reader is referred to De Lannoy, 2006). For the modelled
discharge, a linear routing model was applied (Troch et al.,
1994).

The hydraulic model is implemented over a 19 km reach
of the Alzette River between the gauging stations Pfaffen-
thal and Mersch. Since in this area the flow direction is
mainly parallel to the channel, the 2-D flow field that is typ-
ically related to riverbank overtopping can be accurately ap-
proximated by a 1-D representation (i.e. velocity components
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in directions other than the main flow direction are not ac-
counted for). Thus, the widely used Hydrologic Engineer-
ing Center River Analysis System – HEC-RAS (HEC-RAS
4.0, 2008) – was set-up for 1-D river flow computation. A
spatially uniform Manning friction coefficient for both the
channel and floodplain was chosen, 0.047 and 0.184 respec-
tively (for further details about the calibration procedure and
study area we cross-refer to Montanari et al., 2009). It is
worth mentioning that the methodology can also be extended
to rivers characterized by a more complex geometry (which
need to be modelled 2-D). In this case the prognostic state
variables would correspond to the water levels simulated at
every grid point. Since the hydrologic and hydraulic models
are only loosely coupled, it is also worth mentioning that the
hydrologic model could be replaced by any other model.

2.4 Ensemble generation

In order to represent the hydraulic model uncertainty, an
ensemble of upstream boundary conditions (i.e. discharge)
model was generated with CLM2.0.

For this purpose, and following the methodology proposed
by Pauwels et al. (2009), the meteorological forcings, the
model parameters and the initial conditions were disturbed
by adding a Gaussian random number to their determinis-
tic values. The standard deviation of this random number
was set to a fraction of the parameter value. Obviously, it
is important to realistically assess the model uncertainty in
order to conduct the assimilation study in a meaningful way
(Moradkhani et al., 2005b). The parameters need to be per-
turbed in such a way that the spread of the discharge ensem-
ble optimally brackets the range of discharge observations,
thereby providing a challenging test case for the assimilation
of remote sensing data. A review on procedures to gener-
ate meaningful ensembles in hydrologc modelling and data
assimilation can be found in Moradkhani et al. (2005b).

It is expected that on average the ensemble mean differs
from the observation by a value that is equal to the time av-
erage of the ensemble spread (De Lannoy et al., 2006). As
a prerequisite for calculating the verification measures, first
the ensemble spread (enspk), the ensemble mean square error
(msek), and the ensemble skill (enskk) need to be computed
at each time stepk:

enspk =
1

Np

Np∑
i=1

(qif
k −q f

k)
2 (5)

msek =

Np∑
i=1

(qif
k −q0

k )2 (6)

enskk = (q f
k −q0

k )2 (7)

N is the number of particles and the superscriptsf and0 refer
to the forecast variable and the ensemble mean, respectively.
The following verification measures (Eqs. 8 and 9) control

that (i) the ratio between the ensemble skill (enskk) and the
ensemble spread (enspk) is close to one and that (ii) the truth
is statistically indistinguishable from a member of the en-
semble (De Lannoy et al., 2006).

〈ensk〉

〈ensp〉
≈ 1 (8)

〈√
ensk

〉
〈√

sse
〉 ≈

√
N +1

2N
(9)

In Eqs. (8) and (9),<.> indicates an average over the simu-
lation period.

The optimal fractions of parameter values (i.e. standard
deviation of random number added to the deterministic val-
ues) were determined using an interval search. An ensemble
size of 64 members was used, and the ensemble size with the
best match for both statistics was used in the data assimila-
tion study.

The ensemble verification statistics obtained for the CLM

with 64 particles are〈ensk〉
〈ensp〉 = 1.2 and

〈√
ensk

〉
〈
√

mse〉
≈

√
N+1
2N

=

0.71≈ 0.74.
As mentioned above, these verification measures can be

interpreted as indications that the ensemble covers the range
of observations. It is important to note here that they are
calculated over a 6 month period from 1 January 2007 to
30 June 2007. Figure 2 shows the resulting ensemble for
the studied flood event (1 January 15:00–7 January 23:00,
2003). Finally, an artificial positive bias of 25% has been
introduced to the simulated upstream boundary discharge in
order to simulate the bias that is inherent in most model re-
alizations, even after calibration. Due to the artificial bias
of 25%, the “open loop” water level simulations are signifi-
cantly larger in comparison to the “truth”. Smaller bias val-
ues could have been chosen without significantly impacting
the results of the study.

