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Background
Network theory has become a valuable framework in many different research areas, 
whenever the system under investigation can be described as a graph, thus a set of nodes 
and edges connecting theses nodes. For instance, social contacts of individuals (Kasper 
and Voelkl 2009; Krause et  al. 2007; Lewis et  al. 2008; Makagon et  al. 2012), disease 
transmission (Eames and Read 2008; Eubank 2005; Heckathorn et al. 1999), trade net-
works (Büttner et al. 2013, 2015; Guimerà et al. 2005; Kaluza et al. 2010; Nöremark et al. 
2011), the World Wide Web and the internet (Albert et  al. 1999; Barabási et  al. 2000; 
Cohen et al. 2000) or citation networks (Newman 2001a, b), to name but a few.

These previous studies dealing with network analysis focused mainly on static network 
analysis, meaning an edge was drawn between a pair of nodes whenever there was a con-
tact between these two nodes during the whole observation period.
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A static network G = (V, E), where V is the set of nodes and E is the set of edges, can 
be illustrated as so-called adjacency matrix (aij)ij with aij = 1 if there is an edge between 
nodes i and j, and aij  =  0 otherwise. Thus, the temporal information is neglected. 
However, in order to avoid losing all temporal information of the system, one possible 
approach is to separate the observation window in smaller parts and aggregate the con-
tacts only over the formed snapshots, which are then analysed separately (examples are 
Bajardi et al. 2011; Büttner et al. 2015; Dubé et al. 2011; Nöremark et al. 2011; Rautureau 
et al. 2012; Vernon and Keeling 2009). Therefore, not all temporal information gets lost.

Although the static network analysis neglects partly the temporal variation in the 
system under investigation, one of its big advantages lies in the huge toolbox of meth-
ods that has been developed in the last decades. They range from network parameters 
describing the whole network topology (e.g. diameter, degree distribution, density, frag-
mentation index) to centrality parameters which allow for node ranking (e.g. in- and 
out-degree, closeness centrality, betweenness centrality) (Newman 2010; Wasserman 
and Faust 1994).

Depending on the system under investigation, the static network analysis can capture 
its temporal dynamics sufficiently well, but if the temporal variation in the system is too 
high the static network analysis is unable to display this variation. This leads us to the so-
called temporal networks (Holme and Saramäki 2012; Kempe et al. 2002). However, the 
analysis of temporal networks is an interdisciplinary field which is still in its infancy and 
therefore, the analytical and computational methods are still at an early stage of develop-
ment (Masuda and Holme 2013).

Therefore, to assess the quality of the static aggregation compared to the temporal 
counterpart some measures have been developed. For example, the causal fidelity meas-
ures the fraction of the number of paths in a static network, which can also be taken in 
the temporal counterpart (Lentz et al. 2013). Another example is the temporal correlation 
coefficient. It is a measure of the overall average probability for an edge to persist across 
two consecutive snapshots and can be used for the quality assessment of the static aggre-
gation (Nicosia et al. 2013; Tang et al. 2010). In the first case, the measure can be used 
for both undirected and directed networks, i.e. the edge direction is taken into account 
resulting in an asymmetric adjacency matrix. However, up to now, the temporal correla-
tion coefficient is only defined for undirected networks. Taking the edge direction into 
account is of special importance for many research questions. For example, in behav-
ioural sciences, it is important to know which individual is the active part and which is 
the passive part of an interaction or, in trade networks, which node is the supplier and 
which is the purchaser. Thus, working with directed networks provides more information 
and reveals further insights into the interaction between the individual nodes.

Therefore, we introduce in the present paper an adaption of the temporal correlation 
coefficient first presented by Tang et al. (2010) and Nicosia et al. (2013), that was modi-
fied by Pigott and Herrera (2014) and Büttner et al. (2016), to directed networks.

Methods
The first part of the materials and methods section deals with the temporal correla-
tion coefficient for undirected networks. Here, a detailed description of the individual 
calculation steps is entailed. In the second paragraph, the adaption of this measure for 



Page 3 of 17Büttner et al. SpringerPlus  (2016) 5:1198 

directed networks is presented. In the last paragraph of the materials and methods sec-
tion, both the undirected and the directed calculation of the temporal correlation coef-
ficient are carried out on a real-word pig trade network of a producer community in 
Northern Germany. This comparison clarifies the importance of a distinction between 
the undirected and the directed temporal correlation coefficient.

Temporal correlation coefficient

The temporal correlation coefficient C measures the overall average probability for an 
edge to persist across two consecutive snapshots (Nicosia et al. 2013; Tang et al. 2010). 
The calculation of C is divided into three individual calculation steps.

Firstly, for all nodes i = 1, …, N, where N is the total number of nodes in the network, 
and all snapshots tm, with m = 1, …, M − 1, where M is the total number of considered 
snapshots, the topological overlap Ci(tm, tm+1) of node i between two consecutive snap-
shots tm and tm+1 is calculated with the following formula:

where aij denotes an entry in the unweighted adjacency matrix of the graph. Therefore, 
summing over aij illustrates the interaction between i and every other node for the two 
consecutive snapshots tm and tm+1.

Secondly, the average topological overlap of the graph Cm for two consecutive snap-
shots tm and tm+1 is determined. According to the proposed adaption of the temporal 
correlation coefficient by Büttner et al. (2016), Cm is calculated as follows,

where max[A(tm), A(tm+1)] denotes the maximum number of active nodes of the graph 
at tm and tm+1. A node i is called “active” at time tm, if there exists a node j ≠ i and an 
edge between i and j in the graph at tm, i.e. node i has a degree greater than zero.

Despite the calculation of Cm, the average topological overlap of the nodes Ci for all 
snapshots can be calculated as follows,

In the third calculation step, summing up all results for the topological overlap gives the 
temporal correlation coefficient C of the network:

(1)
Ci(tm, tm+1) =

∑

j aij(tm)aij(tm+1)
√

[

∑

j aij(tm)
][

∑

j aij(tm+1)

]

,

(2)Cm =
1

max[A(tm),A(tm+1)]

N
∑

i=1

Ci(tm, tm+1),

(3)Ci =
1

M − 1

M−1
∑

m=1

Ci(tm, tm+1).

(4)C =
1

M − 1

M−1
∑

m=1

Cm
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The range of the values of all three calculation steps is between 0 and 1. One indicates 
that in the observed snapshots the edge configuration is identical, whereas zero means 
that none of the same edges are common in the observed snapshots.

Figure 1 depicts an example network consisting of 4 temporal snapshots with direc-
tional information given by the arrow tips of the edges. In the Additional file 1 the single 
calculation steps of the undirected temporal correlation coefficient C are explained in 
detail.

Adaption of the temporal correlation coefficient to directed networks

In directed networks a distinction between ingoing and outgoing edges is made. In undi-
rected networks an edge from node i to node j—corresponding to aij = 1—is addition-
ally considered as an edge from node j to node i, which implies aji = 1. Therefore, the 
adjacency matrices of undirected networks are symmetrical. This is no longer the case 
for directed networks, as there could be an edge from node i to node j, although no edge 
from node j to node i exists, which implies 1 = aij �= aji = 0. Figure 2 shows an example 
for the differences between the undirected and the directed representation of a network 
with regard to its adjacency matrices.

Therefore, the temporal correlation coefficient in directed networks should be calcu-
lated for the configuration of the ingoing edges (hereinafter named as ingoing temporal 
correlation coefficient Cin) and for the configuration of the outgoing edges (hereinafter 
named as outgoing temporal correlation coefficient Cout). Due to the fact that the maxi-
mum number of active nodes max[A(tm), A(tm+1)] is used to calculate the temporal cor-
relation coefficient in undirected networks, where A(tm) is the number of nodes with 
nonzero degree in the snapshot tm, this has to be adapted while dealing with directed 
networks. In the calculation of Cin and Cout, A(tm) will be replaced by the number of 
nodes with nonzero in-degree Ain(tm) and the number of nodes with nonzero out-degree 
Aout(tm), respectively.