The ensemble of hydraulic model realizations, hereafter
called “open loop” simulations, has been produced by inte-
grating the hydraulic model core with all the members of the
ensemble of discharges generated by the hydrologic model
for the analysis period 1 January 15:00–7 January 23:00,
2003. The ensemble of water surface lines represents the
coupled H-H model uncertainty, as shown in Fig. 3 for a
given time step.

3 Results

The hydraulic model has been used to simulate water levels
using the ensemble of hydrographs generated by the CLM
(Fig. 2), from which water levels at each cross section can
be extracted at the time of a virtual satellite overpass. A first
test was performed at the time stept24 (i.e. 24 h after the on-
set of the flood wave) during the rising limb of the flood.
Before assimilating the synthetic observations obtained from
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Fig. 2. Ensemble of discharges generated by the CLM.

the “truth” model run, the average standard deviation of sim-
ulated variables along the river reach is 0.43 m att24. By us-
ing the SIR algorithm, particles with low weight are replaced
by those having higher weight during the analysis step. The
weights given to the individual particles are computed based
on the information contained in the satellite data (Eq. 1).

First we investigated the effect of observation uncertainty
on the mean forecast error and ensemble spread after assim-
ilation. The experiment was repeated for eight sets of obser-
vations generated assuming different water stage errors (as-
sumed to be unbiased). Figure 4 shows the histograms of
the water stages of the resampled particles corresponding to
an intermediate cross section (located about 6.5 km upstream
the downstream boundary) at the assimilation timet24. The
results were obtained with 10 cm, 30 cm, 50 cm, 70 cm, 1 m,
2 m, 5 m and 10 m observation error standard deviation, re-
spectively. The standard deviation of 30 cm corresponds to
a published value of root mean squared error (RMSE) ob-
tained in the same study area with an ENVISAT ASAR flood
image fused with a high resolution high accuracy Lidar DEM
(Hostache et al., 2009) and may thus be considered as a re-
alistic accuracy assumption for this experiment. Lower stan-
dard deviations might eventually be achieved with high res-
olution SARs, high resolution DEMs and favourable flood-
plain geometries. The expected elevation accuracy of the up-
coming SWOT mission corresponds to 50 cm (Andreadis et
al., 2007). Higher standard deviation should help our under-
standing of the usefulness of highly uncertain observations.

As can be seen from the various panels of Fig. 4, the en-
semble spread representing forecast uncertainty, decreases
and the a posteriori expectation (i.e. mean of the resampled
particles) gets closer to the “truth” for smaller standard de-
viations. For comparison the histogram corresponding to the
particles before the resampling (a priori estimate) is plotted.

Fig. 3. Ensemble of water surface lines generated by the hydraulic
model at time 24 h.

With a 10 cm standard deviation of observations, the PF
allows discarding the majority of the particles and creates
many replicas of the particle that is closest to the “truth”. We
observe that with increasing standard deviation the retained
number of particles becomes larger and the ensemble spread
gradually extends. However, up until 5 m of standard devia-
tion the expectation is close to the “truth” which means that
the PF removed the artificial positive bias that was added to
the model simulations. The distribution of water levels as-
sociated with the individual particles is centred around the
“truth”. However, more and more particles are retained af-
ter the resampling step since the discriminatory power of the
observations progressively reduces. The rather satisfactory
results obtained with perturbation magnitudes up to 5 m in-
dicate that with errors typical for coarse resolution imagery
(Schumann et al., 2010) significant model improvements can
be achieved. This result is interesting as observation frequen-
cies of 24 h and less are systematically achievable only with
coarse resolution imagery. This illustrates the potential of
coarse resolution imagery for hydrological monitoring and
prediction applications. With 10 m standard deviation, how-
ever, the PF does not allow any improvement with respect to
the a priori estimate and particles with low weight are taken
into account. Similar results were obtained for all the cross
sections distributed over the length of the reach (not depicted
here). The value of the observations clearly depends on the
observation and pre-assimilation forecast error.