Ingoing temporal correlation coefficient Cin

For the calculation of the ingoing temporal correlation coefficient Cin, Eq.  (1) is used 
with the transposed adjacency matrix to focus on the ingoing edges (Fig. 2). The values 
Cin
i (tm, tm+1) from this calculation step are then used in Eq.  (5). In contrast to Eq.  (2), 

instead of max[A(tm), A(tm+1)], max[Ain(tm), Ain(tm+1)] is used for the calculation of Cin
m:

(5)Cin
m =

1

max
[

Ain(tm),Ain(tm+1)
]

N
∑

i=1

Cin
i (tm, tm+1)

Fig. 1 Example network of 4 different temporal snapshots (tm, …, tm+3)
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In addition to Cin
m and similarly to Eq. (3), the average topological overlap of the nodes 

for all possible snapshots can also be calculated for the ingoing edges Cin
i  and is calcu-

lated as follows,

For the last calculation step no changes in Eq. (4) are carried out.
A detailed description of the single calculation steps for the ingoing temporal correla-

tion coefficient Cin for the example network (Fig. 1) is illustrated in the Additional file 1.

Outgoing temporal correlation coefficient Cout

For the calculation of the outgoing temporal correlation coefficient, the first calcula-
tion step (Eq. 1) stays the same, as the outgoing edges are represented by the untrans-
posed adjacency matrix (Fig. 2). The values Cout

i (tm, tm+1) are then used in Eq. (7). Here, 
max

[

Aout(tm),A
out(tm+1)

]

 is used for the calculation of Cout
m :

Additionally, the average topological overlap of the nodes for all possible snapshots for 
the outgoing case Cout

i  can be calculated as follows,

(6)Cin
i =

1

M − 1

M−1
∑

m=1

Cin
i (tm, tm+1)

(7)Cout
m =

1

max
[

Aout(tm),Aout(tm+1)
]

N
∑

i=1

Cout
i (tm, tm+1)

(8)Cout
i =

1

M − 1

M−1
∑

m=1

Cout
i (tm, tm+1)

Fig. 2 Differences between the undirected and directed (ingoing and outgoing) representation of an exam‑
ple network. In the undirected case, the edge direction is ignored. In the ingoing case, the edge direction is 
reversed, meaning the adjacency matrix is transposed, and the ingoing edges are addressed instead of the 
outgoing edges. In the outgoing case, the original adjacency matrix is used addressing the outgoing edges
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For the last calculation step no changes in Eq. (4) are carried out.
A detailed description of the single calculation steps for the outgoing temporal cor-

relation coefficient Cout for the example network (Fig. 1) is illustrated in the Additional 
file 1.

Convergence behaviour of the temporal correlation coefficient (C, Cin and Cout)

As the topological overlap is a probability, it is expected that for all m = 1, …, M − 1 
the average topological overlap Cm in the undirected case, as well as Cin

m and Cout
m  for 

the ingoing and outgoing case, respectively, are in the range of 0–1. The values for Cm 
between two consecutive snapshots equal 1, only if these snapshots show identical edge 
configuration. To reveal a convergence behaviour of the temporal correlation coeffi-
cients (C, Cin and Cout), an identical extension of the time series was generated by attach-
ing the last snapshot, i.e. the graph at tM of the example network of Fig. 1, repeatedly to 
the existing dynamic network until the length of this series of networks equalled 100. In 
Büttner et al. (2016) it has already been illustrated that the corresponding series of undi-
rected temporal correlation coefficients C, calculated with the method proposed there, 
converges towards 1. The series of directed ingoing and outgoing temporal correlation 
coefficients corresponding to the series of identical extensions of the example network of 
Fig. 1 were calculated, and their convergence behaviour was plotted and analysed.

Temporal correlation coefficient (C, Cin and Cout) calculated for a pig trade network

Data basis

From June 2006 to May 2009, pig movement data from a producer community in North-
ern Germany were recorded. This corresponds to an observation window length of 
1096 days. The data contained the date of the movement, the supplier, the purchaser as 
well as the batch size and the type and age group of the delivered animals. In total, the 
data comprised 4635 animal movements between 483 farms which could be categorized 
in 29 multipliers, 34 farrowing farms, 153 finishing farms and 267 farrow-to-finishing 
farms. Due to the dead-end characteristic of the abattoirs they were excluded from the 
network analysis.