Following the resampling step, the model is propagated in
time and its result becomes the forecast in the next analysis
cycle. To do so, the hydraulic model is re-initialized with up-
dated water levels and integrated until the next analysis cycle
(i.e. when new observations become available). Figures 5
and 6 show the stage hydrographs corresponding to the first
cross section (upstream boundary) and an intermediate cross
section along the river reach. Here we assume an imaging
frequency of 12 h and a standard deviation of unbiased obser-
vation errors of 30 cm. Note that observation frequencies of
12 h and higher can currently only be achieved by combining
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Fig. 4. Histograms of water stages at an intermediate cross section computed with different values of standard deviation of the observations.

data sets from different SAR missions and constellations.
The effect of lower sampling rates will be investigated at a
later stage.

In both figures, the black lines represent the ensemble of
particles corresponding to the model results obtained using
the filter. The green line is the “truth”, the cyan line is the
expectation computed considering the open loop and the ma-
genta line is the expectation computed using the filter. As al-
ready observed in the histograms in Fig. 4, during the analy-
sis step the expectation computed with the filter is very close
to the “truth”, meaning that the PF leads to a significant in-
crease of the accuracy and reduction of the uncertainty of
the model. Nevertheless, within a few time steps after the
analysis, the forecast returns towards the open loop model
realisation. The RMSE is calculated between the expectation
and the truth over the entire time window, with the exception
of the time steps of the analysis that are not included. Note
that the RMSE is practically the same with and without as-
similation (Tables 1 and 2). Hence the improvement that was
obtained during the analysis step is lost very quickly. The im-
provement becomes slightly more persistent moving down-
stream along the river, which is an indication of the dominat-
ing effect of the boundary condition in the river reach under
investigation. During the experiment, the assimilation time
step was changed step by step from 48 h down to 12 h, as

Table 1. RMSE [m] of the ensemble mean water stage with respect
to the “truth”, computed at the upstream boundary over the entire
time window excluding the analysis steps for 0.3 m of standard de-
viation of the observation (σ) and various assimilation frequencies
(F ). At this cross section the RMSE obtained with the mean of the
“open loop” simulation equals 0.39 m.

F → 48 h 24 h 12 h
σ ↓

0.3 m 0.39 0.39 0.39

shown in Tables 1 and 2, in order to investigate the perfor-
mance of the data assimilation scheme as a function of the
frequency of the observations. Higher observation frequen-
cies were not considered because they are not plausible with
respect to acquisitions of SAR images. Increasing the obser-
vation frequency did not lead to any significant improvement
with respect to the forecast as demonstrated in Tables 1 and 2.

In Tables 1 and 2 the RMSE is computed by comparing
the ensemble mean water stage and the truth over the entire
event time window at the two representative river cross sec-
tions analysed in Figs. 5 and 6. Albeit the proposed particle
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Table 2. RMSE [m] of the ensemble mean water stage with re-
spect to the “truth”, computed at an intermediate cross section over
the entire time window excluding the analysis steps for 0.3 m of
standard deviation of the observation (σ) and various assimilation
frequencies (F ). At this cross section the RMSE obtained with the
mean of the “open loop” simulation equals 0.34 m.

F → 48 h 24 h 12 h
σ ↓

0.3 m 0.33 0.31 0.28
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Fig. 5. Stage hydrographs at the upstream boundary with a 12-h
assimilation interval.

filter-based assimilation scheme is able to significantly re-
duce model uncertainty during the analysis step, the im-
provement completely disappears within a few hours follow-
ing the assimilation. This result confirms the one obtained by
Matgen et al. (2007b) who encountered the same problem in
their study on the same river reach. Andreadis et al. (2007)
stated that in channels where boundary conditions almost
fully govern the flow regime, the time window of model skill
improvement due to assimilation of observations is expected
to be short. In order to overcome this problem, an enhanced
data assimilation scheme is proposed that allows updating the
forcing of the hydraulic model using information on model
error that is obtained during the analysis step. The estimate
of water stage,E(xk), as computed in Eq. (4), is used to re-
trieve the corresponding estimate of discharge,E(Qk) for the
upstream boundary using the internal rating curve computed
by the hydraulic model Hec-Ras. Then a relative error term
is computed at the assimilation time:

1Qk =
Q1

k −E(Q1
k)

Q1
k

(10)

Q1
k is the ensemble discharge average generated by the hy-

drologic model during the analysis step (Fig. 3) that is the
upstream boundary of the hydraulic model (cross section
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Fig. 6. Stage hydrographs at an intermediate cross section with a
12-h assimilation interval.

number 1, as indicated by the superscript). Another option
consists in computing a relative error term for each parti-
cle separately. However, this approach results in the con-
vergence of all particles on the value of the expected dis-
charge. As a matter of fact, the model error at the end of
the analysis is assumed to be zero and the spread at subse-
quent time steps is significantly constrained. To keep some
uncertainty around the expectation and to allow the ensemble
spread to rapidly return towards the original variance, each
particle is updated individually using the same relative error
term (Eq. 10).