Network construction

In this pig trade network, the farms illustrate the nodes of the network and the trade 
contacts between the farms represent the edges. Networks with increasing time window 
lengths (1–548 days) were constructed in order to evaluate how the chosen time window 
length may affect the outcome of the temporal correlation coefficient. This means that 
for a time window length of 1 day 1096 single snapshots of the network were created. 
If the time window length is doubled to 2 days, the number of snapshots halves to 548. 
And finally for a time window length of 548 days, only 2 single snapshots were gener-
ated. Due to the predefined length of the observation window with 1096 days, the last 
snapshot may contain less days than the previous snapshots. This was the case if the 
length of the time window was not a proper divisor of 1096 which corresponds to the 
length of the whole observation period. These incomplete snapshots were excluded from 
the further analysis.
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Frequency distributions

In order to get more information about the frequency distribution of the average top-
ological overlap of the nodes (Ci, Cin

i  and Cout
i ) the values were categorized for each 

time window length and each farm type into the following 6 categories: 0: Ci =  0, 1: 
0 < Ci ≤ 0.2, 2: 0.2 < Ci ≤ 0.4, 3: 0.4 < Ci ≤ 0.6, 4: 0.6 < Ci ≤ 0.8, 5: 0.8 < Ci ≤ 1. Then the 
percentage of each category was calculated and plotted as a grouped bar chart.

Statistical analysis

All statistical analyses were performed using SAS® statistical software package (SAS® 
Inst. Inc. 2008). The adaption of the temporal correlation coefficient was carried out 
with the programming language Python (van Rossum and Drake 2001).

Results
Convergence behaviour of the undirected, ingoing and outgoing temporal correlation 

coefficient (C, Cin and Cout)

Figure 3 shows the convergence behaviour of the temporal correlation coefficient for the 
undirected and the directed (ingoing and outgoing) calculation for the example network 
of Fig. 1 depending on the increasing number of added identical snapshots. Both Cin and 
Cout showed lower values than C. However, with increasing number of snapshots added 
to the time series, all three possible calculations converged to 1 from below.

Temporal correlation coefficient (C, Cin and Cout) calculated for a pig trade network

For the pork supply chain under investigation, the highest mean value over all pos-
sible time window lengths (n =  548) could be obtained for Cin with 0.50 ±  0.11, fol-
lowed by C with 0.47 ± 0.11. The lowest mean value showed Cout with 0.36 ± 0.10. These 
results could be confirmed by Fig.  4, where C and Cin showed a quite similar course, 
whereas Cout had clearly lower values. Despite this, all three measures increased rapidly 
from close to 0 to their maximum values from the time window of length 1 to a window 

Fig. 3 Convergence behaviour of the temporal correlation coefficient. Convergence behaviour of the undi‑
rected, ingoing and outgoing temporal correlation coefficient (C, Cin and Cout) depending on the increasing 
number of identical snapshots added to the series of the example network of Fig. 1
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length of 62 days for Cout (max =  0.56) and 88 days for both C (max =  0.63) and Cin 
(max = 0.65). After reaching their maximum, the values decreased slowly with increas-
ing length of the time window to 0.38 for Cin, 0.35 for C and 0.22 for Cout.

Average topological overlap of the nodes (Ci, C
in

i
 and Cout

i
) calculated for a pig trade 

network

Figure 5 shows the mean average topological overlap of the nodes (Ci, Cin
i  and Cout

i ) sep-
arated by the farm types multipliers (Fig. 5a), farrowing farms (Fig. 5b), finishing farms 
(Fig. 5c) and farrow-to-finishing farms (Fig. 5d). The finishing farms and the farrow-to-
finishing farms showed for the mean Ci and Cin

i  relatively similar values, whereas the 
mean values of Cout

i  equalled for almost all time window lengths 0. Contrarily, multipli-
ers and farrowing farms had a more differentiated course of Ci, Cin

i  and Cout
i . For multi-

pliers the mean values of Cout
i  showed quite similar values compared to Ci, whereas the 

mean values of Cin
i  were slightly lower than the values of Ci and Cout

i  until a time window 
length of about 500 days, where Cout

i  became larger than the other two measurements. 
For farrowing farms the course of Cin

i  showed a smaller increase than Ci until a time win-
dow length of 180 days where Cin

i  became larger than Ci. Cout
i  had a quite similar course 

than Ci but moved down by about 0.10–0.15. Table 1 illustrates the mean average topo-
logical overlap of the nodes (Ci, Cin

i  and Cout
i ) separated by the farm types for the time 

window lengths of 62 and 88 days and gives therefore a detailed section of the values 
illustrated in Fig. 5 for the time window length with the maximum values for C, Cin and 
Cout.

To get a better insight in the frequency distribution of Ci, Cin
i  and Cout

i  depending 
on the chosen time window length and farm type, the values of Ci, Cin

i  and Cout
i  were 

grouped into 6 different categories as illustrated in Figs. 6, 7 and 8. The first visual inspec-
tion reveals that, regarding Ci (Fig. 6) and Cout

i  (Fig. 8), the distribution of the categories 
for multipliers and farrowing farms were very similar, whereas they differed strongly 
when these two measures are compared for finishing farms and farrow-to-finishing 

Fig. 4 Course of the temporal correlation coefficient for different time window lengths. Undirected, ingoing 
and outgoing temporal correlation coefficient (C, Cin and Cout) of the pork supply chain of a producer com‑
munity in Northern Germany for different time windows lengths
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farms. In contrast to this, the frequency distribution of Ci (Fig. 6) and Cin
i  (Fig. 7) was 

nearly identical for finishing farms and farrow-to-finishing farms and at least similar for 
multipliers and farrowing farms. To specify some particular observations, Fig. 6b illus-
trating the undirected case of the farrowing farms held the smallest percentage of Ci 
values equal to 0 (category 0), not only in comparison between the farm types but also 
compared to the frequency distribution diagrams related to the directed case (Figs. 7b, 

Fig. 5 Mean average topological overlap of the nodes. Mean average undirected, ingoing and outgoing 
topological overlap of the nodes (Ci, C

in
i

 and Cout
i

) separated by farm type, i.e. multipliers (a), farrowing farms 
(b), finishing farms (c) and farrow‑to‑finishing farms (d)
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8b). Furthermore, farrowing farms showed a higher percentage in the categories 4 and 
5 in the undirected case compared to the other farm types. In contrast to that, finishing 
farms and farrow-to-finishing farms had, despite category 0, the majority of the farms in 
category 6 with the highest Ci values. Generally, the ratios between the higher catego-
ries differed between undirected, ingoing and outgoing cases. The frequency distribu-
tion of Ci, Cin

i  and Cout
i  for the multipliers exemplarily illustrates that, in the undirected 

and the outgoing cases (Figs. 6a, 8a), category 5 occupied a larger area than category 6, 
but the frequency distribution regarding Cin

i  (Fig. 7a) showed a larger area of category 6 
than category 5. Looking at the union of nonzero values for temporal correlation coef-
ficients of the nodes in the ingoing case, the percentage of accumulated categories 1–6, 
i.e. Cin

i > 0, was largest for time window lengths between 70 and 110 days independent 
of the chosen farm type, whereby the course was not that pronounced for multipliers 
(Fig. 7a) compared to other farm types (Fig. 7b–d). From Fig. 8 it becomes obvious that 
almost exclusively the farm types at the beginning of the pork supply chain obtained val-
ues of Cout

i > 0. In contrast to the distribution of Cin
i , the largest percentages of catego-

ries 1–6 for Cout
i  could be observed for the time window lengths of 50–80 days.

Discussion
Convergence behaviour of the undirected, ingoing and outgoing temporal correlation 

coefficient (C, Cin and Cout)

Due to the fact that the topological overlap represents the probability of an edge to per-
sist between two consecutive snapshots and the temporal correlation coefficient is the 
average over all topological overlap values, both have to range between 0 and 1. In Fig. 3, 
the convergence behaviour of all three calculation methods (undirected, ingoing and 
outgoing) is illustrated for the example network of Fig.  1. All three calculation meth-
ods show the expected convergence against 1 with increasing number of added identi-
cal snapshots. The only difference for this example network can be seen between the 