Then, from timek = tass+ 1 until the next assimilation
time, every member of the ensemble of discharge hydro-
graphs represented in Fig. 3 is corrected by applying the rel-
ative error term1Qk as follows:

Q1
i = Q1

i −1QtIass
Q1

i ,i ∈

[
(tIass+1);tII

ass

]
(11)

The method is based on the assumption that relative model
errors remain constant and that correcting the inflows by the
same relative error term at subsequent time steps will im-
prove the accuracy of the model predictions from time steps
tass+1 through the next assimilation steps. Another approach
would be to use an autoregressive model that uses the current
value of model error to predict the model errors at subse-
quent time steps (e.g. Neal et al., 2007). The parameters of
such a forecast model would need to be estimated with ob-
served discharge records. However, such data are very often
not available. The proposed method, albeit very simple, may
be used as an estimate of the propagation of model errors in
the absence of discharge data. The underlying assumption
is that current model errors are due to an over- or underesti-
mation of water stored in the basin and that if the basin acts
like a linear reservoir (as it is often the case, see e.g. Feni-
cia et al., 2006) the error in discharge decreases following an
exponential decline (in the absence of rainfall).

Similar to the first data assimilation scheme, the impact
of various imaging frequencies on the analysis and forecast
precision has been investigated. Hereafter the experiment
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Table 3. RMSE [m] of the ensemble mean water stage opposed
to the “truth”, computed at an intermediate cross section over the
entire time window excluding the analysis step for 0.3 m of stan-
dard deviation of the observation (σ) and increasing assimilation
frequency (F ). At this cross section the RMSE obtained with the
mean of the “open loop” simulation equals 0.34 m.

F → 48 h 24 h 12 h
σ ↓

0.3 m 0.25 0.19 0.18

performed with an interval of 48 h between observations is
analyzed. Note that the synthetic observations were obtained
by adding white noise with a standard deviation of 0.3 m to
the “truth” model.

Figure 7 shows the effect of water stage assimilation when
both states (i.e. water levels) and inputs (i.e. inflows) are up-
dated. The proposed approach resolves the issue of non per-
sistent model improvement. However, there is a risk to over-
correct the model with the error forecast model applied in
this study. When the assimilation is performed during the
rising limb of the hydrograph, the time window of the model
improvement is short, whereas when the assimilation is per-
formed during the recession the reduction of the uncertainty
is persistent (after the assimilation at 72 h, the assimilation at
120 h appears to be unnecessary). The explanation of this re-
sult can be found in the analysis of the time series of absolute
error (truth – expectation). This error is very unstable during
the rising limb when new input errors (i.e. error in precip-
itation) are added at every time step. This input error (i.e.
random error) is impossible to predict. During the falling
limb, however, the relative model error remains almost con-
stant and can easily be predicted (i.e. systematic error). This
explains why the systematic error forecast model that is used
for the boundary inflow correction is very efficient during the
recession period. The filter is prone to more random error in
the rising limb, which eventually results in more uncertain
analyses. In this synthetic setup, we know that the chosen
bias model is good and that the jumps in the results are en-
tirely due to unexplained random noise, rather than to bias.
Figure 8 shows flow hydrographs resulting from an experi-
ment where the time interval between observations is 24 h.
With respect to the previous results, it should be noted that
increasing the frequency of the assimilations improves the
performance of the assimilation system during the rising limb
and around the peak, whereas no significant positive effect is
obtained during the recession, where a single update appears
to be enough.

Similar to Tables 1 and 2, Table 3 shows the RMSE of
the ensemble mean water stage as opposed to the “truth”.
The RMSE only slightly changes between assimilation fre-
quencies of 12 and 24 h, whereas the RMSE changes rather
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Fig. 7. Stage hydrographs at an intermediate cross section with a
48-h assimilation interval with input bias correction.
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Fig. 8. Stage hydrographs at an intermediate cross section with a
24-h assimilation interval with input bias correction.

significantly when increasing the sampling rate from 24 to
48 h. This is due to the fact that with an assimilation fre-
quency of 48 h, there is no observation available at the onset
of the falling limb. Therefore it has to be noted that this result
is very specific for the flow hydrograph under investigation.
In general, the result demonstrates that the required imaging
frequency depends on the temporal correlation of model er-
ror. As a matter of fact, during the rising limb the imaging
frequency needs to be higher than during the recession. It
can also be noticed that the RMSE with assimilation is sig-
nificantly lower than without.

4 Discussion and conclusions

Our study confirms the findings obtained in previous studies:
information contained in radar flood images can lead to im-
proved flood inundation modelling (e.g. Bates et al., 2004;
Pappenberger et al., 2007; Neal et al., 2009). The experi-
ments conducted with synthetically generated observations
integrated with a 1-D hydraulic model further show that:
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1. The Particle Filter enables to correct water depth from
a corrupted hydraulic model by assimilating synthetic
observations. Significant model improvements could be
achieved with observation error standard deviations up
to 5 m. This results shows that remote sensing-derived
water stage data can be efficiently used to update flood
models. The results further indicate that satisfactory re-
sults may be obtained with standard deviations that are
realistically achievable with coarse resolution imagery.
Given the higher sampling rates associated with coarse
resolution imagery, this result highlights the potential
of this type of imagery for hydrological monitoring and
prediction applications.

2. The effectiveness of the filter is not only dependent on
the accuracy of the observations but also on the model
itself. The latter is represented by the spread of an
ensemble of water level simulations. In instrumented
catchments, the hydraulic model uncertainty is gener-
ally low compared to remote sensing observation uncer-
tainty. With currently available remote sensing-derived
water level products the proposed assimilation scheme
thus appears to be particularly useful in ungauged catch-
ments, where the use of coupled hydrologic-hydraulic
models is required and no training data is available for
calibrating sophisticated inflow correction models. This
conclusion is well in line with the findings of Neal et
al. (2009) in their recent study.

3. Our results further show that it is crucial to make use of
the time correlation of model errors in order to signif-
icantly and persistently improve the hydraulic model.
For this reason, we propose a rather simplistic error
forecast model as an essential component of the pro-
posed assimilation methodology. During the analysis
step, the expectation of water levels resulting from the
assimilation of remote sensing observations into a hy-
draulic model provides the current value of the model
error. The proposed inflow correction model is based on
the assumption that model errors are due to a temporary
over- or underestimation of the amount of water stored
in the basins. In this case, relative model errors remain
constant. Groundwater reservoirs in many catchments
are known to be linear (e.g. Fenicia et al., 2006). The
proposed error forecast model is particularly well suited
for predictions in ungauged catchments as no calibra-
tion step is required. The experiments show that during
the rising limb when rainfall errors continuously add to
the model error in an unpredictable way, the imaging
frequency needs to be higher than during recession in
order to compensate for the shortcomings of the inflow
correction model.

4. Our research has clearly demonstrated that merely up-
dating the state variable of the model (water level and
hence water storage), only improves the model forecast

over a very short time horizon. A much more effec-
tive way of updating consists in adjusting the fluxes at
the upstream boundaries of the model, which in general
have the highest uncertainty as a result of the poorly
known rainfall distribution over a catchment, or uncer-
tainty in hydrologic model predictions. By selecting the
most likely model runs, the PF, unlike the EnKF that
was used in similar studies (e.g. Andreadis et al., 2007),
conserves mass for each particle. Potentially, the PF-
based assimilation scheme could be used to infer input
data (e.g. whole-catchment precipitation) and model pa-
rameters that gave the most likely simulations given the
observations. The approach may indeed be viewed as a
way to diagnose the functioning of hydrologic systems.
The usefulness of such an application needs to be inves-
tigated in future studies.