Table 1 Mean (range) average topological overlap of the nodes

Mean (range) average undirected, ingoing and outgoing topological overlap of the nodes (Ci, C
in
i

 and Cout
i

) separated by 
farm type for time window lengths of 62 and 88 days (corresponding to the maximum values of the temporal correlation 
coefficients C, Cin and Cout)

Farm type n Mean (range) average topological overlap of the nodes

Undirected (Ci) Ingoing (Cin

i
) Outgoing (Cout

i
)

Time window length of 62 days

Multiplier 29 0.18 (0–0.8) 0.09 (0–1) 0.17 (0–0.87)

Farrowing farm 34 0.44 (0–0.86) 0.32 (0–1) 0.33 (0–0.93)

Finishing farm 153 0.21 (0–1) 0.21 (0–1) 0 (0–0.56)

Farrow‑to‑finishing farm 267 0.26 (0–1) 0.26 (0–1) 0.01 (0–0.97)

Time window length of 88 days

Multiplier 29 0.19 (0–0.82) 0.1 (0–1) 0.19 (0–0.82)

Farrowing farm 34 0.45 (0–0.89) 0.37 (0–1) 0.33 (0–0.91)

Finishing farm 153 0.23 (0–1) 0.23 (0–1) 0 (0–0.55)

Farrow‑to‑finishing farm 267 0.31 (0–1) 0.31 (0–1) 0.02 (0–0.96)
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undirected and the directed case. Here, the undirected temporal correlation coefficient 
showed higher values compared to the directed cases. This can be explained by the fact 
that in the undirected case the edge direction is ignored and therefore the probability 
for an edge to persist between two consecutive snapshots doubles which lead to higher 
values.

Fig. 6 Frequency distribution of the undirected average topological overlap of the nodes (Ci). The illustration 
is separated by farm type, i.e. multipliers (a), farrowing farms (b), finishing farms (c) and farrow‑to‑finishing 
farms (d). The categories are organized as follows: 0: Ci = 0, 1: 0 < Ci ≤ 0.2, 2: 0.2 < Ci ≤ 0.4, 3: 0.4 < Ci ≤ 0.6, 4: 
0.6 < Ci ≤ 0.8, 5: 0.8 < Ci ≤ 1
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Temporal correlation coefficient (C, Cin and Cout) and average topological overlap of the 

nodes (Ci, C
in

i
 and Cout

i
) calculated for a pig trade network

The results of the temporal correlation coefficient showed for all three cases (C, Cin and 
Cout) that the choice of the time window length has an important impact on the edge per-
sistence. Cout reached its maximum at a time window length of 62 days, indicating that 

Fig. 7 Frequency distribution of the ingoing average topological overlap of the nodes (Cin
i

). The illustra‑
tion is separated by farm type, i.e. multipliers (a), farrowing farms (b), finishing farms (c) and farrow‑to‑
finishing farms (d). The categories are organized as follows: 0: Cin

i
= 0, 1: 0 < C

in
i
≤ 0.2, 2: 0.2 < C

in
i
≤ 0.4, 3: 

0.4 < C
in
i
≤ 0.6, 4: 0.6 < C

in
i
≤ 0.8, 5: 0.8 < C

in
i
≤ 1.
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most of the outgoing trade contacts had periodic patterns on average every 2 months. 
In contrast, the maximum of both C and Cin was reached at a time window length of 
88 days. This corresponds to periodic patterns of on average 3 months. However, Lentz 
et al. (2013) showed periodical patterns of 180 days, representing the characteristic time 
scale of a pork supply chain. This result is two to three times higher than the findings of 

Fig. 8 Frequency distribution of the outgoing average topological overlap of the nodes (Cout
i

). The illustration 
is separated by farm type, i.e. multipliers (a), farrowing farms (b), finishing farms (c) and farrow‑to‑finishing 
farms (d). The categories are organized as follows: 0: Cout

i
= 0, 1: 0 < C

out
i

≤ 0.2, 2: 0.2 < C
out
i

≤ 0.4, 3: 
0.4 < C

out
i

≤ 0.6, 4: 0.6 < C
out
i

≤ 0.8, 5: 0.8 < C
out
i

≤ 1
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the present study. One explanation for these differences is that in the present study the 
abattoirs were excluded from the network analysis due to their dead-end characteristic 
for the transport of live animals. This also implies that a lot of farms, mainly the fin-
ishing and farrow-to-finishing farms, had no outgoing edges. This might be the main 
reason for the fact that C and Cin showed a similar course, whereas Cout could clearly 
be distinguished from them. Another point of consideration is that the fattening period 
including the trade contacts towards the abattoir, were also excluded from the network. 
This shortened the optimal time window length to 88 days for C and Cin, indicated by 
the maximum values of the temporal correlation coefficients. The optimal time window 
length of 62 days for Cout can be explained by the relative constant relationships between 
multipliers and farrowing or farrow-to-finishing farms, respectively. They mainly deliver 
or receive, respectively, gilts for replacement. Additionally, there are also constant trade 
relations between farrowing farms and finishing farms every 2 months if the finishing 
farms do not follow the all-in-all-out-procedure, but fatten their animals compartment 
specific. To protect their health status within the herds it is recommended to keep the 
number of suppliers as low as possible in order to reduce the possibility of a disease 
entry (Waldmann and Wendt 2004). Therefore, the outgoing trade contacts of the mul-
tipliers and the farrowing farms have relatively constant purchasers. Additionally, mul-
tipliers or farrowing farms got a relatively high mean Cout

i , whereas the mean Cout
i  for 

the other farm types almost always equalled 0 (Fig. 5). However, these farm types only 
represent 13 % of the whole trade network. Due to the fact that for the calculation of the 
temporal correlation coefficients the edge configuration of all farms was taken into con-
sideration, the values for Cout were lower than for C and Cin.

The results of the average topological overlap of the nodes (Fig. 5; Table 1) indicated 
that the different farm types showed clearly different courses of Ci, Cin

i  and Cout
i , depend-

ing on the position they occupy in the pork supply chain. Especially the farm types at 
the beginning of the pork supply chain, i.e. multipliers and farrowing farms had higher 
values of Cout

i  compared to finishing farms and farrow-to-finishing farms. The frequency 
distributions are another way to illustrate the differences in farm types regarding their 
edge configurations via ingoing and outgoing temporal correlation coefficients of the 
nodes. They provide details on the orders of magnitude in addition to the means of Ci, 
Cin
i  and Cout

i  (Figs. 6, 7, 8). Between the distributions of the categories of Ci and Cout
i , 

similarities for multipliers and farrowing farms but huge differences for finishing farms 
and farrow-to-finishing farms could be observed. The small amount of nonzero Cout

i  val-
ues for finishing farms and farrow-to-finishing farms, i.e. the farm types at the end of the 
pork supply chain, can be explained by the exclusion of the abattoirs from the network 
analysis. Thus, these two farm types had almost no outgoing edges. To be more pre-
cise, only three finishing farms at all had outgoing edges. But these three farms could 
be classified as pure rearing farms which receive weaned piglets from a farrowing farm 
and delivered the piglets with about 30 kg body weight to another finishing farm. There-
fore, they build a bridge between farrowing farms and the actual finishing farms with 
relatively stable trade contacts. However, all other finishing farms had no outgoing edges 
due to the exclusion of the abattoir. For a node without outgoing edges Cout

i  cannot be 
computed and is therefore set to zero.
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The distribution of the categories of Ci and Cin
i  was nearly identical for finishing farms 

and farrow-to-finishing farms. In this case, no prominent differences for multipliers and 
farrowing farms could be observed. This indicates that the multipliers and the farrow-
ing farms had ingoing edges with periodical patterns. Especially the farrowing farms 
received in constant time intervals gilts from the multipliers for their piglet production.