This approach was developed in a way that it could be eas-
ily transformed into practice. The next key task is to test the
methodology with real event data and to investigate prob-
lems related to the spatially and temporally variable and po-
tentially biased non Gaussian distribution of water level ob-
servations. We expect the Particle Filter to be the preferred
filter because it provides flexibility regarding the form of the
probability densities of both model simulations and remote
sensing observations. The weighting procedure can be easily
adapted to any kind of empirical distribution function. More-
over, we feel that more sophisticated methods for boundary
inflow correction are needed to further enhance the perfor-
mance and persistence of the assimilation. Finally, it is im-
portant to investigate in future studies the value of remote
sensing-derived water level data with respect to hydromet-
ric station data. Given the complementary characteristics of
both data sets, the combination of both promises to yield the
best overall results. More research is needed on this issue.

As pointed out by Neal et al. (2009) this kind of inves-
tigation is timely because in the very near future new con-
stellations of satellite radar missions will lead to a signifi-
cant increase in the volume of data available for space-borne
water level estimation. The expected faster supply and pro-
cessing of multi-mission satellite data are compatible with
real-time crisis management requirements. This study shall
thus contribute to the shift from purely reactive space-borne
flood monitoring services towards systematic, proactive and
global floodplain monitoring services.

Acknowledgements.This study was part of the HYDRASENS
project, financed by the National Research Fund (FNR) of the
Grand Duchy of Luxembourg and the Belgian Federal Science Pol-
icy Office in the framework of the STEREO II research programme
(Contract no. SR/00/100). The authors would like to thank the
reviewers, in particular Giuliano di Baldessarre, Jeffrey Neal, Paul
Smith and Hamid Moradkhani for their valuable contribution to the
development of this paper.

Edited by: H. Cloke

www.hydrol-earth-syst-sci.net/14/1773/2010/ Hydrol. Earth Syst. Sci., 14, 1773–1785, 2010



1784 P. Matgen et al.: Assimilation of SAR-derived water stages into hydraulic models

References

Alsdorf, D. E. and Lettenmaier, D. P.: Tracking fresh water from
space, Science, 301, 1485–1488, 2003.

Alsdorf, D. E., Rodriguez, E., and Lettenmaier, D. P.: Measur-
ing surface water from space, Rev. Geophys., 45, RG2002,
doi:10.1029/2006RG000197, 2007.

Andreadis, K. M., Clark, E. A., Lettenmaier, D. P., and Als-
dorf, D. E.: Prospects for river discharge and depth esti-
mation through assimilation of swath-altimetry into a raster-
based hydrodynamics model, Geophys. Res. Lett., 34, L10403,
doi:10.1029/2007GL029721, 2007.

Aronica, G., Bates, P. D., and Horritt, M. S.: Assessing the un-
certainty in distributed model predictions using observed binary
pattern information within GLUE, Hydrol. Process., 16, 2001–
2016, 2002.

Arya, L. M., Richter, J. C., and Paris, J. F.: Estimating profile wa-
ter storage from surface zone soil moisture measurements under
bare field conditions, Water Resour. Res., 19, 403–412, 1983.

Bates, P. D., Horritt, M. S., Aronica, G., and Beven, K.: Bayesian
updating of flood inundation likelihoods conditioned on flood ex-
tent data, Hydrol. Process., 18, 3347–3370, 2004.

Brakenridge, G. R., Tracy, B. T., and Knox, J. C.: Orbital SAR
remote sensing of a river flood wave, Int. J. Remote Sens., 19,
1439–1445, 1998.

Burgers, G., Leeuwen, P. J. V., and Evensen, G.: Analysis scheme
in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719–
1724, 1998.

Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G.,
Bosilovich, M., Denning, S., Dirmeyer, P., Houser, P., Niu, G.,
Oleson, K., Schlosser, C. A., and Yang, Z.-L.: The common land
model (CLM), B. Am. Meteorol. Soc., 84, 1013–1023, 2003.

De Lannoy, G. J. M., Houser, P. R., Pauwels, V. R. N., and Ver-
hoest, N. E. C.: State and bias estimation for soil moisture
profiles by an ensemble Kalman filter: Effect of assimilation
depth and frequency, Water Resour. Manag., 43(6), W06401,
doi:10.1029/2006WR005100, 2007.

De Lannoy, G. J. M., Houser, P. R., Pauwels, V. R. N., and Verhoest,
N. E. C.: Assessment of model uncertainty for soil moisture
through ensemble verification, J. Geophys. Res., 111, D10101,
doi:10.1029/2005JD006367, 2006.