Looking at the frequency distributions of Ci, Cin
i  and Cout

i  of the multipliers—as an 
example for the differing ratios in categories 1–6 between these measures—reveals a 
shift towards category 6 at the expense of mainly category 5 from Ci, Cout

i  compared 
to Cin

i  (Figs. 6a, 7a, 8a). This can be explained by the fact that for the investigated pork 
supply chain most of the multipliers operated as hybrid breeding farms, whereas only 
a small amount could be assigned to nucleus breeding farms. The hybrid breeding 
farms received animals from the nucleus breeding farms in relatively constant intervals 
explaining the shift towards the higher amounts of Cin

i  values to category 6.
Despite the differences between the undirected and the directed cases, all figures 

(Figs.  6, 7, 8) illustrate that category 0 was the most represented. The only exception 
is Fig. 6b representing the categorized values of Ci for the farrowing farms. In the pre-
sented pork supply chain, this farm type occupied a middle position between the mul-
tipliers on the one end and the finishing and farrow-to-finishing farms at the other end. 
This is the reason that for both Cin

i  and Cout
i , and therefore also for Ci relatively high val-

ues for this farm type could be obtained.

Importance of the distinction between ingoing and outgoing movements

For the edge configuration of the pork supply chain under investigation a clear differ-
entiation between the ingoing and outgoing movements could be observed. Especially 
the different farm types showed specific courses of C, Cin and Cout as well as for Ci, Cin

i  
and Cout

i  depending on their position in the pork supply chain. These findings were con-
firmed by former studies of Büttner et al. (2013, 2015), where the centrality parameters 
also depend on the considered farm type. Especially the farm types at the beginning of 
the pork supply chain, i.e. multipliers and farrowing farms had significant higher values 
for the centrality parameters regarding the outgoing trade contacts compared to the farm 
types at the end of the pork supply chain, i.e. finishing and farrow-to-finishing farms. 
Furthermore, these studies showed that the rankings of the centrality parameters based 
on outgoing edges (e.g. out-degree, outgoing infection chain) had a more stable rank-
ing than the centrality parameters based on the ingoing trade contacts (e.g. in-degree, 
ingoing infection chain). These findings gave evidence to the fact that there were some 
highly central farms delivering animals to the majority of this network. This results in a 
high value for the centrality parameters based on the outgoing trade contacts. However, 
it has to be considered that the values of the centrality parameters cannot directly be 
compared to the results of the temporal correlation coefficient. The reason for this is the 
fact that during the calculation of the centrality parameters only one node is focussed 
including the attached edges but it is unimportant which node stands on the other side 
of this edge. In contrast to this, during the calculation of the temporal correlation coef-
ficient these pairs of nodes and especially the connection between two specific nodes 
are considered. Thus, an additional statement on stability of the connections between 
the nodes is made. This has to be kept in mind when talking about temporal correlation 
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coefficients. Despite the differences between the calculation of centrality parameters and 
the temporal correlation coefficient both can pass on more information if the direction 
of the edges is considered. The direction of the movements is of special importance for 
the analysis of disease spread within such directed networks. Here, a high number of 
ingoing movements increases the probability to get an infection, whereas a high number 
of outgoing movements means that the probability for spreading an infection increases. 
For the investigation of aggregated networks it is therefore very important to check the 
quality of this aggregation, in terms of high values for the temporal correlation coeffi-
cient. Furthermore, in order to keep the information of the directed network it is impor-
tant to calculate not only the undirected temporal correlation coefficient Ci but also its 
directed counterparts Cin

i  and Cout
i  as more specific quality measures.

Conclusions
The analysis of temporal networks as well as the investigation of their structural char-
acteristics are still in their infancies. Thus, appropriate methods which help to examine 
how the structure of temporal networks may affect the dynamics of processes occur-
ring on it, e.g. disease transmission, are still missing. Additionally, most of the newly 
described methods are initially based on undirected networks. However, especially if the 
direction of the edges is a main characteristic of the network, such as for the pig trade 
network, neglecting this property leads to an essential loss of information. Thus, the 
present paper provides methodologies to maintain this information by calculating the 
directed temporal correlation coefficients Cin

i  and Cout
i  representing an adaption of the 

temporal correlation coefficient to directed networks. Furthermore, it could be shown 
that depending on the position in the pork supply chain the edge configuration of spe-
cific farm types differentiated.

To conclude, considering the yet known dependencies and issues in dealing with the 
analysis of temporal network analysis, the temporal correlation coefficient is a valuable 
tool to understand the structural dynamics of these systems, as it assesses the consist-
ency of the edge configuration. The adaption of this measure for directed networks may 
help to preserve meaningful additional information about the investigated network that 
might get lost, if the edge directions are ignored.
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