De Lannoy, G. J. M.: Assimilation of soil moisture observations
into a spatially distributed hydrologic model, PhD Dissertation,
Ghent University, Belgium, 2006.

Di Baldassarre, G., Schumann, G., and Bates, P. D.: A technique
for the calibration of hydraulic models using uncertain satellite
observations of flood extent, J. Hydrol., 367, 276–282, 2009.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast er-
ror statistics, Journal of Geophysical Research, 99 (C5), 10143–
10162, 1994.

Fearnhead, P.: Markov chain Monte Carlo, sufficient statistics and
particle filters, J. Comput. Graph. Stat., 11, 848–862, 2002.

Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L.: Is
the groundwater reservoir linear? Learning from data in hy-
drological modelling, Hydrol. Earth Syst. Sci., 10, 139–150,
doi:10.5194/hess-10-139-2006, 2006.

Gordon, N., Salmond, D., and Smith, A. F. M.: Novel approach
to nonlinear and non-Gaussian Bayesian state estimation, Pro-
ceedings of the Institute of Electrical Engineering, Part F, 140,

107–113, 1993.
HEC-RAS 4.0: online available at:http://www.hec.usace.army.mil/

software/hec-ras/documents/HEC-RAS4.0 ReferenceManual.
pdf, last access: 5 May 2008.

Horritt, M. S. and Bates, P.D.: Evaluation of 1-D and 2-D numerical
models for predicting river flood inundation, J. Hydrol., 268, 87–
99, 2002.

Hostache R., Lai, X., Monnier, J., and Puech, C.: Assimilation
of spatially distributed water levels into a shallow-water flood
model. Part II: use of a remote sensing image of Mosel River, J.
Hydrol., under review, 2010.

Hostache, R., Matgen, P., Schumann, G., Puech, C., Hoffmann,
L., and Pfister, L.: Water level estimation and reduction of hy-
draulic model calibration uncertainties using satellite SAR im-
ages of floods, IEEE T. Geoscience and Remote Sens., 47, 431–
441, 2009.

Kirchner, J. W.: Getting the right answers for the right rea-
sons: linking measurements, analyses and models to ad-
vance the science of hydrology, Water Resour. Res., 42, 8,
doi:10.1029/2005WR004362, 2006.

Madsen, H. and Skotner, C.: Adaptive state updating in real-time
river flow forecasting a combined filtering and error forecasting
procedure, J. Hydrol., 308, 302–312, 2005.

Marcus, W. A. and Fonstad, M. A.: Optical remote mapping of
rivers at sub-meter resolutions and watershed extents, Earth Surf.
Proc. Land., 33, 4–24, 2008.

Mason, D. C., Bates, P. D., and Dall’Amico, J. T.: Calibration of
uncertain flood inundation models using remotely sensed water
levels, J. Hydrol., 368, 224–236, 2009.

Matgen, P., Schumann, G., Henry, J.-B., Hoffmann, L., and Pfister,
L.: Integration of SAR-derived inundation areas, high precision
topographic data and a river flow model toward real-time flood
management, International Journal of Applied Earth Observation
and Geoinformation, 9, 247–263, 2007a.

Matgen, P., Schumann, G., Pappenberger, F., and Pfister, L.: Se-
quential assimilation of remotely sensed water stages in flood in-
undation models, Remote Sensing for Environmental Monitoring
and Change Detection (Proceedings of Symposium HS3007 at
IUGG2007, Perugia, July 2007). IAHS Publ. 316, 78–88, 2007b.

Montanari, M., Hostache, R., Matgen, P., Schumann, G., Pfis-
ter, L., and Hoffmann, L.: Calibration and sequential updating
of a coupled hydrologic-hydraulic model using remote sensing-
derived water stages, Hydrol. Earth Syst. Sci., 13, 367–380,
doi:10.5194/hess-13-367-2009, 2009.

Moradkhani, H.: Hydrologic Remote Sensing and Land
Surface Data Assimilation, Sensors, 8, 2986–3004,
doi:10.3390/s8052986, 2008.

Moradkhani, H., Hsu, K.-L., Gupta, H. V., and Sorooshian, S.: Un-
certainty assessment of hydrologic model states and parameters:
Sequential data assimilation using the particle filter, Water Re-
sour. Res., 41, W05012, doi:10.1029/2004WR003604, 2005a.

Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P. R.:
Dual state-parameter estimationof hydrological models using en-
semble Kalman filter, Adv. Water Resour., 28, 135–147, 2005b.

Neal, J. C., Atkinson, P. M., and Hutton, C. W.: Flood inundation
model updating using an ensemble Kalman filter and spatially
distributed measurements, J. Hydrol., 336, 401–415, 2007.

Neal, J., Schumann, G., Bates, P.D., Buytaert, W., Matgen, P., and
Pappenberger, F.: A data assimilation approach to discharge from

Hydrol. Earth Syst. Sci., 14, 1773–1785, 2010 www.hydrol-earth-syst-sci.net/14/1773/2010/

http://www.hec.usace.army.mil/software/hec-ras/documents/HEC-RAS_4.0_Reference_Manual.pdf
http://www.hec.usace.army.mil/software/hec-ras/documents/HEC-RAS_4.0_Reference_Manual.pdf
http://www.hec.usace.army.mil/software/hec-ras/documents/HEC-RAS_4.0_Reference_Manual.pdf


P. Matgen et al.: Assimilation of SAR-derived water stages into hydraulic models 1785

space, Hydrol. Process., 23, 3641–3649, 2009.
Pappenberger, F., Frodsham, K., Beven, K., Romanowicz, R., and

Matgen, P.: Fuzzy set approach to calibrating distributed flood
inundation models using remote sensing observations, Hydrol.
Earth Syst. Sci., 11, 739–752, doi:10.5194/hess-11-739-2007,
2007.

Pauwels, V. R. N. and De Lannoy, G. J. M.: Ensemble-based assim-
ilation of discharge into rainfall-runoff models: A comparison of
approaches to mapping observational information to state space,
Water Resour. Res., 45, W08428, doi:10.1029/2008WR007590,
2009.

Raclot, D.: Remote sensing of water levels on floodplains: a spatial
approach guided by hydraulic functioning, International Journal
of Remote Sensing, 27, 2553–2574, 2006.

Schumann, G., Bates, P. D., Horritt, M. S., Matgen, P., and Pap-
penberger, F.: Progress in integration of remote sensing derived
flood extent and stage data and hydraulic models, Rev. Geophys,
47, RG4001, doi:10.1029/2008RG000274, 2009.

Schumann, G., Matgen, P., Pappenberger, F., Hostache, R., and Pfis-
ter, L.: Deriving distributed roughness values from satellite radar
data for flood inundation modelling, J. Hydrol., 344, 96–111,
2007b.

Schumann, G., Matgen, P., Pappenberger, F., Hostache, R., Puech,
C., Hoffmann, L., and Pfister, L.: High-resolution 3-D flood
information from radar for effective flood hazard management,
IEEE T. Geosci. Remote , 45, 1715–1725, 2007a.

Smith, L. C.: Satellite remote sensing of river inundation area,
stage, and discharge: a review, Hydrol. Process., 11, 1427–1439,
1997.

Smith, P. J., Hughes, D., Beven, K., Cross, P., Tych, W., Coulson,
G., and Blair, G.: Towards the provision of site specific flood
warnings using wireless sensor networks, Meteorol. Appl., 16,
57–64, 2009.

Smith, P. J., Beven, K. J., and Tawn, J. A.: Detection of
structural inadequacy in process-based hydrological models: a
particle-filtering approach, Water Resour. Res., 44, W01410,
doi:10.1029/2006WR005205, , 2008.

Troch, P. A., Smith, J. A., Wood, E. F., and De Troch, F. P.: Hy-
drologic controls of large floods in a small basin: Central Ap-
palachian case study, J. Hydrol., 156, 285–309, 1994.

Weerts, A. H. and El Serafy, G. Y. H.: Particle filtering and ensem-
ble Kalman filtering for state updating with hydrological con-
ceptual rainfall-runoff models, Water Resour. Res., 42, W09403,
doi:10.1029/2005WR004093, 2006.

Werner, M., Blazkova, S., and Petr, J.: Spatially distributed observa-
tions in constraining inundation modelling uncertainties, Hydrol.
Process., 19, 3081–3096, 2005.

www.hydrol-earth-syst-sci.net/14/1773/2010/ Hydrol. Earth Syst. Sci., 14, 1773–1785, 2010


